Modeling for Three-Subset Division Property
without Unknown Subset

Yonglin Hao', Gregor Leander?, Willi Meier®, Yosuke Todo?, and Qingju Wang®

I State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China, haoyonglin@yeah.net
2 Horst Gortz Institute for IT Security, Ruhr University Bochum, Bochum, Germany,
gregor.leander@rub.de
3 FHNW, Windisch, Switzerland, willimeier48@gmail.com
4 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan, yosuke.todo.xt@hco.ntt.co. jp
% SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg, qjuwang@gmail.com

Abstract. A division property is a generic tool to search for integral distinguishers, and auto-
matic tools such as MILP or SAT/SMT allow us to evaluate the propagation efficiently. In the
application to stream ciphers, it enables us to estimate the security of cube attacks theoreti-
cally, and it leads to the best key-recovery attacks against well-known stream ciphers. However,
it was reported that some of the key-recovery attacks based on the division property degen-
erate to distinguishing attacks due to the inaccuracy of the division property. Three-subset
division property (without unknown subset) is a promising method to solve this inaccuracy
problem, and a new algorithm using automatic tools for the three-subset division property was
recently proposed at Asiacrypt2019. In this paper, we first show that this state-of-the-art al-
gorithm is not always efficient and we cannot improve the existing key-recovery attacks. Then,
we focus on the three-subset division property without unknown subset and propose another
new efficient algorithm using automatic tools. Our algorithm is more efficient than existing
algorithms, and it can improve existing key-recovery attacks. In the application to TRIVIUM,
we show a 842-round key-recovery attack. We also show that a 855-round key-recovery attack,
which was proposed at CRYPT02018, has a critical flaw and does not work. As a result, our
842-round attack becomes the best key-recovery attack. In the application to Grain-128AEAD,
we show that the known 184-round key-recovery attack degenerates to a distinguishing attack.
Then, the distinguishing attacks are improved up to 189 rounds, and we also show the best
key-recovery attack against 190 rounds. In the application to ACORN, we prove that the
772-round key-recovery attack at ISC2019 is in fact a constant-sum distinguisher. We then
give new key-recovery attacks mounting to 773-, 774- and 775-round ACORN. We verify the
current best key-recovery attack on 892-round Kreyvium and recover the exact superpoly. We
further propose a new attack mounting to 893 rounds.

Keywords: stream ciphers, cube attack, division property, three-subset division property,
MILP, TriviuM, Grain-128 AEAD, ACORN, Kreyvium

1 Introduction

Division Property. Integral cryptanalysis [I], a.k.a. square attacks [2] or higher-order differential
attacks [3], is one of the most powerful cryptanalysis techniques. Let C; be the set of chosen plain-
texts. The integral distinguisher for a cipher E} is defined as the property @pGCI Ex(p) = 0 for any
secret key k. Since the probability that such a zero-sum property holds is low for ideal ciphers, we
can distinguish Fj, from an ideal one.

The division property, as originated in [4], is the most accurate and generic tool to search for
integral distinguishers. Ever since its proposal, it has been widely applied to many block ciphers
([5I6U7I8] etc). For a set of texts X C F%, its division property is defined by dividing a set of w’s into
two subsets: vectors u € F§ of the 1st subset satisfy @,y x* = 0 (referred as 0-subset hereafter),
and those of the 2nd subset make @, x * undetermined (referred as unknown subset hereafter).
The initial division property is defined according to a set of chosen plaintexts, and those of the
intermediate states are deduced round by round according to propagation rules. Finally, the division

2 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

property for the set of corresponding ciphertexts is evaluated, and the integral distinguisher can be
derived accordingly. The propagation of the division property was evaluated with the breadth-first
search algorithm in [5l[7], but it is computationally impractical for ciphers with large block size.
Then, Xiang et al. introduced the useful concept called division trail and proposed a MILP-based
algorithm [9], enabling us to apply the division property to various ciphers ([TOJTIJ12] etc). Nowadays,
the division property is often used not only for third-party crypanalysis but also for the design of
new ciphers ([I3I14] etc).

Although the division property can find more accurate integral distinguishers than other methods,
the accuracy is never perfect. As pointed out by Todo and Morii [7], the practically verified 15-round
integral distinguisher for Simon32 [I5] cannot be proved with the conventional division property. To
find more accurate distinguishers, the three-subset division property was proposed in [7]. A set of u’s
is divided into three subsets rather than two: the first one is the 0-subset, another one is the unknown
subset, and the third one is the subset satisfying @,y " = 1 (referred as I-subset hereafter). The
three-subset division property enables us to prove the 15-round integral distinguisher of Simon32 [7].

Despite of its successful combination of the MILP and the conventional division property, the
MILP modeling technique does not work quite well with the three-subset version. Very recently, two
methods were proposed to tackle this problem. The first method is a variant of the three-subset di-
vision property [16]. Although it sacrifices quite some accuracy of the three-subset division property,
this method has MILP-model-friendly propagation rules and improves some integral distinguishers.
The latter, proposed by Wang et al. [I7], models the propagation for the three-subset division prop-
erty accurately. Wang et al.’s idea is to combine the MILP with the original breadth-first search
algorithm [7]. In their algorithm, each node on the breadth-first search algorithm is regarded as the
starting point of division trails, and the MILP evaluates whether there is a feasible solution from
every node. When there is no feasible solution, we can prune these nodes from the breadth-first
search algorithm as redundant ones.

Cube Attack. The cube attack was proposed by Dinur and Shamir in [I8]. For a cipher with public
variables v € F5' and secret variables & € F7, the cipher can be regarded as a polynomial of v,z
denoted as f(x,v). A set of indices, referred as the cube indices, is selected as I = {i1,12,..., im} -
{1,2,...,m}. Such an I determines a specific structure called cube, denoted as Cj, containing 211
values where variables in {v;,, vi,, . . ., vi;, } take all possible combinations of values and all remaining
(key and non-cube IV) variables are static. It is proved that the summation of f over the cube C;
equals to the value of a particular polynomial p(x,v), commonly referred as the superpoly of cube I.
The cube attack consists of two steps. First, attackers recover the algebraic normal form (ANF) of
the superpoly in the offline phase. Then, attackers query the cube to the encryption oracle, compute
the summation, and get the value of the superpoly. The secret key can be recovered when the
polynomial p(x,v) is simple. Therefore, the superpoly recovery plays the most critical role in the
cube attack.

Previously, superpolies could only be recovered experimentally. Therefore, the size of cube indices
|7] had to be limited within practical reach. In [I1], the division property was first introduced to
cube attacks, and it enables us to identify the secret variables NOT involved in the superpoly
efficiently. After removing such secret variables, the remaining variables are stored into a set J as
the secret variables that might be involved. It enables the attackers to recover the truth table of the
superpoly with a time complexity 2///*17I. Then, Wang et al. improved it by introducing flag and
term enumeration technique that can lower the complexities for the superpoly recoveries [I2]. It is
noticeable that neither [I1] nor [12] recovers the superpoly directly, and it only guarantees the time
complexity to recover the superpoly p(x,v). They only identify the key variables (or monomials [12])
and make the assumption that such variables (monomials) might be involved in the superpoly. If
such an assumption does not hold, the superpoly can be much simpler than estimated, or even in the
extreme case: p = 0 degenerates key-recovery attacks to distinguishing attacks. Such degeneration
issues are reported in [19] and [I7], where Wang et al.’s attack on 839-round Trivium in [I2] cannot
recover secret keys because p = 0.

Modeling for Three-Subset Division Property without Unknown Subset 3

Table 1. Summary of flaws or issues in some of the previous best key-recovery attacks

l cipher ‘# rounds‘ref. ‘note ‘where discovered‘
TRIVIUM 839 |[12]|degeneration to distinguisher [19I17]
TRIVIUM 855 |[20]|attack does not work because of a flaw| this paper

in the degree estimation

Grain-128a| 184 |[I2]|degeneration to distinguisher this paper

ACORN 772 |[21]|degeneration to distinguisher this paper

Motivation. Our work is motivated by the latest three-subset division property model with pruning
technique [I7]. In its application to the cube attack, they claim that the three-subset division prop-
erty without unknown subset can recover the actual superpoly because it deterministically divides
the set of u € F§ into two subsets whose summations are either 0 or 1. Therefore, the superpolies
recovered in this manner are always accurate. However, such a powerful tool is only used to de-
generate the key-recovery attack against 839-round TRIVIUM in [I2] to a zero-sum distinguisher.
Although the memory-consuming implementation of [I7]’s pruning technique does not provide new
key-recovery results, such a degeneration from key-recovery to distinguisher implies unexpectedly
simpler superpolies. Therefore, we can expect that the superpolies for 840-round TRIVIUM are also
simpler than previous estimations, and the key-recovery attacks can be carried out to 840 or more
rounds. Thus, we implemented and executed the algorithm based on the pruning technique, and
we find that the algorithm is not always efficient: we cannot recover the superpoly of 840-round
TRIVIUM in reasonable time. To recover the more complicated superpoly, a more efficient algorithm
for the three-subset division property is required.

Our Contribution. We propose a new modeling method for the three-subset division property
without unknown subset. Here, we first introduce a modified three-subset division property that
is completely equivalent to the three-subset division property without unknown subset. While the
original three-subset division property without unknown subset is defined by using the set L, the
modified one is defined by using the multiset L instead of the set L, and it is suited to modeling
with MILP or SAT/SMT solvers. The previous algorithm focuses on the feasibility of the model,
but our algorithm focuses on all feasible solutions that are enumerated by using the solver.

To demonstrate the efficiency of our new algorithm, we apply it to cube and cube-like attacks
against TRIVIUM and Grain-128AEAD. We have two types of contributions. The first one is to show
flaws or issues in some of the best previous key-recovery attacks, and these results are summarized
in Table[l] The second one is the best key-recovery attacks against TRIVIUM and Grain-128AEAD,
and these results are summarized in Table[2l

We first apply our algorithm to the superpoly recovery for 840-round TRIVIUM, which was im-
possible in the previous algorithm. As a result, we can recover the exact superpoly for not only
840-round TRIVIUM but also for 841-, and 842-round TRIVIUM. Moreover, the recovered superpolies
are simple balanced Boolean functions. In other words, we can recover 1-bit of information on the
secret key against 840-, 841-; and 842-round TRIVIUM, and exhaustive search with the recovered su-
perpoly allows us to recover the entire secret key with time complexity 27°. Note that the recovered
superpoly is accurate and there is no assumption like in the theoretical superpoly recoveries [TTJ12].
We next use our algorithm to verify a new-type of cube attack [20] shown by Fu et al. In the new-type
of cube attack, the part of secret key bits is first guessed, one bit of the intermediate state (denoted
by Py) is computed, and the sum of (1 + P;) - z over the cube is evaluated, where z denotes the
key stream bit. The authors claimed that the sum of (1 + P;) - z can be simpler than the sum of
z by choosing P; appropriately. As a result, they claimed that the algebraic degree of (1 + Py) - z
is at most 70. Unfortunately, this claim was based on their algorithm including some man-made
work that is not written in the paper, and a cluster of 600-2400 cores is necessary to run their code.
Thus, no one can verify their algorithm. Our algorithm is very simple, can run on a normal PC, and
recovers the exact superpoly. As we recover the superpoly of (1+ P;) - z over the cube, we find that

4 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 2. Summary of our results

l Cipher ‘ # rounds ‘type of attacks‘Time complexity
TRIVIUM 840 key recovery 27
TrIVIUM 841 key recovery 279

TRIVIUM t 842 key recovery 279
Grain-128AEAD|184,185,186,187,188,189| distinguisher 296
Grain-128AEAD 190 key recovery 2123

ACORN ¢ 773 key recovery 2127

ACORN 7 774 key recovery Q127

ACORN 7 775 key recovery 2127

Kreyvium t 892 key recovery 2127

Kreyvium t 893 key recovery 2127

t: new results in comparison with the conference version [22].

the algebraic degree of (14 P;) - z is not bounded by 70, and there is a monomial whose degree is
75+ 26 = 101. In other words, even if we guess the correct Pj, the sum of (14 P;) - z over the cube
is not 0. It implies that we cannot attack 855-round TRIVIUM by using their method.

Another application is to Grain-128AEAD, which was previously referred to as Grain-128a.
Grain-128 AEAD is one of the 2nd round candidates of the NIST LWC standardization process and
the specification is slightly revised from Grain-128a according to [23l24]. Assuming that the first
pre-output key stream can be observed, there is no difference between Grain-128AEAD and Grain-
128a in the context of the cube attack. As a result, we show that the key-recovery attack against
184-round Grain-128AEAD shown in [I2] is a distinguisher rather than a key recovery. Moreover, we
show that the distinguishing attack can be improved up to 189 rounds. From 190 rounds onwards, the
superpoly involves some secret key bits, and it can be used in a key-recovery attack. However, since
the recovered superpoly is highly biased toward 0, using one superpoly is not sufficient to recover
any secret key bit. Therefore, we recover 15 different superpolies for 190-round Grain-128AEAD,
and show an attack procedure to recover the secret key by using their superpolies. As a result, we
can recover the secret key of 190-round Grain-128AEAD with 2'2% time complexity.

We further apply our method to ACORN: the underlying stream cipher of a winner portfolio of
the CAESAR competition [25]. The previous best key-recovery attack is given by Yang et al. in [21]
mounting to 772 rounds. We are able to prove that the superpoly of their cube does not contain
any key bits so it is degenerated to a constant-sum distinguisher. As a remedy, we propose new
key-recovery attacks on 773-, 774- and 775-round ACORN using new cubes of sizes 125, 126 and
126. The non-zero superpolies of our attacks are explicitly recovered.

Another application is on Kreyvium, which is a stream cipher specifically suitable for homomor-
phic encryption [26]. We verify and improve the current best key-recovery attack given by Hao et
al. in [27]. In order to recover the superpoly, the previous method requires 22119 time but our new
technique allows us to recover it with practical time. We further provide a new attack mounting to
893-round Kreyvium, improving Hao et al.’s result by 1 round.

1.1 Differences between This Paper and Its Conference Version [22]

This paper is an expanded version of the conference paper [22] presented at EUROCRYPT 2020. In
comparison with the conference version, this paper involves new results as follows:

1. The 1st key-recovery attack on 842-round TRIVIUM.

2. New cryptanalysis of ACORN including the verification of previous attacks and improved key-
recoveries mounting to at most 775 rounds.

3. New cryptanalysis of Kreyvium including the verification of previous attacks and the 1st key-
recovery attack on 893-round Kreyvium.

Modeling for Three-Subset Division Property without Unknown Subset 5

The new results above are also summarized in Table [2| and are symbolized with “1”. With respect
to the number of initialization rounds attacked, these new results are the current best key-recovery
attacks on the corresponding stream ciphers and further prove the effectiveness of our new techniques.

2 Brief Introduction of Division Property

We first introduce some notations for bitvectors. For any bitvector & € F5*, x[i] denotes the ith
bit of x. Given two bitvectors € F3* and u € Fy*, % = [[I", z[i]“[l. Moreover, = u denotes
x[i] > ufi] for all ¢ € {1,2,...,m}.

2.1 Conventional Division Property

The (conventional) division property was proposed at Eurocrypt 2015, and it is regarded as the
generalization of the integral property.

Definition 1 ((Bit-based) division property). Let X be a multiset whose elements take a value
of F', and k € F3'. When the multiset X has the division property Dﬂgn, it fulfills the following
conditions:

0 otherwise.

@w“ B {unknown if there are k € K s.t. u > k,

zeX

For example, when a multiset X C F3 has the division property Dgloo,low,oou}v it guarantees that
x® = 0 for any » € {0000, 1000, 0100, 0010,0001,1001,0110,0101}.
zeX

2.2 Three-Subset Division Property

The set of u is divided into two subsets in the conventional division property, where one is the subset
such that @,y =* is unknown and the other is the subset such that the sum is 0. The three-subset
division property was proposed in [7], where the number of divided subsets is extended from two to
three.

Definition 2 (Three-subset division property). Let X be a multiset whose elements take a
value of F5', and k € F5'. When the multiset X has the three-subset division property ’Dﬂgi, it fulfills
the following conditions:

unknown if there are k € K s.t. u = k,
@ ¥ =<1 else if there is £ € L s.t. u =4,
zeX 0 otherwise.

For example, when a multiset X C F3 has the three-subset division property D]%QL, where K =
{1100,1010,0011} and L. = {1000,0010,0110}, it guarantees that €, xx* is 0 for any u €
{0000, 0100, 0001, 1001,0101} and 1 for any u € {1000,0010,0110}.

2.3 Propagation Rules for Division Property

The propagation rule of the division property is shown for three basic operations: “copy,” “and,”

and “xor” in [7]. The proof to such propagation rules can be seen in [28]—the full version of [7].

Rulel (copy). Let F be a copy function, where the input & € F}* and the output is calculated
as (z[1], z[1], z[2],z[3], ..., z[m]). Let X and Y be the input and output multisets, respectively.

6 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Assuming that X has DHI(TL, Y has D]%JE , where K’ and " are computed as

o [00,0,K[2],. .., k[m), if k[1] =0

e {(1,0,k[2],...,k[m]),(O,I,k[Z},...,k[m]), if k[l =1
U {(o,o,e[z],...,e[m]), if 1] =0
(1,0,0[2],....60m]), (0,1,€[2], ..., 0[m]), (1,1,£2],....0[m]) if ¢[1] =1

from all k € K and all £ € L, respectively. Here, K’ < k (resp. I’ <+ £) denotes that k (resp. £)
is inserted into K’ (resp. L').

Rule 2 (and). Let F be a function compressed by an AND, where the input € F4* and the output
is calculated as (z[1] A z[2],z[3],...,z[m]). Let X and Y be the input and output multisets,
respectively. Assuming that X has Dﬂgﬁl, Y has DHIJ ;, where K’ is computed from all k € K as

K < ([W ,k[S],k[4],...,k[m]).

Moreover, L' is computed from all £ € L s.t. (¢1,43) = (0,0) or (1,1) as

L+ ([W ,4[3],g[4},...,e[m}>.

Rule 3 (xor). Let F be a function compressed by an XOR, where the input € FJ*, and the
output is calculated as (z[1]®z[2], z[3], ..., z[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has D]Il:]l‘, Y has Dﬂlg,'ti,l, where K’ is computed from all k& € K s.t.
(k[1],k[2]) = (0,0), (1,0), or (0,1) as

K’ « (k[1] + k[2], k[3], k[4], . .., k[m]).
Moreover, L is computed from all £ € L s.t. (¢[1],£]2]) = (0,0), (1,0), or (0,1) as
L' & (0[1] + £[2],£[3],£4], . . ., £[m]) .

Here, L’ <& £ denotes that £ is inserted if it is not included in L’. If it is already included in L,
£ is removed from I’. Hereinafter, we call this property the cancellation property.

Another important rule is that bitvectors in L influence K. Assuming that a state has Dﬂgﬂﬂ the
secret key is XORed with the first bit in the state. Then, for all £ € L satisfying ¢[1] = 0, a new
bitvector (1,£[2],...,¢[m]) is generated and stored into K. Hereinafter, we call this property the
unknown-producing property.

2.4 Various Algorithms to Evaluate Propagation of Division Property and
Three-Subset Division Property

Breadth-First Search Algorithm. Evaluating the propagation of the division property is not
easy. The first few papers [457] use the so-called breadth-first search algorithm, where K;; (resp.
L;11) is computed from K; (resp. L;) from i = 0 to ¢ = R — 1 step by step to evaluate R-round
ciphers. Each node in the depth level ¢ corresponds to each bitvector in K; and L;. When the block
length is large, the sizes of K; and L; increase explosively. Therefore, we cannot manage all nodes,
and the in breadth-first search algorithm becomes impractical.

MILP Modeling for Conventional Division Property. Xiang et al. showed that a mixed
integer linear programming (MILP) can efficiently evaluate the propagation of the conventional
division property [9]. First, they introduced the division trail as follows.

Modeling for Three-Subset Division Property without Unknown Subset 7

Definition 3 (Division Trail). Let Dx, be the division property of the input for the ith round

def

function. Let us consider the propagation of the division property {k} = Ky - K; — Ky —

- — K. Moreover, for any bitvector ki, , € Ki;1, there must exist a bitvector ki € K; such
that ki can propagate to ki, by the propagation rule of the division property. Furthermore, for
(ko,k1,..., k) € (Ko x Ky x -+ xK,.) if k; can propagate to ki1 for alli € {0,1,...,r — 1}, we
call (kg — k1 — -+ = k) an r-round division trail.

Let Ej be the target r-round iterated cipher. As has been proved in [9], if there is no division trail

ko EZN e; (e; is denoted as a unit vector with the ith entry being 1 while others being 0) the ith bit
of r-round ciphertexts is always balanced, which means that the summation of the ith ciphertext
bits is constantly 0.

