Skip to main content

A Comparative Study of Representation Learning Techniques for Dynamic Networks

  • Conference paper
  • First Online:
  • 1850 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1161))

Abstract

Representation Learning in dynamic networks has gained increasingly more attention due to its promising applicability. In the literature, we can find two popular approaches that have been adapted to dynamic networks: random-walk based techniques and graph-autoencoders. Despite the popularity, no work has compared them in well-know datasets. We fill this gap by using two link prediction settings that evaluate the techniques. We find standard node2vec, a random-walk method, outperforms the graph-autoencoders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bamler, R., Mandt, S.: Dynamic word embeddings. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, pp. 380–389. PMLR (2017)

    Google Scholar 

  2. Barkan, O.: Bayesian neural word embedding. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 3135–3143. AAAI Press (2017)

    Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  5. Bražinskas, A., Havrylov, S., Titov, I.: Embedding words as distributions with a Bayesian skip-gram model. In: Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics (2018)

    Google Scholar 

  6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  7. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology, EDBT 2008, pp. 668–677. ACM, New York (2008)

    Google Scholar 

  8. De Winter, S., Decuypere, T., Mitrović, S., Baesens, B., De Weerdt, J.: Combining temporal aspects of dynamic networks with Node2Vec for a more efficient dynamic link prediction. In: 2018 IEEE/ACM International Conference on Advances in Social Analysis and Mining (ASONAM), pp. 1234–1241. IEEE (2018)

    Google Scholar 

  9. Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., Poupart, P.: Relational representation learning for dynamic (knowledge) graphs: a survey. arXiv.org (2019). http://search.proquest.com/docview/2231646581/

  10. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  11. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  12. Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  14. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. Kipf, T., Welling, M.: Variational graph auto-encoders (2016). arXiv.org

  17. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  18. Ma, X., Sun, P., Wang, Y.: Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Phys. A 496, 121–136 (2018)

    Article  Google Scholar 

  19. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: scalable dynamic network embedding. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3762–3765. IEEE (2018)

    Google Scholar 

  20. Mitrović, S., Baesens, B., Lemahieu, W., Weerdt, J.D.: tcc2vec: RFM-informed representation learning on call graphs for churn prediction. Inf. Sci. (2019)

    Google Scholar 

  21. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, pp. 969–976. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  23. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). URL http://networkrepository.com

  24. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal graphs. arXiv preprint arXiv:1903.08889 (2019)

  25. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Representation learning over dynamic graphs. arXiv preprint arXiv:1803.04051 (2018)

  26. Troncoso, F., Weber, R.: A novel approach to detect associations in criminal networks. Decis. Support Syst. 128, 113–159 (2019)

    Google Scholar 

  27. Van Belle, R., Mitrović, S., De Weerdt, J.: Representation learning in graphs for credit card fraud detection. In: ECML PKDD 2019 Workshops. Springer (2019)

    Google Scholar 

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, 13–17 August 2016, pp. 1225–1234. ACM (2016)

    Google Scholar 

  29. Wang, Y., Yao, Y.: A brief review of network embedding. Big Data Min. Anal. 2(1), 35–47 (2019)

    Article  Google Scholar 

  30. Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Thirty-Second AAAI Conference On Artificial Intelligence, pp. 571–578. AAAI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ortega Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortega Vázquez, C., Mitrović, S., De Weerdt, J., vanden Broucke, S. (2020). A Comparative Study of Representation Learning Techniques for Dynamic Networks. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-45697-9_51

Download citation

Publish with us

Policies and ethics