Using MILP we can efficiently solve this problem. Three fundamental operations, i.e., copy, xor,
and and, can be modeled by using MILP. We generate a MILP model that covers all division trails.
Then, the MILP solver (such as Gurobi [29]) is used to solve the MILP model. If the solver evaluates
the model as “infeasible”, we know that the target bit is balanced.

MILP Modeling for Variant Three-Subset Division Property. Unlike the conventional divi-
sion property, evaluating the propagation of the three-subset division property is difficult. The main
difficulty comes from the cancellation property in Rule 3 (xor) and the unknown-producing property.
The cancellation property can only be evaluated with the knowledge of full IL so only focusing on a
single trail is not enough. The unknown-producing property requires the interaction between K and
L when the secret key is XORed. Both cancellation and unknown-producing properties imply that
we need to compute . whose sizes can be far beyond practical reach.

Hu and Wang tackled this problem [I6], and they built the so-called variant three-subset division
property, where only the cancellation property is neglected from the original one. The accuracy of
the variant three-subset division property is worse than the original three-subset division property
because of this neglect. However, they showed that such a variant is still useful and it is at least as
accurate as the conventional division property.

Pruning Technique for Three-Subset Division Property. The technique for the accurate
modeling for three-subset division property was proposed by Wang et al [I7]. The new idea is the
combination between the breadth-first search algorithm and an intelligent MILP-based pruning
technique. The first step of their algorithm is the same as the breadth-first search algorithm. The
pruning technique is applied to K; and LL; for every ¢. For all £ € L;, we create a MILP model
of the conventional division property for the (R — ¢)-round cipher, and evaluate the feasibility of
the division trail from £ to the observed bit. Then, the bitvector £ can be removed from L; if it
is infeasible. We also apply a similar pruning technique to K;. As a result, this pruning technique
allows the sizes of K; and L; to decrease dramatically, and the evaluation of the three-subset division
property becomes possible.

They applied this new modeling technique to Simon, Simeck, PRESENT, RECTANGLE, LBlock,
and TWINE. Moreover, they also applied this algorithm to the cube attack against Trivium. As a
result, they showed that the 839-round key recovery attack proposed in [I2] degenerates into a
zero-sum distinguisher.

3 Cube Attack and Division Property

3.1 Cube Attack

The cube attack was proposed by Dinur and Shamir in [I§]. A cipher is regarded as a public
Boolean function whose input is divided into two parts: secret variables and public ones v. Then,
the algebraic normal form of the Boolean function is represented as

fl@o)= @ d(=lv)*

uerytm

8 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

For a set of indices I = {i1,42,...,47/} C {1,2,...,m}, which is referred as cube indices, ¢; denotes
a monomial as t; = v;, - v, - - - v;,;- The Boolean function f(x,v) can also be decomposed as

fz,v) =t1 - p(x,v) + q(x,v).

Let Cy, which is referred as a cube (defined by I), be a set of 211 values where variables in
{viy, Vig, ..., vi,, } are taking all possible combinations of values, and all remaining variables are
fixed to any value. The sum of f over all values of the cube C7 is

@f(w,v) = @tl p(x,v) + @q(wvv) =p(z,v)
Cr Cr Cr

because t; = 1 for only one case in C; and each term in ¢(x,v) misses at least one variable from
{Viy, Vigy - - - ’Uim}' Then, p(x,v) is called the superpoly of the cube C, and the goal of the cube
attack is to recover the superpoly.

3.2 Division Property and Cube Attack

The division property is formally developed as the generalization of the integral property, and it
has been initially used to evaluate the integral distinguisher. When the division property is applied
to the cube attack [I1], the authors showed the relationship between the division property and the
algebraic normal form of public functions.

Lemma 1 ([I1]). Let f(x) be a polynomial from F% to Fy and af, € Fy (u € F}) be the ANF
coefficients. Let k be an n-dimensional bitvector. Then, assuming that the initial division property
D%;} cannot propagate to D} after evaluating the function f, af, is always 0 for u = k.

We provide here the proof of this property for completeness.

Proof. According to k, we first decompose f(x) into

f@)= @ d -2t O -

u€elFy |lu-k u€elFy |[uzk
=zk. @ al - xv* g @ al - x¥.
uelFY |lurk u€eFZ|uzk

Assume that there is no division trail such that k % 1. Then, no division trail guarantees that the
sum of f(x) over all values of the cube Cj is always 0 independent of z; (i € {1,2,...,n} — I).
Namely,

Pra)=P|z* P o -a**|= P a2z =0

Cr Cr u€eFy|u-k u€F?|u>k

holds independent of z; (i € {1,2,...,n} — I). It holds only if af, is always 0 for all w such that
u = k. O

Even if the function f is complicated and it is practically impossible to describe its algebraic
normal form, partial information can be recovered by using the division property. The division
property based cube attack first evaluates secret variables that are not involved in the superpoly.
Let J be the set of such secret variables, and the set J := {1,2,...,n} \ J denotes secret variables
that could be involved in the superpoly. Then, we can recover the superpoly with time complexity
of 2MI+IJ1,

Remark that the division property can guarantee that coefficients are 0, but it cannot guarantee
that coefficients are 1. The division property was originally introduced to detect the integral distin-
guisher, and guaranteeing that coefficients are 0 is enough for its purpose. As shown in the definition

Modeling for Three-Subset Division Property without Unknown Subset 9

of the division property, it focuses on O-parity or unknown-parity, but it does not focus on 1-parity.
Therefore, the division property does not have the functionality to judge whether coefficients are 1
or not. This limitation of the division property causes the so-called strong and weak assumptions
in [I1], i.e., they assume af, = 1 when the division property D." can propagate to D}. When these
assumptions do not hold, the superpoly can be much simpler than estimated, and in the extreme
case, the superpoly becomes a constant function. Then, the key-recovery attack degenerates into a
distinguishing attack. Such degeneration is reported in [I9] and [I7], where the key-recovery attack
against 839-round TRIVIUM in [12] degenerates into a distinguishing attack.

3.3 Three-Subset Division Property and Cube Attack

The authors in [I7] showed that these assumptions can be removed by using the three-subset division
property. Proposition 4 in [I7] addresses this problem, but a more simple formula is enough for our
application.

Lemma 2 (Simple case of [17]). Let f(x) be a polynomial from F3 to Fy and af, € Fy (u € F})
be the ANF coefficients. Let £ be an n-dimensional bitvector. Then, assuming that the initial division
property Dén{e} propagates to ’Dég after evaluating the public function f, a'}; =1.

Proof. For such £ € F}, we define the index set I C {1,...,n} s.t. £[i] = 1 < i € I. Then, the
following multiset X containing 2!/! element a’s is defined accordingly:

Xi={zelFy:z[i]=0forallie {1,...,n}\I}
By applying the function f to every element in X, we acquire the multiset Y as follows:
Y :={f(z):x X}

Since D;}n{ P propagates to Dé’l after evaluating the function f, we know Y has division property
an1 and, according to Definition [2) we have

1=Py=6P f=x) (1)

yeY xzeX

The right-hand-side of Eq. corresponds to the basic cube summation over cube I and the value
of the cube summation equals to the coefficient of the monomial x¢, which is a}; . Combined with
[, ag = 1. u

Note that we only consider the case that the function f is a public function. Then, since the function
f is not key-dependent, the propagation for K and that for I are perfectly independent. In other
words, we no longer consider the propagation for K because the initial division property is empty ¢.

4 Three-Subset Division Property w/o Unknown Subset

4.1 Motivation and Limitation of Pruning Technique

Our initial motivation is to verify the potential of the state-of-the-art modeling technique with the
pruning technique [I7]. The authors of [I7] claimed that the exact superpoly can be recovered, but
the application for the largest number of rounds was the degeneration from the key-recovery attack
to a zero-sum distinguisherﬁ The natural question is why they did not show improved key-recovery
attacks. Since such a degeneration implies unexpectedly simpler superpoly, we can expect that the

% They showed that the superpoly of 842-round TRIVIUM can be recovered with the complexity 232, but
the unit of the complexity is the breadth-first search algorithm with pruning technique. Even one unit
requires to solve many MILPs, and the complexity of the algorithm is not bounded. Therefore, unlike the
previous theoretical cube attack [I1U12], we cannot guarantee that it is faster than the exhaustive search.

10 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

size of L;

| |
0 0 8 16 24 32 40 46

number of rounds

Fig. 1. Size of L; after applying the pruning technique. Check if the superpoly involves K[61] in the cube
shown in [12].

320 [
256 |
196 -
128 -

64 -

size of L;

number of rounds

Fig. 2. Size of L; after applying the pruning technique. Check if the superpoly for 840-round TRIVIUM has
constant-1 term.

cube described in [12] leads to a key-recovery attack for 840-round TRIVIUM. If we can recover
the superpoly of such a cube, we can directly improve the key-recovery attack against Trivium.
Therefore, we implemented their algorithm by ourselves and verified whether or not we can recover
the actual superpoly of 840-round Trivium. As a result, in order to make the breadth-first search
algorithm with pruning technique feasible, it requires an assumption that almost all elements in L;
must be pruned.

We first verify that the breadth-first search algorithm with pruning technique is feasible to prove
that the 839-round cube attack shown in [I2] cannot recover any secret key bit. In this attack,
the number of cube bits is 78, where all IV bits except for IV [34] and IV [47] are active and these
constant bits are fixed as (IV[34], IV [47]) = (0,1). Then, the conventional division property shows
that a secret key bit K[61] could be involved in the superpoly [I2]. We now evaluate the same cube
by using the three-subset division property. According to [17], the corresponding initial property Ly
consists of sixteen 288-bit bitvectors, where 1 is assigned for cube bits and involved-key bit, any
value is assigned for four constant-1 bits (893447, S286, S287, S288), and 0 is assigned for other bits. We
applied the pruning technique to sixteen bitvectors, and only two bitvectors are remaining and the
other fourteen bitvectors can be removed. We applied the pruning technique in every round, and
Fig. summarizes the size of IL; for the ith round. The size of L; is bounded by a reasonable range
and all bitvectors are removed in 46 rounds. This implies that the actual superpoly does not involve
K[61].

We next try whether or not the breadth-first search algorithm with pruning technique is avail-
able to attack 840-round TRIviUM. We use a cube similar to the one above, but non-cube bits
(IV[34],IV]47]) are fixed to 0 in order for the superpoly to be more simplified. Before we re-
cover all monomials in the superpoly, as the first step, we aim to identify if the superpoly has the
constant-1 term. In other words, we evaluate whether or not 840-round TRIVIUM has a monomial
Hie{1,2,...,80}\{34,47} 59341 Figure shows the increase of I;. The more the size of I; increases, the
more MILP instances we need to solve. We used Gurobi Optimizer on a server (Intel Xeon CPU
E5-2699 v3, 18 cores, 128GB RAM), and we spent almost two weeks to even draw Fig. where only
five rounds are evaluated. To recover the superpoly for 841-round TRIVIUM, we need to finish this
algorithm and apply the same algorithm to all other monomials that could be involved. Therefore,
we conclude that the breadth-first search algorithm with pruning technique cannot recover the su-

Modeling for Three-Subset Division Property without Unknown Subset 11

perpoly for 841-round TRIVIUM in reasonable time. It is inefficient unless the size of L; is bounded
by reasonable size, e.g., 100, for all i.

4.2 Three-Subset Division Property without Unknown Subset

The pruning technique is not always efficient to evaluate the cube attack, and we cannot improve the
key-recovery attack against Trivium due to the explosive increase of |L;|. To address this problem,
we need to develop a new modeling technique. Two properties, i.e., the unknown-producing property
and the cancellation property, make it difficult to model the three-subset division property directly.
Thus, we first explain how to overcome these properties.

Unknown-Producing Property. We start our discussion from the case where the three-subset
division property is applied to finding integral distinguishers [7JT7]. Then, public variables (a.k.a.,
IVs or plaintexts) and secret variables (a.k.a., secret key) are distinct variables. First, let us consider
the initial division property. Let Xo be the set of chosen public variables, and &, ex, T are always
known for any u because public variables are known. In other words, K is empty set in the initial
three-subset division property Dk 1. Under evaluating the propagation of the three-subset division
property, the round function involves secret variables (a.k.a., secret round key). Only when such
secret variables are newly involved, new bitvectors for K are generated according to every element
in L. We need to know all elements in . when secret round key is XORed, and its sizes are usually
far beyond the practical reach.

On the contrary, cube attacks aim at recovering the exact ANF of key-related superpoly corre-
sponding to the cube defined by public variables. The main difference from the integral distinguishers
is that public and secret variables are regarded uniformly and all functions (including the key sched-
ule) are handled as public functions. In this case, there are no secret variables, and the set K is always
empty. Therefore, in the aim of the cube attack, three-subset division property without unknown
subset is enough for exact superpoly recovery in the cube attackﬂ This observation implies we do
not need to enumerate all elements in L if it is not necessary.

Cancellation Property. Another property that we need to address is the cancellation property.
Our idea to overcome this property is to count the number of solutions by using a MILP instead of
evaluating the feasibilityﬂ To understand our modeling, we introduce the following slightly modified
definition. Note that this definition is equivalent to the definition of the three-subset division property
without unknown subset. It is introduced only for ease of understanding of our modeling, and by
itself does not yield new insight.

Definition 4 (Modified three-subset division property). Let X be a multiset whose elements
take a value of F3'. Let IL be also a multiset whose elements take a value of F5*. When the multiset
X has the modified three-subset division property (shortly 7}:17”), it fulfils the following conditions:

@ w {1 if there is an odd number of w’s in L,
€T =

wex 0 otherwise.

Note that z% = [, x[i]*l1.

Instead of considering the cancellation property, we count the number of appearances in each bitvec-
tor in the multiset I and check its parity. Similarly to the original three propagation rules, we can
introduce three propagation rules for the modified three-subset division property as follows:

T After appearance of our conference version [22], the Asiacrypt2020 paper [30] shows another view of the
three-subset division property without unknown subset. They provided easier understanding by using the
parity set [31].

8 The same idea was already described in [I7] although the authors did not use the idea in their model.

12 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Rule1’ (copy). Let F be a copy function, where the input € F5* and the output is calculated

as (z[1], z[1], z[2],z[3], ..., z[m]). Let X and Y be the input and output multisets, respectively.
Assuming that X has Tfm, Y has 7}21,"”“, where I/ are computed as
i ,0,22],...,¢[m]), if 1] =0
,0,0[2],...,00m]),(0,1,£]2],...,£m]), (1,1,£[2],...,€[m]) if£[1] =1

from all £ € L. Here, L’ < £ denotes that £ is inserted into L'
Rule 2’ (and). Let F be a function compressed by an AND, where the input € F5* and the output
is calculated as (z[1] A z[2],z[3],...,z[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has 7£:1m, Y has 75,7”71, where L’ is computed from all £ € L s.t.
(¢1,42) = (0,0) or (1,1) as

L« GW} ,4[3]7z[4},...,e[m}> :

Rule 3’ (xor). Let F be a function compressed by an XOR, where the input @ € F}', and the
output is calculated as (x[1]®z[2], z[3], ..., z[m]). Let X and Y be the input and output multisets,

respectively. Assuming that X has Elm, Y has '7;:1/”“1, where L’ is computed from all £ € L s.t.
(£[1],¢]2]) = (0,0), (1,0), or (0,1) as

L« (¢[1] +€]2], 03], €[4), ..., £[m]).

In comparison with the original three-subset division property in Sect.2:3] we change the set L to
multiset L to restore all newly produced bitvectors. Instead of removing even-number bitvectors, we
manage the multiset and focus on the parity of each element in the multiset. Even if these proofs are
naturally implied from the proof of the original propagation rules, we provide them for completeness
in Appendix[B]

Based on our modified three-subset division property, we introduce a three-subset division trail,
which is similar to the division trail.

Definition 5 (Three-Subset Division Trail). Let T be the three-subset division property of the
input for the ith round function. Let us consider the propagation of the three-subset division property

{¢} Lo oL 5Ly —» - > L,. Moreover, for any bitvector £€;,, € H:z‘+1, there must exist a
bitvector £ € L; such that £; can propagate to £i | by the propagation rule of the modified three-
subset division property. Furthermore, for (€9,£1,...,£,) € (]Lo x Ly x -+ x L) if & can propagate
to €11 for alli € {0,1,...,r — 1}, we call (£g — €1 — -+ — £,.) an r-round three-subset division
trail.

The modified three-subset division property implies that we do not need to consider the cancellation

property in every round. We just enumerate the number of three-subset division trails £ ER €;.

When the number of trails is odd, the algebraic normal form of f contains af. Otherwise, it does

not contain x¥.

Proposition 1. Let f : F§ — Fy be a boolean function. For any £ € Fy, the ANF coefficient a£ 18

1 if and only if there is an odd number of three-subset division trails £ ENS]
Proof. Let 775 be the modified three-subset division property of the output of the Boolean function.

Assuming the number of three-subset division trails £ ERSEE odd, L contains odd-number (1).
According to Deﬁnition Boex [(@)Y = @, cx f(x) = 1. Assuming the number of three-subset

division trails £ £ 1 is even, L contains even-number (1). According to Deﬁnition Daex f () =

@mEX f(w) =0.

In summary, removing the unknown subset allows us to skip recovering the accurate . when the
secret key is XORed. Using multisets instead of sets allows us to handle the cancellation property
by automatic tools such as MILP easily.

Modeling for Three-Subset Division Property without Unknown Subset 13

4.3 New Modeling Method

Uunlike the pruning technique in [I7], our method no longer uses the breadth-first search algorithm
and it just uses a MILP model. The previous algorithm uses the MILP model for the conventional
division property. On the other hand, we use the MILP model for the modified three-subset division
property, and all feasible solutions are enumerated by using an off-the-shelf MILP solvelﬂ

Proposition 2 (MILP Model for copy). Let a ik 21 (b1,bg) be a three-subset division trail of
copy. The following inequalities are sufficient to describe the propagation of the modified three-subset
division property for copy.

M.var < a,by, by as binary.
M.con < by +by > a
M.con < a > by

M.con + a > b,

When the OR operation is supported in the MILP solver, e.g., Gurobi optimizer supports the OR
operation, we can simply write M.con <— a = by V by. Unlike the conventional division property, we

need to allow the following propagation 1 =, (1,1). Otherwise, we miss any feasible solutions.

Proposition 3 (MILP Model for and). Let (aj, as, .. ., a5) — b be a three-subset division trail
of and. The following inequalities are sufficient to describe the propagation of the modified three-
subset division property for and.

Muwar < aj, ay,...,ay, b as binary.
M.con+—b=a; forallie{1,2,...,m}

Some feasible propagation on the conventional division property becomes infeasible. For example,
(1,1,0) 229, 4 is feasible for the conventional division property, but it is not in the modified three-
subset division property.

Xor

Proposition 4 (MILP Model for xor). Let (ai,as,...,a,) —> b be a three-subset division trail
of xor. The following inequalities are sufficient to describe the propagation of the modified three-
subset division property for xor.

M.owvar < ay,ay,...,a,, b as binary.
M.con+ a3 +ay,+---+ay=>b

Note that this is the same as the one for the conventional division property.

While the goal of the previous method is to find one feasible solution or to prove its infeasibility,
the goal of our method is to enumerate all feasible solutions. Three propositions are enough to
represent any cipher, but such a straightforward model sometimes increases the number of feasible
solutions explosively. A more clever model is sometimes required to avoid the explosive increase of
feasible (but redundant) solutions, and we discuss this in Sect.@ in detail.

4.4 Algorithm to Recover ANF Coefficients of Public Function

Let f be a public Boolean function whose input denotes an n-bit string @ = (z[1],z[2],.. ., z[n]),
and let it consist of the iteration of simple public functions. Then, the algebraic normal form of f is
represented as

f(@)= @ ala™. (2)
u€Fy

® Our model is very similar to the model for variant three-subset division property proposed in [16], but
there are two differences. First, we do not treat the unknown subset. Second, the goal of our model is to
enumerate all feasible solutions, but the goal in [16] is to evaluate the feasibility of the model.

14 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 1 Algorithm to recover an ANF coefficient af,

1: procedure attackFramework(M, u)
2: Let x; be a MILP variable of M corresponding to the ith input of f.

3: M.con < x; =1 for all @ s.t. u[i] = 1.

4: M.con + x; =0 for all i s.t. u[i] = 0.

5: solve MILP model M and enumerate all feasible solutions
6: if the number of solutions is odd then

7 al =

8: else

9: af, =

10: end if

11: end procedure

Algorithm 2 Algorithm to recover the superpoly

1: procedure attackFramework(M, I, (Co))
2: Let x; be a MILP variable of M corresponding to the ith secret variable.

3: Let vi be a MILP variable of M corresponding to the ith public variable.

4: M.ccon<+vi=1foralliel

5: M.con < vy =0 for all 1 € Cy

6: prepare a hash table J whose key is a (n 4+ m)-bit string and its value is a counter.
7 solve MILP model M and enumerate all feasible solutions

8: for all feasible solutions do

9: get w = (x1,%2,...,%n, V1, V2,...,Vn) in every found solution

10: increase J{u| by 1

11: end for
12: prepare a polynomial p =0

13: for all w whose J[u| is an odd number do
14: p=p+ (z[v)™
15: end for

16: return p/t;
17: end procedure

Our goal is to recover the value of af, for some u. We can prove that af, = 1 (0) if there are odd

(even) number of three-subset division trails u L.

We first prepare a MILP model M that represents the modified three-subset division property of
the function f where each basic COPY, AND, XOR operations are translated to the MILP variables
and constrains following Propositions [2] [3] and [respectively. Then, Algorithml[I] is applied to M
to recover an ANF coefficient af,. Such an algorithm is a direct application of Proposition |I} The
initial modified three-subset division property is defined by u, and the number of feasible solutions
is enumerated by using the MILP solver. It is noticeable that the efficiency of Algorithm[l] depends
on the number of feasible solutions. When there are too many solutions, it is practically impossible
to enumerate all feasible solutions. In other words, the necessary condition that Algorithm[I] stops
in reasonable time is that the number of feasible solutions is bounded by reasonable size, e.g., at
most 216,

While Algorithm(I]is very simple, it is less efficient for the application to the cube attack because
we need to recover all monomials in the superpoly. The number of monomials that Algorithml[]
can evaluate is only one. Therefore, we need to repeat Algorithm[I] many times while changing the
input w until all monomials are recovered exactly. One of the advantages of our modeling method is
that we can simply extend the algorithm to recover the superpoly, and the extended algorithm uses
only one MILP model. The MILP model gurantees that each feasible solution of M corresponds
exactly to one three-subset division property trail in Definition [5} Therefore, when we enumerate all
feasible solutions under such constraints, all monomials that could be involved in the superpoly can
be found as the feasible solutions. So we propose Algorithm[2] an improved version of Algorithml[]
to better cultivate the power of MILP solvers, as the dedicated algorithm to recover the superpoly.

Modeling for Three-Subset Division Property without Unknown Subset 15

Unlike Algorithm[I] the initial division property of Algorithm[2] is not determined: only the part
corresponding to the cube bits is fixed to 1. In this way, the solver will directly enumerate all
feasible solutions and all possible superpoly-related monomials are to be identified accordingly as
well. The third input Cj is an option to declare that some public variables are fixed to 0. Specific
attention should be paid to the situation that Cy = ¢. In this case, Algorithm[2] gives the ANF of
p(x,v) consisting of all secret and non-cube public variables. In other words, we do not need to
specify the assignment of non-cube public variables in advance. This is an obvious advantage of our
method over the existing breadth-first search algorithm with pruning technique. On the other hand,
when the assignment of non-cube public variables is determined in advance, Cy should be set because
it decreases the number of three-subset division trails and increases the efficiency of the algorithm.

When we apply these algorithms to the cube attack against TRIVIUM or Grain-128AEAD, the
experimental performance shows that Algorithm[2]is more efficient than the iteration of Algorithml[I]
For example, when solving the MILP model for our attack on 840-round TRIVIUM in Sect.[5.3]
Algorithm[2] can terminate within a day while Algorithm[I] may take nearly a week using the same
computer and the same Gurobi software. Unfortunately, we cannot say the explicit reason because
it depends on the inside of MILP solvers. As one observation, many three-subset division trails with
different initial division property share the same trail in the last several rounds. On the other hand,
the iteration of Algorithm[I] needs to find the shared part of trails every time.

5 Improved Cube Attacks against Trivium

5.1 Specification of Trivium and Its MILP Model

Hé*){«sl S(;(,'}—ﬁ S0} ‘ [m ﬂ\;

¢ | ‘ [|
= @ﬂsw S162 }—ﬁ s171f ‘ >3 >D
4 >@D >z

v
> @ﬂ S178 5243}—T>{ 8264} ‘ } DD
oy

Fig. 3. Structure of TRIVIUM

TrIvIUM [32] is an NFSR-based stream cipher, and the internal state is represented by a 288-bit
state (s1,S2,...,S288)- Figure shows the state update function of TRIviUM. The 80-bit secret key
K is loaded to the first register, and the 80-bit initialization vector IV is loaded to the second
register. The other state bits are set to 0 except the last three bits in the third register. Namely, the
initial state bits are represented as

(81,52,...,893) = (K[l},KB],...,K[80],0,...,0),
(894, 8954+« 8177) = (IV[].], IV[Q}, ey IV[80], O, ey O),
(5178, 8279, - - -, S288) = (0,0,...,0,1,1,1).

The pseudo code of the update function is given as follows.

t1 < Se6 D Sos, ta < s162 D S177, l3 < S243 D Soss,
Z tl &b tg [S2) tg,

t1 < t1 D 891892 D S171, to < to D S1758176 D S264, t3 < t3 @ S2865287 D Se9,

16 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 3 Model for modified three-subset division property for TRIVIUM

1: procedure TriviumCore(M,x1,...,X2ss, 1,12, 13,14, 5)
Movar Yii) Vi Yia) Yias Yis) 21,22, 23,24,8 a8 binary
M.con + xi; = yi; Vzy for all j € {1,2,3,4}
M.con < a=z3
M.con < a =2z,
M.con < yi; = x5, +a+21 + 22
for alli € {1,2,...,288} w/o0 iy, io,is,1is,1s do
Vi = Xi
end for
return (M, yi,...,¥2ss)
: end procedure
: procedure TriviumEval(round R)
Prepare empty MILP Model M
Mwar <+ s for i € {1,2,...,288}
for i =81 to 93 and i = 93 4 80 to 285 do
M.con <+ s?=0

—_

end for
for r=1to R do
(M, %4, ...,%088) = TriviumCore(M, s} ', ..., sz, 66,171,91,92,93)
(M, ¥1,...,y288) = TriviumCore(M, x1,. .., X288, 162,264, 175,176,177)
10: (M, Z1y..., 2288) = TriviumCore(M, Yi,...,¥288, 243, 69, 286, 287, 288)
11: (si,...,shes) = (Z28s, 21, .., 2Z287)

12: end for
13: for alli e {1,2,...,288} w/o 66,93,162, 177,243,288 do

14: M.con+ st =0
15: end for
16: M.con <+ (sg + 83 + sie + Si77 + Shaz + Sheg) = 1

17: return M
18: end procedure

where z denotes the key stream. The state of the next round is computed as

(81752,-~-7893) — (7537817-~-,892)7
(894,895, - .., 8177) < (1,804, ..., S176),
(5178752797 B 5288) < (t2,5178, .- -75287)-

In the initialization, the state is updated 1152 times without producing an output. After the initial-
ization, one bit key stream is produced by every update function.

MILP Model. TriviumEval in Algorithm[3|generates a model M as the input of Algorithm[T]or 2]
and all three-subset division trails are included as feasible solutions of this model M. TriviumCore
in Algorithm[3] generates MILP variables and constraints of the update function for each register.

5.2 Practical Verification

To verify our new algorithm, we select the same parameters as the one in the previous works [TT/12].
Example [1] takes parameters from [I1] and set the empty set ¢ for Cy. Then, Algorithm recovers
the algebraic normal form of p(x,v) involving all key and non-cube IV bits.

Ezample 1. (Parameters from [11]) We let T = {1,11,21,31,41,51,61,71} and evaluate zsq.
We first run Algorithm as M « TriviumEval(590) and get the MILP model based three-subset
division property. Then, we set Cy = ¢ and acquire p(x,v) by running Algorithm 2] as p(a,v) +
attackFramework(l, M, ¢). The monomial (x|v)*/t;’s along with their J[u)’s are listed in Table

Modeling for Three-Subset Division Property without Unknown Subset 17

Table 3. The monomial (x||v)*/t;’s and their J[u]’s corresponding to Examplell]

parity[J [u] (@][v)" /% parity| J[u]| (@][0) "/t
0 2 Te0U22 1 1 V9 V20
1 1 | x60v19V20 1 1 |vev7vsv20
1 1 T60V20 0 2 V22U72
1 1 Te0V6V20 1 1 V7U8
1 1 TeoU7 1 1 VeV9U20
1 1 |vrvsviguae| 1 1 | viguaoure
0 2 V7U8V22 1 1 V7V9
1 1 | vov19v20 1 1 V20U72
0 2 V9U22 1 1 VeV20VU72
1 1 V7U8V20 1 1 V7U7T2

The ANF of p(x,v) can therefore be determined as

p(x) = zeo(v19v20 + V20 + VU2 + V7)
+ (v7v8V19V20 + V91920 + V7UsV20 + V9V20 + V6UTU8V20 + V7S

+ VgUgU20 + V19V20U72 + V7U9U20UT2 + V20U72 + VgU20V72 + V7U72)

Example[2] selects a specific non-cube IV assignment to compare our method with Wang et al.’s
method by using the conventional division property and flag technique. The inaccuracy problem
reported by Wang et al. in [I2] is completely eliminated due to the tightness of our algorithm.

Ezample 2. (Parameters from [12]) Welet I = {1,11,21, 31,41, 51,61, 71}, where IV[80,...,1] =
0xe7b658e15b6cefel379b5 is used as non-cube IV, and evaluate z591. According to the specified non-
cube IV, Cy is defined such that Co = {i € {1,...,80}|i ¢ I, IV[i] = 0}. Algorithm[3]is then called
as M <« TriviumEval(591) to get the MILP model. Algorithm [2]is called afterwards to acquire
the superpoly p(x) < attackFramework(l, M, Cy). As can be seen in Table[d] with all J[u]’s being
EVEN, the superpoly p(x) is constant 0. On the contrary, if we use Wang et al.’s term enumeration
technique in [12], all 8 key-monomial terms in Table are to be detected.

Table 4. The monomials and their J[u|’s with Example [2 parameters

parity[>° J[u]| term |J[u] (x]|v)* /tr parity [> " Jlu][term|J[u] (z||[v)”/tr
4 |T23T24T66V22V32V70 4 |x25vV22032070V78
0 8 T23T24T66| 2 |[T23T24T66V22030V70| O 8 Tos | 2 |T25V22V30V70VTS
2 |T23T24T66V17V22V70 2 |T25V17V22V70V78
4 |T23%24V22V32V70V78 4 |x67V22032070V78
0 8 T23L24 2 |Z23%24V22V30V70V78| O 8 Te7 | 2 |XeTV22V30VUT0VTS
2 |T23%240V17V22V70V78 2 |Te7V17V22V70V7TS
4 T6T67V22V32V70 4 T66V22V32V70
0 8 T66L67 2 ZT66L67V22V30V70 0 8 Tee | 2 Z66V22V300V70
2 T66L67V17V22V70 2 66017022070
4 T25T66V22V32V70 4 V22V32V70V78
0 8 T25T66 2 T25T66V22V30V70 0 8 1 2 V22V30V70V78
2 T25T66V17V22V70 2 V17V22V70V78

5.3 Cube Attacks against 840-round, 841-round and 842-round Trivium

To demonstrate that our modeling method is more efficient than the previous method, we applied
it to TrIVIUM. For R-round TRIVIUM, the model M is generated as M < TriviumEval(R) by
calling Algorithm [3] Then, we set all non-cube IV bits to constant 0, i.e., for arbitrary cube I, the
corresponding parameter Cj is defined as the complement of I: Cy + {0,...,80}\I. With such M, I
and Cj, the superpoly is defined as p(x) < attackFramework(M, I, Cy) by calling Algorithm As

18 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

a result, we can successfully recover the superpoly of 840-round, 841-round and 842-round TRIVIUM.
In other words, we show key-recovery attacks against 840-, 841 and 842-round TRIVIUM without any
assumption. The detailed parameters of the two attacks are as follows:

Superpoly of 840-Round Trivium. We used the same cube as the one shown in Sect.[£1] i.e.,
the cube indices are

I={1,2,...,33,35,36,...,46,48,49,...,80},

and IV[34] = IV[47] = 0. Note that the previous algorithm cannot recover the corresponding
superpoly as we already showed in Sect.[I.I] As a result, 12,909 feasible three-subset division trails
are enumerated, and J[u] in Algorithm[2] is non zero for 228 different w’s. All w’s whose J[u] is
non zero are summarized in Table in Appendix Out of 228 u’s, there are 67 u’s whose J[u] is
an odd number. In other words, the superpoly is represented as the sum of 67 monomials, and the
following

p(x) = 1+ 280 + 79 + T79T80 + T78T79 + T76T77 + T75T76278 + T75T76L 7T + T70 + Teg + TegTgo+
Te8T79T30 + T68T78T79 + T68T69 T Te6T67 + Te6T67T80 + T66T67L79T80 T Te6T67L78T79 + T65
+ Z64T66 T TeaTos + Te3T64 T T59T63 + T54T68 T T54Te6T67 T T53Te8 T T53TeeTer + Tra+
T52T53 + T51T77 + T51T75%76 + T51L52 + T50L78 + T50L762L77 + T50T51 + Ta3 + Ta1 + L41280
+ £41T79T80 + Ta1T78%79 + T41T54 + T41T53 + T39 + T39Te4 + T38 + T37X38 + T35T55+
T33T34%55 + T2r + T26 + T22T66 T T22T64T65 + T22T39 + T20T21T66 + T20T21T64T65+
T20T21%39 + TgT7g + TT77 + TgX76T77 + T3X75T76 + T3T55 + TeTs1 + TeTs0 + T1X35+
T1T33T34 + T1T8 + T12

is the recovered superpoly, where & = (21,9, ...,250) denotes the secret key, i.e., z; = K|[i]. This

superpoly is a balanced Boolean function because there is a monomial x5 that is independent

of other monomials. Therefore, we can recover 1 bit of information by using 27® data and time

complexities. The dominant part of the whole key recovery attack is the exhaustive search after
1-bit key recovery, which is 27° time complexity.

Superpoly of 841-Round Trivium. We next aim to recover the superpoly of 841-round TRIVIUM,
but it has too many trails to enumerate all of them. Therefore, we heuristically change cube indices
such that the number of trails is not large. As a result, the following cube is considered:

I={1,2,...,8,10,11,...,78,80},

and IV[9] = IV[79] = 0. As a result, 30, 177 feasible three-subset division trails are enumerated, and
J[u] in Algorithm[2]is non zero for 216 different w’s. All u’s whose J[u] is non zero are summarized
in Table[12)in Appendix[E] Out of 216 u’s, there are 53 u’s whose J[u] is an odd number. In other
words, the superpoly p(x) is represented as the sum of 53 monomials, and the following

p(x) = 278 + 76 + Tr5%76 + T7a + T7a%7s + TraT75T77 + T7aT75%76 + Tr2%73 + Tes + Ter + Tez+
T61T62 + Ts9 + T59T72 + T59T70T71 + T59T61 + T8 + L8280 + T58T78T79 + T58T66 1 T58T59
+ X53%58 + T51T74 + T51273 + T51XT72T73 + T51T71272 + TH0T76 + T50T74T75 + Tag + Ta9T77
+ T49T75T76 + T49T50%74 + T49T50T73 + T49T50T72273 + T49T50T71T72 + Ta7 + TarTs1+
Ta7249%50 + T46T51 + T46L49T50 + Ta5T59 + T36 + T32 + T30T31 + T2a + T24T74 + T24T73+
T24X72T73 + T24T71T72 + T24Ta7 + T24T46 + T + Ts

is the recovered superpoly. This superpoly is also a balanced Boolean function because there is a

monomial x5 that is independent of other monomials. Therefore, we can recover 1 bit of information

by using 27® data and time complexities. The dominant part of the whole key recovery attack is the
exhaustive search after 1-bit key recovery, which is 27 time complexity.

Modeling for Three-Subset Division Property without Unknown Subset 19

Superpoly of 842-Round Trivium. Similarly, for 842-round of TRIVIUM, we heuristically try
cubes so that the total number of trails is reasonably low. Therefore, the following cube is considered:

I={1,2,...,18,20,...,34,36,...,80}

and IV[19] = IV[35] = 0. As a result, 3,188,835 feasible three-subset division trails are enumerated,
and J[u] in Algorithm[] is non zero for 5075 different w’s. All w’s having non-zero J[u] are sum-
marized at https://github.com/ysktodo/milp-three-subset-wo-unknown. There are 975 out of
the 5075 w’s having odd J[u]. In other words, the superpoly p(x) is represented as the sum of 975
monomials, and is given in Appendix[E] Note that this superpoly is also a balanced Boolean function
because there is a monomial xg that is independent of other monomials. Therefore, we can recover 1
bit of information with 278 data and time complexities. The dominant part of the whole key recovery
attack is the exhaustive search after 1-bit key recovery, which is 27° time complexity.

5.4 Verification of the 855-Round Attack from CRYPTO 2018 [20]

In CRYPTO2018, a new type of cube attacks was proposed, where a key recovery attack against
855-round TRIVIUM was shown. The authors claimed the following statement.

Statement 1 ([20]) When IV[31] = IV]49] = IVI[61] = IV[75] = IV[76] = 0, the degree of
(1 + s219) 2855 is bounded by 70.

Attackers first guess the part of a secret key involved in s2}° and compute the sum of (1 + s31%)zgs5

over cubes whose dimension is larger than 70. When the correct key is guessed, the sum must be 0.
In other words, if the sum is 1, we can discard the guessed key.

To prove Statement[I] the authors developed a new algorithm to evaluate the upper bound of the
degree. However, their algorithm includes some man-made work that is not written in their paper,
and a cluster of 600-2400 cores is necessary to run their code. As a result, no one can verify their
algorithm and the correctness of Statement[I] The only supportive material is the practical example
by using 721-round TRIVIUME. Later, Hao et al. reviewed Statement by using the conventional
bit-based division property [33]. They showed that the sum of (1 + s31°)zgs5 over 75-dimensional
cube could involve all 80 key bits with degree bound 27. According to this result, Hao et al. pointed
out that Statement[I] unlikely holds. However, as we already pointed out, the conventional bit-based
division property is not always accurate. Therefore, the correctness of Statement[I] becomes an open
question.

In comparison with Fu et al.’s algorithm, our algorithm using three-subset division property has
three advantages:

— Cheap implementation cost. Our task is to generate a MILP model, and the complicated part is
solved by using off-the-shelf MILP solvers. Our verification code using Gurobi C++ API contains
about 300 lines.

— Run on a normal PC. We do not need to prepare many clusters.

— Tight bound is proven. Our algorithm can recover the ANF coefficient af, for some u accurately.

With such a method, we inspect Statement[l}

MILP Model to Verify 855-Round Attack. To verify Statement[I] we consider a circuit
shown in Fig.[d] and generate the corresponding MILP model by calling Algorithm [4] as M «
TriviumSecEval(855,210). Corresponding to the setting of [20], we set I as the largest possi-
ble cube, ie., I = {1,...,80} \ {31,49,61,75,76}, and all non-cube IVs are set to 0, i.e., Cyp =
{31,49,61,75,76}. Then, with such M, I, Cy, we run Algorithmas p(x) < attackFramework(M, I, Cy)

10 In [20], the authors showed that the degree of (1 + 533°)2721 is bounded by 32 when the correct sa3° is
guessed. However, Hao et al. pointed out that the degree is bounded by 32 even if we guess s23° with
incorrect secret key. As a consequence we cannot distinguish the correct key from the wrong keys [33]. In
response to this error, Fu et al. reproduced the practical example for 721-round TrRivium [34].

https://github.com/ysktodo/milp-three-subset-wo-unknown

20 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

[4 % [4] [3] [1]
v : v v - v v : v
‘ 210 rounds ‘
v \2 v \2 v v
ER 2 [) [2
Sglo p Y
%210 > D
So4
v v v v A q
645 rounds
v ‘ \ 4 ’ \2 \ - \2
| & | B e | I
L} v v v v v v
<) >D>D S—>O—0

v

(1 + 334110)2855

Fig. 4. Overview of new type of cube attack for 855-round TRIVIUM

to check whether p(x) is constant 0. According to the result by Hao et al. by using the conventional
bit-based division property, we first evaluated whether or not p(a) has monomials whose degree is
27. Then, the number of appearance J[u] is non-zero for the following two 27-degree monomials

11 @i,
1€4{29,30,41,42,44,45,46,47,49,54,55,56,57,59,60,63,66,67,68,69,70,71,72,73,74,75,76 }

I1 2

1€{29,30,41,42,43,44,45 46,47,49,54,55,56,57,59,60,63,66,67,69,70,71,72,73,74,75,76 }

but J[u] = 2 for the two monomials above. Therefore, these monomials do not appear in p(x). We
next evaluated whether or not p(x) has monomials whose degree is 26. Since there are quite many
candidates of u whose J[u] is non zero, we randomly picked one from these candidates and evaluated
the number of trails. As a result, J[u] =1 in the following monomial

I

1€{40,41,42,53,54,55,56,57,58,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,78,79}

Note that finding one w such that J[u] is an odd number is enough to disprove Statement We also
apply our algorithm to Fu et al.’s practical refinements in [34]. As a result, there are several issues
in this small example, and we discuss the issues in Appendix

6 Improved Cube Attacks against Grain-128AEAD

6.1 Specification of Grain-128AEAD and Its MILP Model

Grain-128AEAD [35] is a member of the Grain family and also one of the 2nd-round candidates of the
NIST LWC standardization process. Grain-128 AEAD inherits many specifications from Grain-128a,
which was proposed in 2011 [36]. There are four differences between Grain-128AEAD and Grain-128a:
1) larger MACs, 2) no encryption-only mode, 3) initialization hardening, and 4) keystream limitation.
These differences do not come only from the requirement for the NIST LWC standardization process
but also from recent cryptanalysis result against Grain-128a [23]124].

The internal state is represented by two 128-bit states, (b, b1,...,b127) and (so, $1,-- ., S127)-
The 128-bit key is loaded to the first register b, and the 96-bit initialization vector is loaded to the

Modeling for Three-Subset Division Property without Unknown Subset 21

Algorithm 4 Model for modified three-subset division property of TRIVIUM corresponding to the
Fu et al.’s method in [20]

1: procedure TriviumSecEval(round R, sector round R’)
2: Prepare empty MILP Model M

3: Mwar <+ s for i € {1,2,...,288} and M.var < o
4: for i =81 to 93 and i = 93 + 80 to 285 do

5: M.con +s2=0

6: end for

7 M.owar < o

8: for i = 81 to 93 and i = 93 4+ 80 to 285 do

9: M.con + s =0

10: end for
11: for r=1to R do

12: (M, x4, ...,%088) = TriviumCore(M, s} %, ..., sz, 66,171,91,92,93)
13: (M, y1,...,¥288) = TriviumCore(M, x1,...,X2ss, 162,264, 175,176, 177)
14: (M, z1,...,2088) = TriviumCore(M,y1,...,y28s, 243,69, 286, 287, 288)
15: (si,...,shes) = (2oss, 21, .., 2087)

16: if r = R’ then

17: M.ovar §g;,p,q

18: M.con + sg; = 53; Vp

19: M.con <—q=o0+p

20: sg; = 53;

21: end if

22: end for
23: for alli e {1,2,...,288} w/o 66,93,162,177,243, 288 do

24: M.con+st=0
25: end for
26: M.con < (s§s + sb3 + sies + slrr + S5as + s5ss) = q

27: M.con <—q=1
28: return M
29: end procedure

second register s. The other state bits are set to 1 except the least one bit in the second register.
Namely, the initial state bits are represented as

(bo, b1, ..., bia7) = (K1, Ka, ..., Ki2s),
(80,81,...,8127) = (IV171V27...,1%6,1,...,1,0).

The pseudo code of the update function in the initialization is given as follows.

g <= bo + bag + bsg + bg1 + bog + bsbe7 + b11b13 + bi7big + barbsg
+ baobag + be1bes + begbga + bsgbgabozbys + baobaabas + brobrsbss,
J < S0+ 87+ 838 + S70 + Ss1 + So6,
h < b12sg + 513520 + bgsS42 + 560579 + b12bgs 594,
z2 4 h+ 893 + by + b15 + b36 + bas + bea + b73 + bgo,
(bo,b1,...,b127) < (b1,...,b127,9 + 50 + 2),

(50581, 8127) ¢ (51,...,5127, [+ 2).

= W

~ o~ o~
O Ut
NN N

In the initialization, the state is updated 256 times without producing an output. After the ini-
tialization, the update function is tweaked such that z is not fed to the state, and z is used as a
pre-output key stream. Figure[5] shows the state update function of Grain-128AEAD. Hereinafter,
we assume that the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain-128a and Grain-128AEAD under this assumption.

22 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Fig. 5. Structure of Grain-128AEAD

Table 5. Detailed results for superpoly against 184-round Grain-128AEAD.

Parity|# trails monomial
0 4096 T34T39T53L62L64L81L83L8ATI5L125
0 4096 | T34T39T49T53%62L64T81T83T4TI5L123L127T128
0 8192 |T23%39T48T49T53T58L59L62T64T83T84LI8L118L120

MILP Model. Graini28aEval in Algorithm[5| generates the MILP model M as the input of
Algorithm[f]and 2] and the model M can evaluate all three-subset division trails for Grain-128AEAD
whose initialization rounds are reduced to R. funcZ generates MILP variables and constraints for
Eq. (5) and Eq. (6)), funcG generates MILP variables and constraints for Eq. (3)), and funcF generates
MILP variables and constraints for Eq. . MILP models for these three functions are represented
in Algorithm[9] in Appendix[F]

6.2 Verification of the 184-Round Attack from [12]

In [12], a cube attack against 184-round Grain-128AEAD (Grain-128a) was shown. Here, the follow-
ing cube indices

I={1,2,...,46,48,49,...,96},

where IV[47] = 0 are usedE The conventional bit-based division property with flag technique
reveals that the algebraic degree of the corresponding superpoly is at most 14 and the number of
monomials is at most 2461 It implies that the corresponding superpoly can be recovered with
295+14.61 time complexity.

We run Algorithm[2] with the model generated by Algorithm[5] Surprisingly, the superpoly does
not involve the secret key. There are 16,384 three-subset division trails, but only three initial prop-
erties can be feasible (see Table where & = (z1, 22,...,T128) denotes the secret key). Moreover,
all of them have even-number of trails, i.e., the superpoly shown in [I2] is constant-0. Therefore, the
cube attack against 184-round Grain-128AEAD is a zero-sum distinguisher.

6.3 Additional Constraints and Superpoly for 190 Rounds

Algorithm[5| evaluates funcZ, funcG, and funcF independently, and combines them. While this algo-
rithm can enumerate all three-subset division trails, it includes many redundant trails. For example,

1 The first bit of IV is included in the cube index. When the target is Grain-128a, this attack requires
queries to both authentication and encryption-only modes. Note that the first bit of IV can also be active
in Grain-128AEAD.

Modeling for Three-Subset Division Property without Unknown Subset 23

Algorithm 5 Model for Grain-128AEAD

1: procedure Graini28aEval(round R)
2: Prepare empty MILP Model M

3: Mvar +1b] for i € {0,1,...,127} as binary
4: Mu.var + s? for i € {0,1,...,127} as binary
5: M.con s, =0
6: forr=1toR do
7 (M,b}, ..., bla7,80,...,8127,27) = funcZ(M, by %, ... bi s5 7t ..., sTt)
8: M.wvar <+ zg,zf as binary
9: M.con < z" = zgV zf
10: (M, by, ..., blhr, g) = funcG(M, by, ..., bly)
11: (M, sg,...,81,f) = funcF(M, sq, . .., Siar)
12: for i =0 to 126 do
13: b} = b},
14: s =si,
15: end for
16: M.var < bi,;, sis; as binary
17: M.con +bj =0
18: M.con < bl =g+ s +2zg
19: M.con < sl = £+ zf
20: end for
21: (M, b5, ..., b7, 8b, ..., S1a7,2) = funcZ(M,by, ..., bla7, 85, ..., 85)
22: for alli € {0,1,...,127} do
23: M.con <+ b, =0
24: M.con + s, =0
25: end for

26: M.con <~z =1
27: return M
28: end procedure

let us consider that there are two propagations for one round from the fixed bitvector k to another
fixed bitvector k’. Then, we should consider such propagations k — k' as redundant because the
number of three-subset division trails including such propagations in its inside is always even. There-
fore, we should remove k — k' propagations from the model in advance to reduce the number of
feasible three-subset division trails. Bearing this in mind, we carefully checked three-subset division
trails found in the attack against 184-round Grain-128 AEAD. As a result, we find a frequently used
(but redundant) propagation.

Property 1. In any round r, either s§ or z* must be 0.

Proof. In round r, we assume that sj = 1 and z* = 1. The keystream bit (z* = 1) can propagate
to the rightmost bit of NFSR (b7}') and the rightmost bit of LFSR (sI}'). The leftmost bit of

the LFSR (s7) can also propagate to the same two bits. Therefore, unless either of sﬁ@l, bﬁ"#, or

137 - bl37 has monomial s} - 2", such a propagation is infeasible. Clearly, s74; and bj3; do not have

such a monomial. Moreover, the monomial sj - 2" is always canceled out in
stz Uiz = (f"+2") - (9" + 2"+ sp)
=gt s+ (g A sp)
=f"g" " s0+ (74 sps + s7o + sg + s 97+ 1) 2

Property[I] is very simple and powerful. We just add the following constraint
M.con + s5+2z" <1

between the line 6 and 7 in Algorithm[}] We re-run Algorithm[2] by using the model generated by
Algorithm[5] with the modification above. Then, 16,384 trails become impossible, and there is no
feasible solution.

24 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Superpoly from 185 to 189 rounds. We showed that the 184-round attack is a zero-sum distin-
guisher and cannot recover any secret key bit. Similarly to the case of TRIVIUM, we expect that the
number of rounds that we can attack can be improved. To attack more rounds, we use cube indices
I =1{1,2,...,96}, where all IV bits are active. As a result, there is no feasible solution up to 189
rounds. In other words, we find zero-sum distinguishers from 185 to 189 rounds.

Superpoly for 190 rounds. From 190 rounds onwards, secret key bits can be involved. As a
result, 7,621 feasible three-subset division trails are enumerated, and J[u] in Algorithm [2[is non
zero for 3,006 different w’s. Out of 3,006 w’s, there are 1,097 w’s whose J[u] is an odd number.
In other words, the superpoly is represented as the sum of 1,097 monomials. We provide the exact
superpoly in fullbits.txt in https://github.com/ysktodo/milp-three-subset-wo-unknown|in
detail. Interestingly, the recovered superpoly has completely different features of the one of TRIVIUM.
While the superpoly of TRIVIUM is a very low-degree and simple Boolean function, the recovered
superpoly for Grain128-AEAD has algebraic degree 21 and is a complicated Boolean function with
no monomials of degree lower than 6. Since the Boolean function is too complicated to evaluate
its weight theoretically, we experimentally evaluated the balancedness. We picked 2'° secret keys
randomly and compute the output of the Boolean function. As a result, it is highly biased, and
the fraction of keys that output 1 is about 0.032. Therefore, the information recovered from this
superpoly is very small. Indeed, if the superpoly in the online phase evaluates to one, we gain almost
5 bits (i.e. —log,(0.032)) in an attack when filtering wrong keys. However, in the case where the
superpoly evaluates to zero, we gain less than 0.04 bits (i.e. —log,(1 — 0.032)) in an attack. The
average gain, given by the entropy, is only

—0.03210g,(0.032) — (1 — 0.032) log, (1 — 0.032) ~ 0.2

which limits the interest in this approach.

6.4 Towards Efficient Key-Recovery Attacks

To recover more bits of information, we use multiple cubes whose size decreases from 96 to 95.
However, if the cube index misses one IV bit, the number of three-subset division trails increases.
We need to pick appropriate non-cube indices, where the number of three-subset division trails does
not expand to much. We were able to compute the representation of 15 superpolys p; where the
cube index set was {1..96} \ j with

jeJ={27,30,31,32,34,41, 44, 45, 46, 48, 58, 59, 64, 70, 72}.

Those polynomials vary significantly in size (between 176 and 19,925 monomials) but also share
interesting properties. We provide 15 superpolies in consXX.txt in https://github.com/ysktodo/
milp-three-subset-wo-unknown, where XX represents each constant bit.
Again, due to their size, some of the properties can only be estimated experimentally.
Interestingly, all polynomials are highly biased toward zero and none of the polynomials involves
all key bits. In particular none of the polynomials depends on the key bits

Kl,KQ,Kg,K(; and Kg.

Moreover, all polynomials can be evaluated rather efficiently on average. The details are given in
Table [f] Note that the average total cost of evaluating the polynomials is an upper bound on the
number of XORs and ANDs needed. This bound was derived using a time-memory tradeoff for the
evaluation process, by fixing 14 key bits that appear frequently in all 15 polynomials. Fixing to all
214 possible values resulted in 15 - 2'* polynomials. Those polynomials are significantly simpler and
simply counting the number of required AND and XOR operations in a trivial evaluation process
resulted in the numbers in Table [f] that are sufficient for our attack. In particular, the average cost of
evaluating all 15 polynomials together is smaller than 2'2, which is smaller than producing a single
key stream bit with Grain128-AEAD reduced to 190 rounds.

https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown

Modeling for Three-Subset Division Property without Unknown Subset 25

Table 6. Properties of the superpolys for Grain128-AEAD.

Poly P27 | P30 | P31 | P32 | P34 | P41 | Pada | P45 | P46 | Pag | P58 | P59 | Pe4 | Pro | Pr2
Nb. of ind. K;|| 7 6 12 8 6 13 14 47 6 16 6 10 12 11 8
Pr(p; =0) 0.077]0.116{0.055/0.089(0.090(0.0990.019{0.012|0.081|0.055{0.123|0.196{0.097{0.156 |0.083
Av. cost 544 | 408 | 107 | 196 | 452 | 148 | 19 10 | 199 | 213 | 406 | 497 | 432 | 336 | 205

Besides being highly unbalanced, the polynomials are also not independent when evaluated on
random keys. In order to estimate how many wrong keys are filtered on average, we estimated the
entropy of (pa7,...,pr2) when evaluated at uniformly random chosen keys. That is, for v; € {0,1}
we estimated

PI‘((P27, ey P72) = (1)27, e ,’U72))

for all 21° possible outcomes. The distribution is still highly biased, in particular Pr(0, ..., 0) ~ 0.57.
However, the entropy, which was estimated using 22° samples, increased to 5.03 which now makes
the following attack possible.

1. The attacker evaluates in the online phase the values of the 15 superpolys for the given secret
key.

2. The attacker guesses all key-bits except the bits K4, K5, K3, Kg, K9 and for each guess filters
with the correct values of the superpolys given from the online phase.

3. For each guess that passes the filtering, the attacker runs through all possible values of K, Ks, K3, K¢, Ko
and verifies the key against given key-stream.

The cost of the online phase is 15 x 2%° time and 2% data, i.e. using all possible IV values for the
given secret key.

In the second step, the number of guesses is and, due to the entropy, the average amount
of not filtered guesses is 2'28757503 As evaulating the polynomials is cheaper than evaluating
Grain128-AEAD, the cost for this step is less than 2123 evaluations of Grain128-AEAD.

In the third step, the average cost is 2° - 2128=5=5:03 i e less than 2!?3 evaluations of Grainl28-
AEAD as well. To conclude, the attack has an average time complexity of less than 2'23 evaluations
of Grain128-AEAD and a data complexity of 2°°. Note that this complexity is averaged over the
given secret key. In particular, after the first step of the attack, the attacker already knows how
efficient filtering will be in her particular case. For some keys filtering is significantly stronger. This
observation might be further elaborated into a stronger attack for a smaller fraction of keys, i.e. a
weak-key attack.

2128—5

7 Improved Cube Attacks against ACORN

7.1 Specification of ACORN and Its MILP Model

ACORN is an authenticated encryption algorithm and is one of the finalists of the CAESAR
competition [37]. The structure is based on NLFSR, and the internal state is represented by a
293-bit state s = (sq, ..., S292). There are two component functions, ks = KSG128(s, ca,cb) and
f = FBK128(s), in the update function, and each is defined as

ks = si12 ® 154 ® maj(s2ss, Se1,5193) ® ch(s230, 5111, S66),
f=350® (5107 ® 1) ®@ maj(s2a4, 23, 5160) © (ca A s196) & (cb A ks),

where ks is used as the key stream, and maj and ch are defined as

maj(z,y,z) = vy + zz + yz,
ch(z,y,z) = xy + xz + 2.

26 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Initialized as s = 0, the following updating function is called for round number r = 1,..., R:
Shag < Sheg @ 8533 B shag (7)
Shao < Shao @ STap © Sigy (8)
S1os < Sigs @ 8760 @ Si5s (9)
S151 ¢ 8154 ® 8171 @ Sior (10)
Slor ¢ Sior @65 B sg1 (11)
s1 ¢ Sg1 @sh3 By (12)
ks"! = KSG128(s" 1) (13)
f~t=FBK128(s"" ', 1,1) (14)
8" = (85,87, .., 8h9) < (8771 57 L SELE T @ mr — 1)) (15)

The full ACORN requires R = 1792. The vector m is of length R:

— The first 256 entries are assigned as m[j] = x; and m[128 + j] = v; for j =0,...,127.
— For r > 256: if 128|r, m[r] = & mod 128 + 1; otherwise, m[r] = x, mod 12s-

After R initialization rounds, the 1st output keystream bit is simply ks” generated by the process
from @ to . The associated data is always loaded before the output of the key stream. In our
attack, the initialization round number R is smaller than 1792. Therefore, we do not consider the
associate data, and this is the same setting with [TIIT2]. Figure@ shows the structure of ACORN
and more detailed specification of ACORN can be found in [25].

a a
A S e S i A e e A e l
‘ “7@¢‘(1 lﬂ‘(“i@f‘m' 111 1":769(7‘ ‘f@f‘ ‘f@f‘ ‘f@f‘ ‘)‘lq‘f@fnl

0 23 60 154 160 192 193 196 229 230 235 288 289

66

Fig. 6. Structure of ACORN

MILP Model. The MILP model describing the division property propagation of ACORN updating
function can be constructed as Algorithm [6] The subroutines are described in detail: as Algorithm
and xorFB is called for the LFSR updating (]ZD (Algorithm ; ksg128 and fbk128
corresponds to K SG128 and FBK128 respectively (Algorithm [14]); maj and ch are also handled
(Algorithm . It is noticeable that the FBK128 function in (14) requires 3 parameters but the
2nd and 3rd are constantly 1 during our targeted initialization phase. So our model in Algorithm
only considers the situation of FBK128(ks,1,1).

7.2 Verification of the 772-Round Attack from [27]

In [21], Yang et al. use a 123 dimensional cube I for attacking 772-round ACORN. Using the method
n [12], they find that the superpoly is of degree-1-polynomial that may involve a set of key indices
denoted as J, where I and J can be represented as

I=1{0,...,127}\{1,2,11, 26,27}

16
J =1{0,1,2,4,5,6,7,8,10,11,12, 19, 24, 31, 33, 35,39, 41, 44, 45, 78} (16)

Since |.J| = 21, Yang et al. conclude that the superpoly can be a linear polynomial involving at most
21 key bits.

Modeling for Three-Subset Division Property without Unknown Subset 27

Algorithm 6 Model for ACORN.

1: procedure AcornEval(round R)
2: Prepare empty MILP Model M

3: Mwar < s) for i € {0,1,...,292} as binary

4: M.con + s) =0 for i € {0,1,...,292} as binary

5: Moar < z;,v; for i € {0,1,...,127} as binary

6: Initialize the key and IV vectors as ° = (xo, ..., z127) and v° = (v, ..., v127)
7 Initialize s° = (s3,...,8592)

8: forr=1toR do

9: (M, x" v" , me—1) + getM(M, 2" 1 o™ L r —1)

10: (M, s") < update(M, s" !, m,_1)

11: end for

12: (M, 5, 2) + ksg128(M, sT)

13: M.econ +—af =0v8=0s=0,2=1
14: return M

15: end procedure

Table 7. Detailed results for Yang et al.’s superpoly against 772-round ACORN.

Parity|# trails|monomial Parity|# trails|monomial Parity|Z trails|monomial

0 288 o 0 144 s 0 a4 oo
0 144 T 0 144 10 0 144 I3;
0 288 i) 0 144 11 0 144 Ta1
0 144 Ta 0 144 Ti2 0 144 e
0 144 Is 0 144 19 0 144 Tas
0 288 e 0 144 24 0 144 T78
0 288 g 0 144 T31

With I in , Cy = ¢ and M generated by Algorithm @ we run Algorithm [2| only to find
that all key bits in J are cancelled due to the EVEN number of J[u|’s. The J[u]’s corresponding to
each of the 21 monomials are listed in Table [7] by calling Algorithm [T} indicating none of them can
appear in the superpoly. So Yang et al.’s attack in [2I] is degenerated from a key-recovery attack to
a constant-sum distinguisher.

7.3 Cube Attacks on 773-, 774- and 775-Round ACORN

The cubes we use for attacking 773-, 774- and 775-round ACORN are of dimensions 125 and 126
respectively. The non-cube IVs are all set to constant 0.

Superpoly of 773-round ACORN. For 773-round attack, we use I = {0,...,127}\{7,12,79}.
As aresult, 10,473 feasible three-subset division trails are enumerated, and all w’s whose J[u] is non
zero are summarized in Table There are 65 different u’s having non-zero J[u] and 43 of which
are odd. So the superpoly can be represented as a sum of 43 monomials as follows:

p(T) = T7xa9 + T19 + T1a + T7a + 16 + T3 + T33 + T11 + Taa + T1o7 + T8 + To + T36 + Tro + Tus
+ X35 + T37 + Ta1 + X1 + Ty + T2 + Ta5 + X27T69 + T15T27 + T10T27 + T27 + Tsg + T12

+ X127 + T26 + Toa + Ta4 + Teo + Tag + Te1 + Ts4 + T30 + Tag + Tgoo + Ts9 + To3 + Ts7 + Ts1

Superpoly of 774-round ACORN. For the 774-round attack, we use I = {0,...,127}\{19, 36}.
We enumerate 2732 three-subset division trails. We find 95 w’s having non-zero J[u] and 72 of the
J[u]’s are odd, and all u’s whose J[u] is non zero are summarized in Table[l4] So the superpoly is

28 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

a summation of 72 monomials as follows.

p(x) = 2850 + T10%52 + T108 + T1aT56 + Tra + T11 + ToT14 + T13%55 + L1213 + L1435 + T1aTso+
T10Z89 + T14T30 + T13T35 + T14T98 + T13T89 + T10T30 + T10T35 + Ta7T8y + T14T39+
T14T44 + T1T14 + T35T47 + T13 + TeTgg + T8g + T13T30 + T30T47 + Tg3 + T8T35 + T34+
T110 + T8T30 + 21 + T7 + X3 + X1 + T35 + T32 + T15 + To + Teg + Tag + Tag + Ty + Tas+
Tg1 + Xo7 + Ts5 + Ta5 + T18 + T2z + Teo + Tgo + Ta9 + 71 + T77 + e + Tog + T25 + Tro+

T30 + T114 + 19 + T50 + T59 + T113 + To2 + 73 + Ts51 + Tse + T29

Superpoly of 775-round ACORN. The I’s used in 773- and 774-round attacks are constructed
with random trials. For 775 rounds where most of the 126-dimensional cubes cannot be used, we
use a strategy similar to [I0] for cube constructions. For i = 0,...,127, we construct the cubes
I; + {0,...,127}\{i}. Then, for each cube I;, we run Wang et al.’s degree evaluation technique
given in [I2] only to find that the degree d is 0 for ¢ € A defined in

A=1{1,2,11,18,26,27}. (17)

Since the largest possible cube we can use in a key-recovery attack is 126, we select the 2-element
subset of A, denoted as £, and construct the 126-dimensional cubes as I = {0, ...,127}\&. According
o [10], this strategy promises I’s with simpler superpolies and lower algebraic degrees. There are
(g) = 15 candidate £ denoted as &, ..., E14 and the corresponding degree evaluations are listed in
Table [8] As can be seen, the lowest d = 2 appears at & where i = 0,1,2,6,9,12. We try ¢ = 0,6,9
only to find that the superpolies are constant 0 or 1 which can only be used as distinguishers.

Table 8. The degree evaluation result d for 126-dimensional cube I; = {0, ...,127}\&; using Wang et al.’s
method in [12]

i & |di] & |d
0 {1,2} [2[1[{1,11} |2
2| {1,18} 2| 3| {1,26} |3
41{1,27} 4|5 | {2,11} |3
6|{2,18} (2] 7| {2,26} |4
8 [{2,27} [3] 9 |{11,18}|2
10/{11,26}|3|11|{11,27}|3
12|{18,26}|2|13|{18,27} |4
14|{26,27}|3

For our 775-round key-recovery attack, we use 14 = {26,27} and I = {0,...,25,28,...,127}.
We enumerate 1378204 three-subset division trails. We find 184 w’s having non-zero J{u] and 90 of
the J[u]’s are odd, and all u’s whose .J[u] is non zero are summarized in Table[I5] So the superpoly

Modeling for Three-Subset Division Property without Unknown Subset 29

is a summation of 90 monomials as follows.

p(x) =1+ x122 + 121 + 118 + T116 + T106 + T101 + Toe + Tsg + Tss + Ta7 + Tss + Ts2 + Ts1 + X9 + T77+
Teg + Te7 + Teo + Ts9 + 57 + Tse + Tss5 + Tss5L97 + Tsa + T3 + Tag + Taz + TazTss + Ta2 + Tao+
T38 + T38%55 + T37 + T35 + T34 + T33 + T31 + T30 + T29 + T27 + T26 + T2a + X23 + T22T106+
L2297 + T22T64 + T22X52 + T22X48 + X22T47 + T22T43 + L2238 + T21T97 + T21X63 + T21X43+
T21X38 + T1s + T18%97 + T18T60 + T18T43 + T18%38 + T17 + T16X97 + T16T58 + T16T43 + T16T38+
T15 + T14 + T10 + T10T22 + To + T9T22 + T9T21 + T6T48 + T6T22 + T6T22T48 + T6T18 + TsTa2+
T4x21 + TaZ16 + T2 + T1T97 + T1T38 + T1T18 + ToTss + ToT22 + ToT21 + ToTi8 + ToTi6 + ToT1+
T123 + T120 + T117 + T115 + T105 + T100 + T97 + T9s5 + Too + Tsge + Tga + 83 + Tso + T7s + Tre+
T73 + T72 + T71 + Teo + XTee + Tes + Tea + Tez + Te2 + Te1 + Tss + Ts54%96 + T2 + Ts1 + Tso + Tag+
Ta6 + Tas + Taa + Ta3 + Ta2T54 + Ta1 + T39 + T37T54 + T36 + T32 + T2g + T2s + T23Tes + T22 + T21+
T21%105 + T21X96 + T21T51 + T21T47 + T21X46 + T21Ta2 + X21T37 + T20 + T20T96 + T20T62 + T20Ta2+
T20T37 + T19 + T17T96 + T17X59 + T17T42 + 17237 + Ti6 + L1596 + T15T57 + T15T42 + T15T37+
T13 + T12 + X11 + T11%23 + X8 + TeT21 + T8T20 + T7 + Te + TeT23 + X5 + T5La7 + T5T21 + T5T21T47

T5T17 + T4 + T3 + T3X20 + T3T15 + T1 + T1X43 + To + Toxos + Toxa2 + Tox37 + Toxi7

8 Improved Cube Attacks against Kreyvium

8.1 Specification of Kreyvium and Its MILP Model

Kreyvium is designed for use in fully homomorphic encryption applications [26]. It claims 128-bit
security and accepts 128-bit IV. Kreyvium consists of 5 registers. Two of them are LFSRs denoted
as K and V respectively. The remaining is three concatenated NFSRs making up a 288-bit state s
identical to that of TRIvVIUM. The registers are initialized as

(s1,82,...,803) = (K[1], K[2],..., K[93]),
(594, 895, ..., s177) = (IV[1], IV[2],...,IV[84]),
(s178, S279, . . ., S2s8) = (IV/[85],..., IV[128],1,...,1,0),
Vo= (V... Vi IV[128] L IV[1]),
K° = (KY),..., Kss [128],...,K[1]),

) (
) (K
For the R initialization rounds, the updating function is called as (s™, V", K") + Upd(s" !, V"—1 K1)
for r =1,... R. The procedure of Upd can be depicted as Fig. [7| defined as follows:

177" ¢ sgs | @ sz

th ! sige ®sizr

15" shiy © shes ®KG

2 e t{*l oty P oty"

Gt B sgy sy @ st @IVY T

r—1 r—1 r—1
thlth D sirs - Stz @ Shes

tgil 1y EB55861 Sog7 693691

s"[1,...,93] = (s1,-..,803) (t3 S5 1 ..,562_1)
s”[94,...,177]:(sg4,...,sl77)<—(t’; Lsort o, ste)
s"[178,...,288] = (s777,...,55s7) « (t5 ' sT7g, ..., sher)

K :(KI:~~~»K1T28) (K171 K127817K1277---5K2Til)
V=, Vi) « (V[1’V1T2817V1T271,---7V2r_1)

30 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

After R initialization rounds, the output keystream is output as 2%, 21 . .. According to [26],
full Kreyvium requires R = 1152 initialization rounds.

rwb “ﬂ
i = el

v FL é l
b P ->[s01 b’wz}—ﬁ S171 | >®>®
D>z
v
»@»‘Sus 8243 ,} } } DD
>4

r\ Ky K
I

Fig. 7. Structure of Kreyvium

MILP Model. The MILP model describing the division property propagation of Kreyvium updat-
ing function can be constructed as shown in Algorithm [7} The subroutine TrivimCore is identical
to that in Algorithm [3| As can be seen in Algorithm [7| K[* is ignored in the output bit because it is
constant during cube summations and cannot affect the evaluation.

8.2 Verified and Improved Key-Recovery Attack on 892-Round Kreyvium
We use a 115-dimensional cube I as (L8).

I=1{1,2,3,4,5,6,8,9,10,11,12,13, 14, 15,16, 17,18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34,35, 36, 37, 38,40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64,
65, 66, 68, 69,70, 71,72, 75,76, 77, 78,80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97,98,99, 100, 101, 103, 104, 105, 106, 108, 109, 112, 113,114, 115, 116, 117, 118, 119, 120, 121
122,123,124, 125,126, 127, 128} (18)

This is the cube used in [27] where the superpoly is claimed to be a 2-degree polynomial involving
at most 33 key bits and a complexity of 21211 is required to recover the superpoly. Our method
can recover this superpoly with practical time. When the non-cube IVs are all set to 0 (IV = 0),
there are only 6 different u’s having non-zero J[u]’s and all of them are odd. So the superpoly can
be represented as a sum of 6 monomials as follows:

p(x) = za7 + Ta1 + T51 + 286 + T110 + 1

To be more specific, J[u] = 31 for the monomial 1 and J[u] = 3 for the others.

8.3 New Key-Recovery Attack on 893-Round Kreyvium
We use a 118-dimensional cube I as .

I={1,...,128}\{6, 10, 15,25, 56, 60, 80,91, 115, 121} (19)

When the non-cube IVs are all set to 0 (IV = 0), there are only 13 different u’s having non-zero
J[u)’s among which 4 are odd, 8 are even and that of ¢ is too large to be practically computed. The

Modeling for Three-Subset Division Property without Unknown Subset 31

Algorithm 7 Model for Kreyvium.
1: procedure LFSR(M, x)

2: M.var < a,b as binary

3: M.con < x1 =aVb

4: Initialize a new vector y as y = (z2,...,Z127, Q)
5: return (M, y,b)

6: end procedure

1: procedure KreyviumEval(round R)

2: Prepare empty MILP Model M

3: M.var < s? for i € {1,...,288} as binary

4: Moar < z;,v; for i € {1,...,128} as binary

5: Movar + K2, VP for i € {1,...,128} as binary
6: Initialize the two LFSRs as K® = (KY,..., Kg) and V° = (V?,..., Vi)
7 M.con —x; = K% ;v s? fori=1,...,93

8: M.con x; = K9 _, for i =94,...,128

9: M.con +v; = Vidg_; V 383+Z~ fori=1,...,128

10: for r =1to R do

11: (M,K",a") < LFSR(M, K"~ 1)

12: (M, V7 b") < LFSR(M, V")

13: (M, 1,...,2288) = TriviumCore(M,s] ', ..., shes, 66,171,91,92,93)
14: (M, y1,...,y288) = TriviumCore(M, z1,. .., T2ss, 162,264, 175,176,177)
15: (M, z1, ..., z288) = TriviumCore(M,y1, ..., Y2ss, 243, 69, 286, 287, 288)
16: Mwar <+ t7,t5 as binary

17: M.con < t] = z93 + 0"

18: M.con < t5 = z288 + a”

19: Sr = (871", ey 3588) = (t},", Zlye-.9R92, t;, Z942’287)

20: end for

21: for alli € {1,2,...,288} w/o 66,93,162,177, 243,288 do

22: M.con+ st =0

23: end for

24: M.con < (sgs + sg3 + Siez + Slrr + S2as + S5ss) = 1

25: return M
26: end procedure

details of the J[u] are in Table @ So the superpoly can be represented as a sum of 5 monomials as
follows:

p(T) =76 + T3 + T51 T T17 + T2+ O (20)

where ¢ is to be pre-computed offline: set all key bits and non-cube I'Vs to 0 and sum over the cube I
defined in (19)). So there is an additional 2'!® time complexity spent offline to compute the o making
the overall complexity of the whole attack 2118 4 2118 = 2119,

9 Conclusion

In this paper, we proposed a new modeling technique for the three-subset division property without
unknown subset. Our technique is significant for the application to the cube attack. Unlike the
previous experimental or theoretical cube attacks, our method does not need any assumption and
can recover the actual superpoly in practical time. Our method leads to the best key-recovery attacks
(mounting to the largest number of initialization rounds) on some of the most important stream
ciphers.

Acknowledgement. The authors thank the anonymous reviewers for careful reading and many
helpful comments. Yonglin Hao is supported by National Natural Science Foundation of China (Grant
No. 62002024), National Key Research and Development Program of China (No. 2018YFA0306404).
Gregor Leander is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research

32

Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 9. Detailed result for superpoly for 893-round Kreyvium.

parity] J[u] __[@][v)"/t]
o |UNKNOWN 1
0 2 T64
1 1 X7e
0 2 37
0 2 90
1 3 Zre3
0 2 T88T89
1 1 T4
0 8 Ta8
0 8 T75
1 1 T1e6
0 8 T73%74
1 2 T62T63

Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. Qingju Wang
is funded by the University of Luxembourg Internal Research Project (IRP) FDISC and Huawei
Technologies Co., Ltd (Agreement No.: YBN2020035184).

References

10.

11.

12.

13.

. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In Daemen, J., Rijmen, V., eds.: FSE 2002. Volume

2365 of LNCS., Springer, Heidelberg (February 2002) 112-127

. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In Biham, E., ed.: FSE’97. Volume

1267 of LNCS., Springer, Heidelberg (January 1997) 149-165

Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications and Cryptography.
Volume 276 of The Springer International Series in Engineering and Computer Science., Springer (1994)
227-233

. Todo, Y.: Structural evaluation by generalized integral property. In Oswald, E., Fischlin, M., eds.:

EUROCRYPT 2015, Part I. Volume 9056 of LNCS., Springer, Heidelberg (April 2015) 287-314
Todo, Y.: Integral cryptanalysis on full MISTY1. In Gennaro, R., Robshaw, M.J.B., eds.: CRYPTO 2015,
Part I. Volume 9215 of LNCS., Springer, Heidelberg (August 2015) 413-432

. Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput: Block cipher with

extended generalized Feistel network. In Avanzi, R., Heys, H.M., eds.: SAC 2016. Volume 10532 of
LNCS., Springer, Heidelberg (August 2016) 264-283

Todo, Y., Morii, M.: Bit-based division property and application to simon family. In Peyrin, T., ed.:
FSE 2016. Volume 9783 of LNCS., Springer, Heidelberg (March 2016) 357-377

. Sugio, N., Igarashi, Y., Kaneko, T., Higuchi, K.: New integral characteristics of KASUMI derived by

division property. In Choi, D., Guilley, S., eds.: WISA 16. Volume 10144 of LNCS., Springer, Heidelberg
(August 2016) 267279

Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based
on division property for 6 lightweight block ciphers. In Cheon, J.H., Takagi, T., eds.: ASTACRYPT 2016,
Part I. Volume 10031 of LNCS., Springer, Heidelberg (December 2016) 648-678

Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and
word-based division property. In Takagi, T., Peyrin, T., eds.: ASTACRYPT 2017, Part I. Volume 10624
of LNCS., Springer, Heidelberg (December 2017) 128-157

Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division
property. In Katz, J., Shacham, H., eds.: CRYPTO 2017, Part III. Volume 10403 of LNCS., Springer,
Heidelberg (August 2017) 250-279

Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks
exploiting algebraic properties of superpoly. In Shacham, H., Boldyreva, A., eds.: CRYPTO 2018, Part I.
Volume 10991 of LNCS., Springer, Heidelberg (August 2018) 275-305

Bernstein, D.J., Kélbl, S.; Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K., Schneider, T., Schwabe,
P., Standaert, F.X., Todo, Y., Viguier, B.: Gimli : A cross-platform permutation. In Fischer, W.,
Homma, N., eds.: CHES 2017. Volume 10529 of LNCS., Springer, Heidelberg (September 2017) 299-320

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

Modeling for Three-Subset Division Property without Unknown Subset 33

Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present - towards
reaching the limit of lightweight encryption. In Fischer, W., Homma, N., eds.: CHES 2017. Volume
10529 of LNCS., Springer, Heidelberg (September 2017) 321-345

Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of reduced-round SIMON32
and SIMON48. In Meier, W., Mukhopadhyay, D., eds.: INDOCRYPT 2014. Volume 8885 of LNCS.,
Springer, Heidelberg (December 2014) 143-160

Hu, K., Wang, M.: Automatic search for a variant of division property using three subsets. In Matsui,
M., ed.: CT-RSA 2019. Volume 11405 of LNCS., Springer, Heidelberg (March 2019) 412-432

Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching division property using
three subsets and applications. In Galbraith, S.D., Moriai, S., eds.: ASTACRYPT 2019, Part ITI. Volume
11923 of LNCS., Springer, Heidelberg (December 2019) 398-427

Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In Joux, A., ed.: EURO-
CRYPT 2009. Volume 5479 of LNCS., Springer, Heidelberg (April 2009) 278-299

Ye, C.D., Tian, T.: Revisit division property based cube attacks: Key-recovery or distinguishing attacks?
TACR Transactions on Symmetric Cryptology 2019(3) (Sep. 2019) 81-102

Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Trivium. In Shacham,
H., Boldyreva, A., eds.: CRYPTO 2018, Part II. Volume 10992 of LNCS., Springer, Heidelberg (August
2018) 160-184

Yang, J., Liu, M., Lin, D.: Cube cryptanalysis of round-reduced ACORN. In Lin, Z., Papamanthou,
C., Polychronakis, M., eds.: ISC 2019. Volume 11723 of LNCS., Springer, Heidelberg (September 2019)
44-64

Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property
without unknown subset - improved cube attacks against Trivium and Grain-128AEAD. In Canteaut,
A., Ishai, Y., eds.. EUROCRYPT 2020, Part I. Volume 12105 of LNCS., Springer, Heidelberg (May
2020) 466-495

Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-bound security against
time-memory-data tradeoff attacks. Cryptography and Communications 10(5) (2018) 959-1012

Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revisited - cryptanalysis on
full Grain-128a, Grain-128, and Grain-v1. In Shacham, H., Boldyreva, A., eds.: CRYPTO 2018, Part II.
Volume 10992 of LNCS., Springer, Heidelberg (August 2018) 129-159

Wu, H.: Acorn v3. Submission to CAESAR competition (2016) https://competitions.cr.yp.to/
round3/acornv3.pdf.

Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P., Sirdey, R.: Stream
ciphers: A practical solution for efficient homomorphic-ciphertext compression. In Peyrin, T., ed.:
FSE 2016. Volume 9783 of LNCS., Springer, Heidelberg (March 2016) 313-333

Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Links between division property and other
cube attack variants. IACR Trans. Symm. Cryptol. 2020(1) (2020) 363-395

Todo, Y., Morii, M.: Bit-based division property and application to Simon family. Cryptology ePrint
Archive, Report 2016/285 (2016) http://eprint.iacr.org/2016/285.

Inc., G.O.: Gurobi optimizer 6.5. Official webpage, http://www.gurobi.com/ (2015)

Hebborn, P.; Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of block ciphers. In:
ASTACRYPT 2020, Part I. LNCS, Springer, Heidelberg (December 2020) 537-566

Boura, C., Canteaut, A.: Another view of the division property. In Robshaw, M., Katz, J., eds.:
CRYPTO 2016, Part I. Volume 9814 of LNCS., Springer, Heidelberg (August 2016) 654—-682

Canniere, C.D., Preneel, B.: TRIVIUM specifications (2006) eSTREAM portfolio, Profile 2 (HW).

Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Observations on the dynamic cube attack
of 855-round TRIVIUM from Crypto’18. Cryptology ePrint Archive, Report 2018/972 (2018) https:
//eprint.iacr.org/2018/972.

Fu, X., Wang, X., Dong, X., Meier, W., Hao, Y., Zhao, B.: A refinement of “a key-recovery attack
on 855-round Trivium” from crypto 2018. Cryptology ePrint Archive, Report 2018/999 (2018) https:
//eprint.iacr.org/2018/999.

Hell, M., Johansson, T., Meier, W., Sonnerup, J., Yoshida, H.: Grain-128AEAD: A lightweight AEAD
stream cipher (2019) Lightweight Cryptography (LWC) Standardization.

Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional
authentication. IJWMC 5(1) (2011) 48-59

CAESAR: Competition for authenticated encryption: Security, applicability, and robustness (2014)
https://competitions.cr.yp.to/caesar.htmll

https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
http://eprint.iacr.org/2016/285
http://www.gurobi.com/
https://eprint.iacr.org/2018/972
https://eprint.iacr.org/2018/972
https://eprint.iacr.org/2018/999
https://eprint.iacr.org/2018/999
https://competitions.cr.yp.to/caesar.html

34 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

A On Source Code

We provide two source codes to well understand our algorithm in https://github.com/ysktodo/
milp-three-subset-wo-unknown.

A.1 Code for Superpoly Recovery on Trivium and Grain-128AEAD

Under code/recovery, there is a source code to recover the superpoly for TRIviUM and Grain-
128AEAD. This code is written in C++ with Gurobi API. Therefore, to compile and run this code,
you need to install Gurobi Optimizer in advance. If you already install the Gurobi Optimizer version
8.1, you just run

make

If your Gurobi Optimizer is not version 8.1, please change LIB option in makefile.
If you want to try the superpoly recovery for 840- or 841-round TRIVIUM, you just run

./a.out -r [840 or 841] -trivium -t [option : thread number]

Note that this code does not return the answer quickly. It depends on the performance of your
computer, and if you execute this code in a cheap computer, you need to wait a few days. We highly
recommend that this code is executed on a computer with good performance.

If you want to try the superpoly recovery for 190-round Grain-128AEAD, you just run

./a.out -r 190 -grain -t [option : thread number]

Moreover, if you want to try 15 superpolies that are used in the key-recovery attack against Grain-
128AEAD, you just run

./a.out -r 190 -grain -subcube -t [option : thread number]

Similarly to the case of TRIVIUM, this code does not return the answer quickly. Therefore, we highly
recommend that this code is executed on a computer with good performance.

This source code also provides the practical verification, where the superpoly is recovered under
the randomly chosen cube whose size is chosen from the practical range. The correctness of the
recovered superpoly is experimentally verified by using 100 randomly generated secret key bits and
non-cube IV bits. If you want to try this verification, you just run

./a.out -trivium -practical
for TRIVIUM and
./a.out -grain -practical

for Grain-128AEAD.

A.2 Code for Verification of Statement[i]

Under code/855disproof, there is a source code to verify Statement Similarly to the source code
for the superpoly recovery, this code is written in C4++ with Gurobi API. Therefore, to compile and
run this code, you need to install Gurobi Optimizer in advance. If you already install the Gurobi
Optimizer version 8.1, you just run

make

If your Gurobi Optimizer is not version 8.1, please change LIB option in makefile.

For easy verification, we wrote this source code as simple as possible, and the code length is
about 300 lines. Therefore, this verification code is more suited to understand our algorithm than
another source code described in [A71] You just run

./a.out -r 855 -t [option : thread number]

Then, you can find only one three-subset division trail.

https://github.com/ysktodo/milp-three-subset-wo-unknown
https://github.com/ysktodo/milp-three-subset-wo-unknown

Modeling for Three-Subset Division Property without Unknown Subset 35
B Proof of Propagation of Modified Three-Subset Division Property

B.1 Proof of Rule1’ (copy)

Let F be a copy function, where the input (z[1], z[2],...,z[m]) takes values of F5, and the output is
calculated as (z[1], z[1], z[2], z[3], ..., z[m]). Let X and Y be the input multiset and output multiset,
respectively. Now, we want to evaluate the parity @y€Y y? for any v € IFQ”H.

Dy’ =PF@)”

yeY zeX
= P 21" Ma[1) P a2 Bla[3) 1 . . gm] lm]
zeX
— @ 2 CHIvelvls] vl 1)
zeX

Assuming that X has 7",

@ o {1 if there is an odd number of w’s in L,

0 otherwise.
zeX

Thus, P,y y? is 1 if and only if
#{u € Llu = (v[1] Vv[2],v[3],...,v[m +1])}

is an odd number. In other words, when u[l] = 0, (v[1],v[2]) can take (0,0). When u[l] = 1,
(v[1],v[2]) can take (1,0), (0,1), and (1,1). Note that the number of appearance of new v’s caused
by even-number u’s is always even.

B.2 Proof of Rule?2’ (and)
Let F be a non-linear function, where the input (z[1],z[2],...,z[m]) takes values of (F2)™, and the

output is calculated as (z[1] A x[2],z[3],...,z[m]). Let X and Y be the input multiset and output
multiset, respectively. Now, we want to evaluate the parity € y? for any v € Fglil.

Py’ =P @)’

yeyY

yeyY xzeX
— D (altal2) Va3 Palg)
zeX
=) O 0] slm1),
xzeX

Assuming that X has 7Em, x™ is satisfied as

@ o {1 if there is an odd number of u’s in L,
vex 0 otherwise.

Thus, @,y y? is 1 if and only if there is an odd number of u’s in L satisfying w = (v[1], v[1], v[2],
v[3],...,v[m—1]). In other words, when (u[1],u[2]) = (0,0), v[1] can take 0. When (u[1],u[2]) = (1, 1),
v[1] can take 1. Note that the number of appearance of new v’s caused by even-number w’s is always
even.

36 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

B.3 Proof of Rule 3’ (xor)

Let F be a function compressed by an XOR, where the input (x[1],z[2],...,x[m]) takes values of
F7*, and the output is calculated as (x[1] & z[2],z[3], ..., z[m]). Let X and Y be the input multiset
and output multiset, respectively. Now, we want to evaluate the parity @er y? for any v € FJ L.

Dy’ =PF@)”

yeY zeX
= P] & «[2) Maf3] B4 B . gfm]r =
zeX
= @ x[l]v[lix[g]v[Q]xM]vB] . x[m]u[m—l] ® m[2]'u[1}x[3]v[2]x[4}u[3] o ,’B[m]v[m_li
zeX
— @ m(U[l],0,1)[2],1)[3],...,11[777,71]) @ $(0,U[1],v[2],v[3],...,v[m71])'
xzeX xeX

Assuming that X has 7Em, x" is satisfied as

@ w {1 if there is an odd number of w’s in L,
€T =

vex 0 otherwise.

Thus, @,y y? is 1 if and only if
#{u € E‘iu = (vilia O7Ui2ia 1)[3], cee ,v[m - 1])} + #{u € H:‘iu = (0,1)[1},’0[2},"0[3], ceey Uim - 1])}

is an odd number. In other words, when (u[1],u[2]) = (0, 0), v[1] can take 0. When (u[1], u[2]) = (1,0)
or (0,1), v[1] can take 1. Finally, when the number of appearance of new v’s is odd, EBer y? = 1.
Otherwise, @er y? = 0.

C Another View of the Three-Subset Division Property without
Unknown Subset

At Asiacrypt2020, the work [30] builds upon the three-subset division property without unknown
subset, but uses a different notation. Proposition was revisited in view of the parity set [31].

In this appendix, we also view Proposition[l] and three propagation rules in the context of the
parity set. We hope that this view can provide an easier understanding for readers who did not
follow the series of research on the division property.

The parity set, which was used as another view of the division property in [31], is defined as

Definition 6 (Parity Set). Let X C FY be a set. We define the parity set of X as

UX) = {u € Fy such that Z ¥ = 1}

zeX

Remark that the set L in Deﬁnition is exactly the same as U(X) when there is no unknown subset.
Before describing the property of the parity set, we first define the addition of two subsets
X, Y C F% by

X+Y:=(XUY)\ (XNY).

In other words, we view the set of all subsets of Iy as a binary vector space of dimension 2", and
this addition is isomorphic to adding the binary indicator vectors of the sets.

Ezample 8. Considering the sets X = {001,010,110,111} and Y = {000, 001,010, 110}, the sum of
X and Y is

X + Y = {000, 111}.

Modeling for Three-Subset Division Property without Unknown Subset 37

From this perspective, for X; C F3,

U(dox) => U

holds, i.e. U is a linear mapping. It was shown in [31] that there is a one to one correspondence
between sets and its parity set. That is the mapping

U: X UKX)
is a bijection and actually its own inverse, i.e.,
UUX)) =X
Those properties follow from the linearity of &/ and the following lemma. The proof is added for
completeness and to get familiar with the notation.
Lemma 3. Let U be the mapping defined above and £ be an element in Fy. Then

LUK = {ueF} |u=t}
2. U{z € Fy | = < €}) = (£}

Proof. For the first property, we note that % = 1 if and only if u < . Thus we get

U({€}) = < u € F§ such that Z ¥ =1
xze{L}
= {u € F} such that £* =1}
={uel}|u=x{t}

For the second property, we see that Zwemg | z=e ¥ = 1if and only if u = £. Let A, be the number
of elements < £ such that £* = 1. We get

Au=Hz L]z =1} ={z2Ll]uzz}|={zcF; |u=z 2L}
and it holds that A, is odd if and only if £ = u, which completes the proof. O

We next define the propagation as follows.

Definition 7 (Propagation). Given F : F} — F3* and a € Fy, b € F5* we say that the division
property a propagates to the division property b, denoted by a R if and only if b e U(F U ({a}))).

Here the image of a set X under F' is defined as

F(X) =) {F(a)},

acX

that is again using the addition of sets as defined above.

In Definition[7] the propagation is defined without specifying each concrete operation. Only using
this definition reveals one important property of the propagation very simply. Given U; = U(X), for
any function F, Uy = U(F (X)) is evaluated as

U =UFX) =) UF({z})= Y UFU{a})= > {b} (21)

zeX acu(X) acl; aiﬂa

In order to determine U, after applying the function F', it is enough to consider what happens with
individual elements of Uy to start with. Here again, we like to emphasize that the sum in Equation
is modulo two, that is, if an element appears an even number of times on the right side, it actually
does not appear in Us.

To understand the link between Definition[7] and propagation rules, we show an example here.

38 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Ezxample 4. Let F be a function compressed by an AND, where the input & € F5* and the output is
calculated as (z[1]Az[2],z[3],...,z[m]). Let X and Y be the input and output multisets, respectively.
Assuming that U(X) = {a}, @ .x " = 1 if and only if u = a. Then, we want to evaluate U (F(X)).
Due to Lemmal[3]

X=U{a}) ={u e Fyju < a}.

We now take four cases into consideration.

— When (a[1],a[2]) = (0,0), X = {u € F¥|lu =< (0,0,a[3],...,a[n])}. Then, Y = F(X) = {v €
F3~'v < (0,a[3],...,a[n])}. Therefore, P,y F(z)” =1 1f and only if v = (0,a[3],...,a[n]).
- Whein (a[l],a[2]) = (1), X ={u € F"|u < (1,1,a[3],...,a[n])}. Then, Y = F(X) {v e
Fy™ " lv = (1,a[3],...,a[n])}. Therefore, P, x F(x)” =1 1f and only if v = (1,a[3],...,a[n]).
] 1,a[3],...,a[n])}. Then,

], -
—When([,al2]) = (),X:{UEF§|U<(
=FX)

In other words, the number of appearance of every element is always two and they are canceled
out by adding. Therefore, there is no v satisfying @mex (x)? =1

— When (a[1],a[2]) = (1,0), X = {u € F§|u < (0,1,a[3],...,a[n])}. Then, the set of Y is the same
as the case of (a[1],a[2]) = (0,1). Therefore, there is no v satlsfymg @wex (x)? =1.

={veFr o= (0,af3),...,a[n))} + {v € F} v < (0,a[3], ..., a[n])}.

We notice that the example above is exactly the same as the propagation rule for AND operation.
More generally, the authors in [30] showed the following proposition.

Proposition 5. Let F': F§ — F3' be defined as
Flz) =y

For a € Fy and b € F5*, it holds that a KA if and only if y® contains the monomial x®.

We omit the proof here and refer to [30] for the formal proof.
Following previous works, we now generalize the definition above to the setting where F' is
actually given as the composition of many functions

FZFRO---OFQOFl.

Definition 8 (Trail). Given F :F5 — F% as
F=Fgo---oFy0oF

and ag ...ar € FY we call (ag,...,agr) a (division) trail for the compositions of F into the F; if
and only if

. F;
Vi € {1, .. .,R},ai_l — a;.
We denote such a trail by
Fy Fo Fgr
ag — a; —= -+ — ag.

Using the same considerations as in Equation[21] we can now state the main reason of why considering
trails is useful:

Theorem 1. Given F :Fy — F3 as
F=Fro---0oFy0F]

and X CFy. Then
U(F(X)) = > {ar}

1 Fa Fr
ag,....,ar,a0€U(X),ao—ra1—>--—ar

Modeling for Three-Subset Division Property without Unknown Subset 39

The important link between the division property and the ANF is the following observation and
is actually a special case of Proposition

Corollary 1. Let F': F} — F% be a function with algebraic normal form

F(x) = Z Auz?

ueFy
where Ay, = ()\5}), e ,\L")) € F2. Furthermore, let X be the set such that U(X) = {€}. Then
A =1 e cUFX))
Proof. 1f U(X) = {€}, by Lemma [3] we have
X={xecly |z £}
Now, we get
N =3 F@) =Y F@) = Y 2t = {é 1 ei € U
@=L zeX @EF(X)
which concludes the proof. a

Theorem [1| and Corollary [I] finally result in the following corollary.

Corollary 2. Let F : Fy — F5 be a function with algebraic normal form

F(x) = Z Ay

u€lFy

where Ay = ()\S), el)\Ln)) €FY and F = Fro---oFy0Fy. Then /\g) = 1 if and only if the number
of trails

V4 i) a; i cee F—R> €;
is odd.
Proof. Follows immediately from the statements above. O

Corollary[2] is exactly the same as Proposition][i}

D The Practical Verification using Parameters from Fu et al.’s
Refinements in [34]

Ezample 5. (Parameters from [34]) In[34], Fu et al. provide 17 29-dimensional cubes as Table
For the correct key guess, the p(x) of (1 + s33!)z721 over I; (j = 0,...,16) is constantly 0.
[34] also shows the p(x) # 0 for pure z79; with sufficiently many random keys. Both situations are
perfectly evaluated with our method. We have I = I; (j =0,...,16) and Cy = {1,...,80}\I. The
only difference appears in model construction:

1. For (1 + s23')2721, we call Algorithm 4| as M < TriviumSecEval(721,221)
2. For z791, we call Algorithm [3[as M <« TriviumEval(721)

Then, we simply call Algorithm [2| to acquire p(x) for both situations. All 17 p(x)’s are 0 for (1 +
sgil)znl and those for z791 are listed in Table Since all the p(x)’s for z791 are quite simple, the
key-recovery can already be carried out without using Fu et al.’s method in [20]. Furthermore, as
can be seen, all p(x) in Table have a common divisor xg2. Therefore, when the key bit xgo is

40 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

constant 0, the 17 cube summations for z79; will be 0. For all the 17 cubes, the ANF of 532! can be
represented as
s55" = g1 + gaver + g3(va1 + Us1) + V21067 + VasUse + Va1 + Vs (22)

where g1, g2, g3 are the 3 secret-key related bits need to be guessed. Such to-be-guessed bits are in
fact polynomials of key bits represented as:

g1 =%2 + T9T10 + T11 + T18T19 + T20 + T27T28 + T29
+ xa7 + 53 + TeoTe1 + T72T73 + T74 (23)
g2 =T9

g3 =T10

Since there is a wrong key guess (g7 is wrongly guessed as g1 + 1 while go, g3 are guessed correctly)
that can make the assignment of s33! become 1 + s33' so the corresponding transformation and

summation become:

g1+ 1,92,93 = 2701 = (1 + 1+ 533) 2701 = (1 + 833) 2721 + 2721

= Z Zro1 = Z (14 833")2721] + Z z721 =0+ Z Z721 (24)
Cr c; Cr

Cr

As can be seen, such a wrong key guess summation equals to that of plain z79; and all 17 cube
summations are 0 as long as zgz = 0. This phenomenon can also be verified experimentally. In other
words, Fu et al.’s attacks in [34] on 721-round Trivium can only work under the weak-key setting
(zg2 = 1) while the ordinary cube attack on plain z791 recovers key bits directly for arbitrary key
settings. Therefore, Fu et al.’s method is no better than the ordinary cube attack. Such analysis has
not only proved the accuracy of our method but the ineffectiveness of Fu et al.’s refinements in [34]
as well.

Modeling for Three-Subset Division Property without Unknown Subset

41

Table 10. The 17 29-dimensional cubes in [34] and their superpoly p(x)’s for 2721 (as well as 2721 in)

J I; p(z)

0T, 5, 11, 17, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, B1, 53, |ws5762 + o2
55, 57, 61, 63, 67, 69, T1, 75, 77,

11,3, 5,9, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53, 55, Toa
57, 61, 63, 67, 69, 71, 75, 77,

2T, 5, 7, 11, 16, 17, 21, 25, 29, 31, 33, 35, 37, 30, 43, 45, 47, 49, 51, 53, Toz
55, 57, 61, 63, 67, 69, T1, 75, 77,

37T, 5, 9, 11, 16, 17, 21, 25, 29, 31, 33, 35, 37, 30, 43, 45, 47, 49, 51, 53, Toz
55, 57, 61, 63, 67, 69, T1, 75, 77,

T[T, 5, 11, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53, e
55, 57, 61, 63, 67, 69, 71, 75, 77,

57T, 3, 5, 9, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 55, Too
57, 61, 63, 67, 69, 71, 75, 77,

611, 5, 9, 15, 17, 21, 23, 25, 29, 31, 33, 35, 37, 30, 41, 43, 45, 47, 49, 53, Toa
55, 57, 61, 63, 67, 69, 71, 75, 77,

711, 5, 9, 11, 15, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, To2
55, 57, 61, 63, 67, 69, 71, 75, 77,

811, 5, 11, 15, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 53, Te2
55, 57, 61, 63, 67, 69, 71, 75, 77,

911, 3,5,9, 15, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 43, 45, 47, 49, 51, 55, Te2
57, 61, 63, 67, 69, 71, 75, 77,

T0[1, 5, 11, 15, 17, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53, Toa
55, 57, 61, 63, 67, 69, 71, 75, 77,

TI[11, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, T30%00%02
53, 55, 57, 61, 63, 67, 69, 71, 75, 77,

2[5, 11, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 49, 51, B3,| Ts0T60T0a
55, 57, 61, 63, 67, 69, 71, 75, 77,

3[1, 3, 5, 9, 15, 17, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 55, Toz
57, 61, 63, 67, 69, 71, 75, 77,

T4[1, 5, 11, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, Toa
55, 57, 61, 63, 67, 69, T1, 75, 77,

T5[1, 3, 5, 17, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, Toz
55, 57, 61, 63, 67, 69, T1, 75, 77,

T6[1, 3, 5, 9, 17, 21, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, Toz
57, 61, 63, 67, 69, 71, 75, 77,

42 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

E Detailed Result for Cube Attacks against Trivium

The superpoly recovered for 842-Round TRIVIUM is given as the following

p(x) = T30 + T79 + T78 + Tr8Ts0 + T78T79 + Tr7 + T77Ts0 + Tr7TT8T80 + T76 + TT6T80 + TT6TTO+
T76T78%80 + T76L78T79 + T76XL77X80 + T76T77L78 + L76XL77L78 T80 + T75 + T75X79 + T75T77T78+
T75T76X78 + T75L76T77 + T74 + T74T75T80 + T74X75%79 + T74T75L78T80 + L74L75T78T79+
T74L75X77280 + L74X75X77L78 + X74X75T77L78X80 + T74L75XL76X80 + T74XL75X76L78L79+
T74T75X76L77L80 + X74T75L76L77X78T79 + L7380 + T73X78X79 + T73L75 + T73T74L79 + X73T 74T 77X 78+
T73%74%76 + T73L74T75 + T72X73 + T71T76 + T71X75 + T71T74T75 + T71X73%74 + T71T72T80+
T71X72X78T79 + T71X72%75 + T71X72X73T74 + T70 + T70T75 + T70T73T74 + Teg + TeoT70T76+
T9T70X75 + Te9L70T74T75 + T69L70XL73L74 + Tes + T68T69 + L68T69T75 + L68L69L73L74 + T67L78+
Te7T76X77 + Te7T68 + T66XL80 + Te6T78T79 + T66XL77 + Te6T76 + T66XL75 + Te6T75L76 + L66L74L75+
Te6TL73 + T66L73L74 + T66L71X72 + Te6T67 + L6580 + Te5T78T79 + T65L76 + Tes5T76T80+
Te5T76L78T79 + Te5L75 + T65L74X75 + Te5T74T75L80 + T65L74L75L78T79 + T65L73%74 + Te5Te6T78+
T65T66L76XL77 + L64T76T80 + T64L76L78L79 + T64T74T75L80 + T64T74T75L78T79 + L64L65T80+
TeaTesX78T79 + T3 + Le3T78L80 + L63T78T79 + L63X77L80 + L63X77T78L79 + L6376 + T63L76L77TI0+
T63LT76LTTLT8LTY + T63L75L76L80 + L63L75L76L78L79 + Le3L74L75 + L6370 + T63T68L69 + T63T65L80+
Te3L65L78T79 + Te2X79 + Te2L77X78 + T62T76 + T62X74T75 + T62T65 + Te2L63 + T62T63L76XL80+
T62L63T76T78L79 + T62L63L74L75L80 + T62L63L74T75L78%79 + Te1 + Te1X80 + Te1T79 + Te1T78T79+
T61ZT77 + T61X77L78 + T61T76XL79 + Te1T76T77T78 + T61XL75L76 + Te1T74T75L79 + T61L74T75T77T78+
Te1X73 + T61T72 + T61X71 + Te1T71X72 + Te1T70X71 + T61T69 + T61T69T70 + Te1T67T78+
T61T67T76XL77 + Te1T67T68 + L6166 + Te1T65 + T61L65X76 + Te1T65L74T75 + Te1T65T66T78+
T61T65L66L76XL77 + Te1T62L78T80 + T61L62L78T79 + T61L62L77L80 + T61L62L77L78L79+
T61T62L76L77L80 + Te1T62L76L77L78LT9 + L61L62L75L76L80 + L61L62L75L76L78L79 + L61L62L65L80+
T1L62L65T78L79 + T60 + Te0Ts0 + T60T78T79 + L6074 + Te0X73 + TeoT72 + Te0X72T73 + TeoX71T72+
T60ZT70X71 + T60T66 T T60T62 + T60L61L79 + T60T61XL77L78 + T60T61L74 + L60L61L72L73 + T60L61L 65+
T59T80 + T59T78L79 + T59T76 + T59X75 + T59T74 + T59T74T75 + T59T73T74 + T59T72T73 + T59T66+
T59T62 + T59T61 + T59T61L70 + T59T61T68T69 + T59L60L80 + T59T60L79 + L59TL60L78L79 + TH59T60L 77+
T59T60L77L78 + T59T60T76L79 + L59T60L76L77L78 + T59T60L75X76 + T59T60L74 + T59T60L74T75L79+
T59T60L74L75L77L78 + T59T60L73 + T59L60T72 + T59T60L72X73 + T59T60L71X72 + T59T60T70T71+
T59T60%66 + T59T60T65 T T59T60L65L76 + T59T60L65L74L75 + T59T60T62 + T58L80 + Ts58T78T79+
T58%77 + T58%75 + T58T74 + T58X74L75 + T58T73L74 + T58L73L74T76 + T58L73XL74L75 + T58T72L73+
T58%70 + T58T68 + L58X68T69 + T58%66 + T58L6e2X74 + T58Te2X 72273 + T58L61X74 + T58Le1X72L73+
T58%60 + T58L60L61 T TE8T60L61XL74 + T58T60T61L72X73 + T58L59 + T58T59X74 + T58T59T 72+
T58T59XT72X73 + T58T59T70T71 + L58L59L61 + TE8THIT61XL74 + T58T59T61L72X73 + Ts7L75L77 + L5774+
T57X74%75 + T57L73T74T77 + TE57L73L74X76 + TE57T73L74X75 + T57T73T74T75X76 + T57L72L73 + TH57T66+
T57%62 + T57T62L75 + T57T62L73%74 + T57L62X63 + T57T61X75 + T57T61L73T74 + T57L61T65+
T57T60%61 + T57T60T61T75 + T57L60L61L73L74 + L5759 + T57T59T61 + T57L59C60 + T57T59T60T75+
T57T59T60L73L74 + T57T59T60T65 + T57L58L76 + T57T58T75 + T57T58T74 + T57X58L 7475+
T57T58T73%74 + T57T58T72L73 + L57X58L60 + T57T58T59T61 + T57T58T59T60 + L56XL60 + Ts6T57T61+
T55 + T55%61 + Ts5T56T61 + L55L56L57L61 + Ts4 + L54L76 + T54T74%75 + T54T55T61 + T53 + Ts3Tro+
T53%78 + T53T77 + T53X77T78 + T53%76 + T53T76X79 + T53T76X78 + T53T76L77 + T53T76 L7778+
T53%T74%75 + T53L74T75T79 + T53L74L75L78 + T53T74X75X77 + T53T74T75L 77278 + L53L74T75T 76+
T53L74X75T76L77 + X53T73 + 537172 + T53%66 + T53T65 + T53T65T76 + L53L65L74L75 + T53T64T76+
T53T64L74X75 + T53L64T65 + T53L63L78 + T53T63T77 + L53L63L76L77 + TH3T63L75X76 + T53T63T65+
T53L62T63L76 + T53T62L63L74L75 + L5361 + T53T61L62L78 + T53T61L62277 + T53T61L62L76XL77+

T53T61T62L75276 + T53T61T62L65 + T53T60 + T53T59 + T53T59T60 + T53T58+

Modeling for Three-Subset Division Property without Unknown Subset 43

T52 + T52280 + T52L78T79 + T52&76 + T52T76T80 + L52L76L78L79 + T52X75 + T52L74T75 + T52X74L 75280+
T52T74T75L78%79 + T52X73T74 + T52X62 + T52T61 + T52X61X76 + T52T61T74T75 + T52L60L61+
T52X59T60 + T52X59T60L76 + T52T59T60L74X75 + T52T53 + T52T53T76 + T52X53T74T75 + T51 + T51Ts0+
T51T78%79 + T51T77 + T51X76 + T51T76T80 + T51L76XL78L79 + T51T75L76 + T51T74 + TH51 L7475+
T51T74T75280 + T51T74T75T78%79 + T51T72T73 + L5167 + T51T65T66 + L5163 + T51T63T80+
T51T63T78T79 + T51X62 + T51T61 + T51X61T67 + T51T61L65T66 + T51T61T62T80 + T51L61L62L78L79+
T51T59T60 + T51L59L60L62 + T51T59T60L61 + T51T58 + T51X53 + T51T53T76 + T51X53L74L75+
T51T53T63 + T51X53L61T62 + Ts50 + T50L80 + L5078 + L50L78L79 + Ts50X76 + T50L76 T80+
T50X76T78L79 + X50T76L77 + L5075 + T50L74X75 + T50L74X75L80 + L50XL74X75T78L79 + TH50T73L 74+
T50T63T80 T T50L63L78L79 + T50L61 + T50L61L62T80 + L50L61L62L78L79 + L5060 + T50L59T60+
T50T58T59 + L50L57L75 + T50TE57L73XL74 + T50T53 + T50XL53%76 + T50T53T74T75 + T50L53L63+
T50°53T61T62 + T50T51 + Ta9 + L4980 + Ta9X79 + T49T78T80 + T49T78T79 + T49T77L80 + Ta9T77L78+
T49T77L78X80 + T49T76T77L80 + T49L76L77L78L79 + L49X75 + T49T75T76XL80 + Ta9L75T76T78L 79+
T49T73T74 + T49X71 + T49T69T70 + T49T66 + T49T65 + Ta9T65T80 + T49T65T78L79 + T49T64T80+
T49T64T78T79 + T49T63 + T49T62 + T49T62L63 T80 T T49T62L63L78L79 + T49T61L79 + T49L61LT77T78+
T49T61T65 T T49L59 + T49T59T60L79 + T49L59T60T77L78 + T49L59L60L65 + T49T58 + Ta9T58T75+
L49X58T73L74 + Xa9T57 + Ta9X57X75 + Ta9X57X73T74 + La9X57T58 + La9X54 + T49T53 + La9T53T79+
T49T53T78 + Ta9X53L77 + T49T53T77X78 + La9T53T76T77 + La9X53L75L76 + T49XT53%65 + La9T53Tea+
T49T53T62263 + T49T52 + T49T52X80 + Ta9T52L78T79 + Ta9X52L61 + T49T52L59X60 + La9T52T53+
T49X51T80 + T49X51T78T79 + Ta9T51T53 + L4950 + T49T502L80 + T49T50XL78T79 + La9X50T76+
T49X50T74 + T49X50T74T75 + Ta9T50T72L73 + T49T50T63 + T49T50T62 + T49T50T61 + Ta9T50T59T60+
T49T50L59T60T62 + T49T50T59T60L61 + L49L5058 + L49L50053 + Tas + TagX79 + T48T77X78 + T4s8T73+
T48T71 + T48T71X72 + T48T70 + T48T69L70 + T48T68T69 + Ta8Te5 + Ta8T62 + TagTe1 + T48T60L61+
T48T59 + T48T59L60 + TAST58L76 + Ta8X58L74L75 + Ta8T57XL77 + Ta8T57T76 + Ta8X57XL75L76+
T48T57T74T75 + T48L57L62 + Ta8T57X61 + T48T57T60L61 + T48L57L59L60 + Ta8T57X58 + TasTs2+
T48%51 + T48T50 + Ta8T50T57 + L4849 + Ta8Ta9X76 + Ta8L49X75 + T48L49X 74T 75 + La8T49T 73T 74+
T4849T66 + L48T49T60 + T48T49T58T59 + La8T49T57 + La8X49T50 + Ta7 + Ta7ZTe1 + Ta7Xe0+
T47Te0T61 + Ta7X59 + Ta7T58 + Ta7X58L62 + T47TE8T61 + Ta7T58L60T61 + Ta7X58%59 + T47T58TH9T611
T47X57T58 + Ta7X51 + T47L49X50 + T47T48T58 + T47T48T51 + Ta7T48T49X50 + T46T80 + Ta6T78L79+
T46X75 + T46 L7374 + T46T66 + Ta6T61 + Ta6T60 + T46T59T60 + T46T53 + TaeTas + Ta6Ta7T76+
T46T47T74T75 + T46X47T66 + T46T47T62 + T46T47T61 + T46XL47L60L61 + Ta6T47T59T60 + Ta6Ta7T58+
T46T47T51 + T46X47T49T50 + T46T47T48 + Ta5T70 + Ta5T68T69 + Ta5T61 + Ta5L60 + Ta5T59T60+
T45T58T59 + T45L46L61 + T45T46L59T60 + Ta5T46T57 + L44X76 + T44T75 + T44X74%75 + T44T73T74+
T44T61 + T44T57%61 + T44T49 + T44X48 + Ta3 + Ta3%75 + T43T73T74 + T43%63 + T43T59T61 + T43T58+
X43T48 + T43T45 + T43T44X70 + T43X44T68T69 + Ta2 + L4261 + T42X43%57T61 + T41 + T41Te6T80+
T41X66T78L79 + T41T64T65L80 + T41T64L65L78L79 + La1X53T66 + Ta1X53T64T65 + L4078 + Ta0T76T77+
T40T61T78 + T40T61T76T77 + L4057 + T40T51 + T40T51T61 + T39T80 + T39X78T79 + T39X61 + T39T53+
T39041T80 + T39X41T78T79 + T39T41T53 + L3940 + T39X 40280 + T39T40L78T79 + T39X40T66 L850+
T39T40T66L78L79 + L39L40T64T65L80 + L39L40L64L65L78T79 + T39L40L53 + T39T40T53L661
T39T40T53T64L65 + T37T76T80 + T37L76XL78L79 + T37T74T75L80 + T37T74T75T 7879 + T37T53T76+
T37T53T74T75 + T37L49T80 + T37T49L78L79 + T37T49T53 + T37XL38T61 + T36T78T80 + T36T78T79+
T36T77T80 + T36XL77L78L79 + T36X76 + T36L76T77T80 + L36XL76L77L78L79 + T36XL75L76L80+
T36X75T76L78%79 + T36T74 + L36X74T75 + L36X72L73 + T36XL65L80 + T36L65L78T79 + L36X63 + T36Te21
T36T61 T T36XL59L60 + T36T59T60L62 + L36T59T60T61 T L36X58 + T36T53T78 + L36L53L77+
T36T53T76L77 + L36L53L75L76 + T36XL53L65 + T36T51 T L36XL51280 + T36T51L78%79 + T36T51T53+

T36T50T80 T L36L50L78L79 + T36XL50X53 + T36T49T50 + L36X48 + T36T47 + L36X47T48 + T36T46T47+

44 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

T35T79 + T35X77L78 + T35T65 + T35T61 + T35T59 + T35T59T60 + L3558 + T35L58T74 + T35L58L72L73+
T35T57L75 + T35L57L73T74 + T35X52 + T35T51 + T35XL51%61 + T35L51L59L60 + L35L49T50+
T35X49T50T61 + T35X49T50L59L60 + T35L48 + X35L48T57 + X35T47T58 + L35T46T47 + L3536+
T35T362L61 + L35L36L59L60 T T34 + T34L79 + T34X77 + T34X77T78 + T34XL76X79 + T34T76T77T78+
T34T75276 + L34L74L75L79 + T34X74L75L77L78 + T34X73 + L34X72 + T34T71XT72 + T34X70T71+
T34T65 + T34L65L76 + T34T65T74X75 + T34T62 + T34X60 + T34T60T74 + L34XL60L72L73 + T34T60L 61+
T34T58 + T34X58T74 + T34T58T72X73 + T34T58T59 + T34XL58L59L74 + T34T58TH9L72X73 + T34T57T75+
T34X57T73T74 + T34T57T65 + T34T57T60 + T34T57T58T59 + T34T52 + T34X52T76 + T34X52T74T75+
T34T51 + T34X51T62 + T34T51T60L61 + T34T50 + T34T49X79 + T34T49T77X78 + T34T49T65+
T34T49T52 + L34L49T50 + T34T49T50L62 + T34T49T50L60L61 + L34T48 + T34T48%57 + T34Tar+
T34T47T60 + L34L47T58 + T34T47L58%59 + T34T46 + T34XL46X47 + T34T45 + T34X45T46 + T34T36+
T34X362T62 + T34X36T60T61 + L34X35T76 + L34X35T74 + T34X35X74T75 + L34X35T72L73 + X34T35T63+
T34T35T60L61 + T34L35T59T60L62 + L34L35L59L60T61 T T34XL35L58 + T34T35T51 + L34L35L49T50+
T34T35T48 + L34X35L47 + T34T35L47X48 + T34T35T46L47 + X33 + T33T74 + T33%72 + T33T72X73+
T33T70T71 + T33T61 + T33T61XT74 + T33T6e1T72L73 + T33%59 + T33T59T60 + L33L59L60T74+
T33T59T60L72X73 + T33T58 + T33X57T61 + T33T57T59T60 + T33T50 + T33T48T49 + T33Ta7+
T33T47T61 + T33T47T59T60 + L3345 + T33T34T74 + T33X34X72L73 + T33L34X57 + T33T34T47 + T32+
T32T74 + T32X72X73 + T32T60 + T32X57 + T32T57T61 + T32X47 + T31 + T31X73 + T31T71T72+
T31T67 + T31X65T66 + T31T57L61 + T31T46 + T31T40 + T31T32 + T30 + T30T61 + T30T57+
T30T57T61 + T30L31 + T20T61 + T20L30L73 + T20T30L71X72 + T29T30T67 + L29L30L65T66+
T29X30257 + T29X30T46 + T29L30L40 + T28L29X57 + T28L29X31T57 + T28X29XT30T57 + L2761+
T26T75 + T26XL73L74 + T26T63 + T26L62 + T26T59 + L26L48 + T24 + T24X76 + T24T75 + T24X74+
T24X74%75 + T24X73T74 + T24X 72273 + T24T61 + T24T59 + T24X59T60 + T24X59T60T62+
T24X59T60T61 + L2458 + T24X57T61 + T24Ta7 + T24T47T48 + T24T46Ta7 + T24T36 + T24X35+
T24X35T61 + T24X35T59T60 + L2434 + T24T34T62 + T24T34T60T61 + T24X34T35 + T23T76 + T23T75+
T23T74T75 + T23T73T74 + T23T66 + T23T61 + T23T60 + T23T58 + T23T58T59 + T23T49 + T23T48+
T23T33 + T22 + T22T58 + T22X51 + T22T49T50 + T22X48 + T22T46T47 + T22X36 + T22T34T35+
T22T24 + T21X76 + T21T74T75 + T21T66 + T21T62 + T21T61 + T21T60T61 + T21L59T60 + T21T58+
T21X51 + T21T49X50 + T21T47L48 + T21T36 + T21X35 + T21T34 + T21T34T35 + L2124 + T21X22+
T20T61 + T20T59T60 + T20T57 + L20234 + T18 + T18%70 + T18T68T69 + T18T43 + T17Ts57+
T17X57T61 + T16X57 + T15T16X57 + T14 + T14T66280 + T14T66X78T79 + T14X64T65L80+
T14T64T65T78%79 + T14T53T66 + L14X53L64L65 + T14T39X80 + T14T39T78T79 + L14X39T53+
T14%15T57 + T11%61 + T11T58T61 + T11T57T61 + T11T24T61 + T10 + T10T61 + T9 + ToT77 + ToT76+
T9X75 + T9X75X76 + T9X74 + T9X74X75 + T9X73L74 + T9X72L73 + T9T68 + T9T66 + T9Te6 L7+
T9xe1 + T9T59T60 + T9T59L60L62 + TIT59T60L61 + T9T58 + T9T57 + T9T50 + T9Ta7 + T9Xa7Tag+
T9T46T47 + T9T41 + T9x36 + T9x35 + T9X35T61 + T9TL35L59L60 + T9L34 + T9L34T62 + T9L34T60T61+
T9x34%35 + Tox32 + Tox22 + Tox21 + T8 + X7 + X7Ts7 + T6Ts7 + T5Te + T5T6Ts57 + TaT73+
T4T71T72 + Xale7 + TaLes5T66 + TaTa6 + TaTa0 + TaT30T57 + TaT28X20T57 + T3T57 + T3T31T57+

T3X29L30L57 + TIL4T 57

Modeling for Three-Subset Division Property without Unknown Subset

Table 11. Detailed results for superpoly against 840-round TRIVIUM.

[parity[J[u][(@[v)*/t: |

parity [T[] @)/t]

‘parity

Tl (@llv)*/t

[parity[J[u]] (@[v)*/t: |

1

OCOHOO0OOOHRHOFOOO RO - H H

OO OO OO R O OO0 O —

117
7
21
7
16
7
62
24
22
19
62
3
3
26

[CERCS

)
= B
St
=R

Do 0w e

—
00 1 = =
—

T80
79
T79T80
78
T78T79
T77
TT7TTS
T76
TT6T7T
TT5T76
TT5L76T78
TT5L76 7T
T74
T74L75

T69TT79
TEOTTTLTS
T69T70
T6s
T68T80
T68TT79TR0
T68TT8LT9
T68T69
T67
T67T68
T6TT68LTT9
T67T68TTTLTS
T66
T66T67
T66T67T80
T66T67T79T80
T66T67L78TTY
T65
T65T66
Tea
L6479

TeAL7TTTS
T64T66

1

HOOOOOO0OOOO0OOOOOOOOOO

COHO0OO0O00OHR—RHROOOOOR,KFEODOOO

9
30
42
38
14

704

[L VL

el Cl Cl

¥
3

NN ONNNNN

T63T64
T62
T62T63
T61
T61T62
60
T60T77
T60T75T76
T60TT74
T60TT72T73
T60TT1
T60T69T70

T60T63
T60T62

T59T69L70
T59T63
T59T63T71
T59T63L69T70
T57
T57T58
T55
T54
T54T76
T54T74%75
T54T68
T54T66L67
T54T65
T54T63T64
T53
T53T76
T53T74L75
T53T68
T53T66L67
T52
T52T76
T52L74275

L5269
T52T67T68

0

OO0 OHOHFHOOORFHRFROO

OO OO HMHMEBERB)RFOO0OO0OOoOF,ROOOOO

NN N 00 Ut

Jun
-

I I R e

T52T53T65
T52T53T63T64
T51
T51T77
T51T75L76
T51T52
T51T52T76
T51T52T74T75
T50
T50T78
T50T76L77
T50T60
T50T51
T50L51L76
T50L51L74T75

T49T51T52
T49T50T51
Ta7
T47T60
T47T59
T4
T44T63
T44T60
T44T59
T44T59T63
T43
T2
T42T79
T42XT77T78
T42T52
Ta1
T41T80
T41T79T80
T41T78T79
T41T54
T41X53
T41T42
ZTao
39
T39276
T39T74L75

1

OHOO0OO0OO0OOHOOOOOR OO~

CO0OO0O00O000O0OO0OOHOOOOOOHOOOO

1

Lo V]

'S
%)

— —
LN VI CRl VI U CR N SN NI

w
1=

T39T64
T39T49
T38
T38T54
T38T52753
T37
T37T38
T37T38T76
X37T38LT4LTS5
T37T38T49
T36
T35

32
31732
T31T32277
T31T32275T76
T31T32%50
T2s
T28T60
T28T59
T27
T27T76
T27T74X75
T27T65
T27T63T64
T27T49
T27T38
T26
T26T76
T26L74T75
L2649
T25
T25T76
T25L74275

T25T32

T24

parity[J[u]] (2[v)*/t:]
0 8 T22
0 2 L2279
0 2 T22T77X78
1 1 T22T66
1 1 T22X64T65
0 2 T22T52
1 1 T22T39
0 8 T20T21
0 2 T20T21T79
0 2 20221277278
1 1
1 1
0 2
1 1 T20T21T39
0 2 T16
0 28 T1s
1 85 Ti2
0 2 T12276
0 2 | Z12274%75
0 8 T12271
0 8 | i2me9m70
0 16 T12260
0 48 T12T59
0 8 | Ti2ws9mT1
0 8 |Z12T59T69T70
0 2 T1249
0 8 T12T44
0 8 | T12T4aT59
0 8 Ts
1 1 TST78
1 1 TST7T
1 1 TRLT6TTT
1 1 TRTT5T76
1 1 T8T55
1 1 T8T51
1 1 TIT50
0 |24 6
0 8 TeT7T
0 8 T6T75T76
0 8
0 8
1 1
1 1
1 1

45

46 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 12. Detailed results for superpoly against 841-round TRIVIUM.

[parity| J[u] [(z[v)*/t: | [parity[J[u][(z[v)*/tr] [parity[J[u][(z[[v)*/tr] [parity[J[u][(x[[v)*/t: |
0 17820 0 2 T63T66L6T 1 1 T51T74 0 2 T41T53
0 6 T80 0 4 T63T64 1 1 51173 0 2 T41T52
0 14 T79 0 2 L63L64T68 1 1 T51L72273 0 4 L41251
0 24 T79T80 0 2 |T63TeaTo6T6T 1 1| msiznizre 0 |12 T41T42
1 23 ZT78 0 216 T62 0 4 T51T68 0 16 T40
0 6 T78T79 0 2 T62T63 0 4 | z51766T67 0 4 Z38
0 134 ied 0 200 Te1 0 134 Z50 0 2 X38T68
0 16 T77X78 0 8 61270 0 2 T50T78 0 2 | w3sTe6ToT
1 505 76 0 8 T61T69 1 7 T50T76 0 2 T38T41
0 32 T76T77 0 8 | Te1TesToo 0 2 | xsoT76TTT 0 |16 T38T39
0 118 Z7s5 0 8 T61T67T6E8 1 7 IT50X74T75 0 2 xar
1 253 T75%76 1 19 T61T62 0 2 T50T59 1 19 36
0 2 T75T76T78 0 2 | Te1Te2Tes 0 2 T50T51 0 2 T36T68
0 2 ZT75T76 27T 0 2 |Te1T62T66T67 1 |523 Ta9 0 2 | z36Te6Ter
1 1 T4 0 542 60 1 7 T49T77 0 2 T36T41
1 617 X74T75 0 12 T60L66 0 112 L4975 0 118 I35
1 7 T74T75T77 0 8 T60T63 1 7 | xa9T75%76 0 32 T34
1 7 T74T75L76 0 |114 ZT60T61 0 | 112| za9w7374 0 |462 Z33
0 4 73 1 859 59 0 12 T49T50 0 8 T33T63
0 118 X73X74 0 2 T59T77 1 1 T49T50L74 0 20 I33T59
0 112 | z73T74776 0 2 | xseT75T76 1 1 | maoxsowrs 0 4 T33T34
0 112 T73L74X75 1 1 T59T72 1 1 T49T50L 7273 1 1 I32
0 120 72 1 1 I59T70L71 1 1 |za9xs0x71T72 0 12 32733
1 1 7273 0 36 T59T62 0 118 Z48 0 426 31
0 332 71 1 1 T59T61 0 112 T48T76 0 12 31259
O 4 T71X72 0 32 T59T60 0 112 T48X74T75 0 42 r31T57
0 28 70 1 |735 Ts58 0 2 T48T58 0 48 T31T56
0 120 ZT70T71 1 1 I58TR0 0 112 T48T49 1 1 T30T31
0 116 T69 1 1 T58T78X79 1 1 Tat 0 74 ZT26
0 332 Te9T70 0 2 I58T75 1 1 Ta7T51 0 24 T26T66
1 115 68 0 2 T58X73T74 1 1 T47X49T50 0 18 X255
0 2 68T 80 1 1 IT58T66 0 6 TA7T48 1 15 ZT24
0 2 Te8T79 1 505 I58T59 0 4 Ta6 1 1 XT24X74
0 4 Te8T78 0 8 | T58%59T63 1 1 T46T51 1 1 T24%73
0 2 T68TT8LTY 0 1200 xs57 1 1 | z46Ta9ws0 1 1 | @oawroxrs
0 2 Te8T77XT78 0 54 IT57T58 0 136 T45 1 1 T24T71X72
0 4 T68L76LTT 0 382 T56 1 1 T45T59 1 1 X247
0 36 Te8T69 0 24 T56T69 0 332 a4 1 1 24T 46
1 21 Te7 0 72 T56T58 0 50 a3 0 4 T24T25
0 8 Te7T68s 0 536 T56T57 0 8 T43T61 0 6 22
0 510 Z66 0 12 IT56X57TL59 0 6 L43T44 0 10 Z19
0 52 T66TL67 0 4 Ts55 0 8 T42 0 6 18
0 2 Te6T67L80 0 2 T55T58 0 8 T42T61 0 10 17718
0 2 Te6T67LTY 0 24 T54 0 52 T41 0 12 T16
0 4 Te6T67T78 0 6 T53 0 2 T41T80 0 18 13
0 2 |xe6Te7TT8TTY 0 2 T53T68 0 2 T41%79 0 12 T12
0 2 |Te6TeTTTTLTS 0 2 | xs3TecTer 0 4 41278 0 |48 11
0 4 |wesTorTTOTTT 1 1 T53T58 0 2 | za1Z78%79 0 16 Z11%66
0 4 Tes5 0 14 T52 0 2 T41T77T78 0 8 10
0 2 Te5T68 0 2 T52T68 0 4 T41T76T77 1 1 Tg
0 2 T65T66L67 0 2 | xs2Te6Te67 0 2 T41T65 0 4 T8
0 2 Tea 0 28 Ts51 0 2 T41T63 0 26 xT7
1 43 63 0 2 T51T77 0 2 T41T63T64 1 1 x5
0 2 L63L68 0 2 T51X75276 0 2 T41261T62 0 8 1

Modeling for Three-Subset Division Property without Unknown Subset

47

F Model for Modified Three-Subset Division Property for Components

of Grain-128AEAD

Algorithm 8 MILP model for XOR and AND in Grain-128AEAD

1: procedure AND(M, by, ...,bis7,S0,...,8127, [, J)

N

10:
11:
12:
13:
14:

M.var + bi,x; for all i € I as binary
M.var < si,y; for all j € J as binary
M.var < z as binary
M.con < b; =b, Vx; foralliel
M.con < s; =s)Vyjforall jeJ
M.con < z=x; foralliel
M.con <z =y; forall jeJ
for all i € {0,1,...,127}\ I do

bl =b;
end for
for all j € {0,1,...,127}\ J do

sl =s;
end for
return (M, by, ..., blsy, 80, ..., S, Z)

: end procedure
: procedure XOR(M,bo, . 7b127, S0y ...y 5127,I7 J)

M.var <+ b}, x; for all i € I as binary
Muwar < sj,y; for all j € J as binary
M.var < z as binary
M.con < b; =b, Vx; foralliel
M.con < s; =sjVy;forall jeJ
Meonz=737 %+ ;7
for all i € {0,1,...,127}\ I do

b} =b;
end for
for all j € {0,1,...,127}\ J do

S/i = Sj
end for
return (M, by, ..., bls, 80, .., Sio7,2)

15: end procedure

48 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 9 MILP model for NFSR and LFSR in Grain-128AEAD

1: procedure funcZ(M, b, ..., b7, So, ..., S127)
(./\/‘7b07 e 7b127, S0, ...,5127, a1) AND(M,bo, N ,b127, S0y ..., 8127, {12}, {8})
(M,bo, ...,b127,80,..., 8127, a2) AND(M,bo, ...,b127,80,..., 8127, ¢, {137 20})
(M,bo, P ,b127, S0, ..., 8127, a;;) = AI\I]:)(./\/I71)()7 e 7b127, S0, ..., S127, {95}, {42})
(./\/‘7b07 e 7b127, S0, ...,5127, a4) AND(M,bo, N ,b127, S0y ..., 8127, (}5, {607 79})
(M,bo,...,b127,So,...7S127,a5) A (M,bo,...,b127,So,...,5127,{12,95},{94})
(M,bo, ..., b127, ¢, X1) = XOR(M,bo, ..., b127, @7 {2, 157 36,45, 6‘.‘:7 73, 89}, ¢)
(M, (]57 S0,y ...,5127, XQ) = XOR(M, (]5, S0, ...,5127, ¢, {93})
M.var < z as binary
M.con <z =x1 + %o + Zizl a;
return (./\/171)07 e ,b127, S0, ...,5127, Z)
: end procedure
procedure funcF(M, s)

(M, ¢, s0,...,8127,) = XOR(M, ¢, s0, . . ., S127, ¢, {0, 7,38,70,81,96})

return (M, S0, ..., 8127, f)
end procedure
procedure funcG(M, b)

—_ =

12: (M,bo,...,b127,¢,x) = XOR(M,bo,..
13: M.var < g as binary

14: M.con < g=x+>:% a;

15: return (M, bo,...,bis7,g)

16: end procedure

(M,bo,.“,b127,(]§, ag) = AND(M,bo,..
11: (M,bo,...,b127,q§,a10) = AND(M7bQ7

(M, bo,...,bia7,$,a1) = AND(M, bo, ..., bia7,¢,{3,67},)
(M,bo, ... ,bia7,,a2) = AND(M, bo, ..., bio7,0,{11,13}, @)
(M,bo, e 7b127,(25, a3) = AND(./\/t,bo7 .. ,1)1277@57{177 18}7(Z5)

(M, Dbo,...,biar, $,as) = AND(M, b, ..., bio7, ¢, {27,59}, ¢)
(M,bo, . ,b127,¢, a5) = AND(M,bo, .. ,})127,¢7 {40,48},¢)
(M,bo, e 710;127,(]5, ae) = AND(./\/t,bo7 . ,b1277¢7{61,65}7¢)
(M,bo,...,bis7, P, a7) = AND(M, by, ..., bio7, P, {68,84}, P)
(M,bo, . ,b127,¢, ag) = AND(M,bo, .. ,b127,¢,{88,92,93,95},¢)

., biar, ¢,{22,24, 25},)
., bio7, 0, {70, 78,82}, ¢)

-, b2, ¢’ {Oa 26a 567 917 96}3 ¢)

Modeling for Three-Subset Division Property without Unknown Subset 49

G Model for Modified Three-Subset Division Property for Components

of ACORN

Algorithm 10 MILP model for ACORN updating function

1: procedure update(M, s,m)

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

(M,U) «+ xorFB(M, T, 230,196, 193)
M, V) + xorFB(M, U, 193,160, 154)
M, W) « xorFB(M, V154,111, 107)
M, X) + xorFB(M, W 107,66, 61)
M,Y) + xorFB(M, X, 61,23,0)

M, Z ks) + ksgl128(M,Y)

(M, A, f) + £bk128(M, Z, ks)
M.var < 0292 as binary

M.con < 0292 = ks+ f+m
Construct the rest of the vector o as 0; + A;41 for i € {0,
return (M, o).

: end procedure

: procedure genM(M, x,v,r)

M.var < a,b as binary
if r < 128 then
M.con 4z, =aVb
Update & by replacing the rth entry: x[r] < a
return (M, z,v,b).
else if 128 < r < 256 then
M.con <+ v, =aVb

...,291}

Update v by replacing the (r — 128)-th entry: v[r — 128] + a

return (M, z,v,b).
else
M.con < 2, mod 128 =aVb

Update « by replacing the (r mod 128)-th entry: [r mod 128] < a

if 128|r then
M.var < m, c as binary
Mowar <~ m=b+c
return (M, z,v,m).
else
return (M, x,v,b).
end if
end if

22: end procedure

> ¢ corresponds to constant 1

50 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Algorithm 11 Modeling the COPY+AND ((a,b) — (a,b,ab)) and COPY+XOR ((a,b) — (a,b,a+
b)) operations

1: procedure copy_and(M,a,b)
2: M.var < ag, a1, bo, b1, c as binary.
M.con < a=apV al
M.con < b=10by Vb
M.con < c = ag
M.con < c=by
return (M, a1,b1,c)
end procedure

: procedure copy_xor(M,a,b)
M.var < ao, a1, bo, b1, c as binary.
M.con < a=apV ar
M.con < b=10by Vb
M.con < ¢ =ag + bo
return (M, a1, b1,0)
end procedure

Algorithm 12 MILP model for maj and ch in ACORN

1: procedure maj(M, X, 1,7, k)
2: (M, A;, Aj,00) < copy-and(M, X;, X;)
(M,Y;, A, 01) + copy-and(M, A;, Xi)
(M,Y;, Yy, 00) < copy-and(M, A;, A)
M.var < o as binary
M.con < o0=o0¢ + 01 + 02
Construct the rest part of Y as Ys = X, for s € {0,...,292}\{3, j, k}
return (M,Y,0)
end procedure

: procedure ch(M, X 1,7, k)
: (M,Ai,}/j,OO) — copy,and(./\/l,X,-,Xj)
(M,Y;, Ak, 01) < copy-and(M, A
M.var < Y, Bi, o as binary
M.con < Ax = Yy V By
M.con < o= 0g + 01 + By,
Construct the rest part of Y as Y, = X, for s € {0,...,292}\{4,j, k}
return (M, Y, 0)
end procedure

Algorithm 13 MILP model for LFSR in ACORN

1: procedure xorFB(M, X i, j, k)
2: (M, Y}, Yk, 00) < copy-xor(M, X, X)
M.var < Y, as binary
M.con < Y; =09 + X;
Construct the rest of Y as Y; = X, for all s € {0,...,292} — {4, 5, k}
return (M,Y)
end procedure

Modeling for Three-Subset Division Property without Unknown Subset 51

Algorithm 14 MILP model for ksg128 and £bk128 in ACORN

1: procedure ksg128(M, X)
2: (M, A,) + maj(M, X,235,61,193)
(M, B,x1) < ch(M, A,230,111, 66)
M.var < Yia,x2, Y154, X3, 2 are binary
M.con < Bi2 = Y12 V 22
M.con < Biss = Y154 V 13
M.con < z=x0+ x1 + T2 + T3
Construct the rest of Y as Y, = B; for all s € {0,...,292}\{12, 154}
return (M,Y, z)
end procedure
: procedure fbk128(M, X, ks)
(M, A, zo) + maj(M, X, 244,23,160)
M.ovar T1,T2,Ts, Yo, Y107, Y196, 2 as binary
M.con < Ag =21 VY
M.con < Aio7 = x2 V Yior
M.con < Ai96 = 3 V Y196
Construct the rest of Y as Yy = A, for s € {0,...,292}\{0, 107,196}
M.var < o as binary > Represent a constant 1 bit
M.con—z=o0+ks+xz9+ 21 +22 + 23
10: return (M,Y,z)
11: end procedure

—_

52 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

H Detailed Result for Cube Attacks against ACORN

Table 13. Detailed result for superpoly for 773-round ACORN.

lparitle[uH(mHv)“/tI‘ lparityIJ[u][(mHv)“/tII lparitle[uH(mHv)“/tI‘

0 (1154 1 1 379 T36 0 18 o,
1 185 X749 1 185 Z70 1 9 Zia7
0 194 10 1 185 48 0 18 T1s
1 221 19 1 379 X35 0 18 Tse
0 194 T53 0 194 T40 0 54 o
1 397 14 1 185 37 1 9 T26
1 185 74 1 185 T41 1 9 Tos
1 221 T16 0 194 x73 1 9 Toa
1 379 X3 0 194 15 1 9 T6o
0 194 Tes 0 194 T7 1 9 1o
0 194 To 1 421 T 1 9 o1
1 185 X33 0 194 X6 1 9 Ts4
1 185 11 1 185 T4 0 18 T17
0 194 5 1 203 T20 1 9 30
1 227 T34 1 11 25 0 18 T5s
0 |412 o 1 9 T27T69 1 9 Tos
1 185 X107 1 9 L1527 1 9 Zoo
0 194 39 1 9 X10T27 1 9 Tso
1 185 xrs 1 9 a7 1 9 To3
0 194 31 1 9 88 1 9 on
0 218 29 0 18 21 1 9 T51
1 (1137 T2 1 9 T12

Modeling for Three-Subset Division Property without Unknown Subset

Table 14. Detailed result for superpoly for 774-round ACORN.

[parity [T[] [(@][0)" /7]

[parity [Tful] @[[w)" /1]

0

= R R R RO R OO R RO RO e

1004

18

[\V] w — W
OO JO OOV FHFTO L HOOOOOLOOLOOOO©o

1
XT8I50
T10T52
x108
T14T56
X74
x20
Z11
T54
XT2X14
T13T55
X113
x14%35
214789
T10X89
14730
T13T35
14798
13789
T10T30
10235
Z10
Z7s5
T47X89
x36
214739
X14%44
T1X14
T35%47
x13
T8I89
T8s

1

—H R R R R R R OO0 O0ORRFEEREEFORFROORORMFERFREFEOROR -

9
9
9
36
9
36
27
9
9
27
18
27
36
90
63
18
45

ot
=

O © © O © © © O

13130
L3047
93
T1e6
T8I35
39
T34
Z110
T8T30

T44

lparitle[uH(m””)u/tI‘

1

= R R, OO R R R EFORRFRORRRREEHEREREFRFOOORRERMEEFEO

w ~ i
vcooRooJgowoooooo

27
18
18

© © ©

T45
X43
x18
23
Z60
X80
Z12
€37
X40
T49
71
X7
Te6
X26
x25
x79
x30
x2
T114
19
xri7
x50
T59
113

Tre
T14
x73
T51
T56

53

54 Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang

Table 15. Detailed result for superpoly for 775-round ACORN.

lparity‘ J[u] ‘(:z:||'v)“/t1‘ lparity‘ J[u] ‘(:1:||v)“/t1‘
1 [621549] 1 T [1701| ziewor [parity] J[u] [(2[[v)*/t1]
1 1701 X122 1 1701 X16T58 0 14820 43
1 2003 121 1 1701 L1643 0 302 X42T54
1 1701 X118 1 1701 L1638 0 1246 41
1 1701 X116 1 13805 15 0 468 39
1 1865 T106 1 (12329 T14 0 302 | x37Ts4
1 1701 X101 1 22335 10 0 1744 T36
1 3513 96 1 1701 X10T22 0 1410 32
1 2643 xg9 1 16355 T9 0 4638 Z28
1 2343 s 1 1701 X922 0 8216 Z25
1 2003 X7 1 2003 X921 0 942 X23T65
1 1701 85 1 1865 Te48 0 26692 o2
1 2305 g2 1 1701 TeI22 0 22256 21
1 2003 rs81 1 1701 L2248 0 302 21,105
1 1701 X79 1 1701 Tel18 0 302 2196
1 1701 Wirdrd 1 1701 T5X22 0 302 T21T51
1 1703 68 1 2003 X421 0 302 2147
1 2167 Xe7 1 1701 T4T16 0 302 T21%46
1 1703 60 1 5701 i) 0 302 2142
1 2167 59 1 1701 X1X97 0 302 X21X37
1 3247 Is57 1 1701 T1T38 0 7894 20
1 2945 T56 1 1701 r1x18 0 302 2096
1 10115 55 1 1701 XoX55 0 302 2062
1 1701 I55T97 1 1701 ToT22 0 302 T20T42
1 3249 54 1 1701 Xox21 0 302 X20X37
1 2945 53 1 1701 XoX18 0 7778 x19
1 5871 T48 1 1701 ToT16 0 302 T17T96
1 10855 a7 1 1701 o1 0 302 X17XT59
1 1701 T43T55 0 942 I123 0 302 L1742
1 8191 42 0 302 120 0 302 T17X37
1 2201 T40 0 302 X117 0 29544 T16
1 12073 38 0 302 115 0 302 | 15796
1 1701 I38T55 0 304 X105 0 302 1557
1 4153 xr37 0 302 100 0 302 X15T42
1 2973 35 0 10206 XoT7 0 302 L1537
1 2675 T34 0 302 Zos 0 21770 13
1 2171 33 0 942 90 0 15836 12
1 2645 31 O 1244 86 0 21814 11
1 7617 T30 0 4646 X84 0 942 T11X23
1 6853 T29 0 4342 83 0 |15480 s
1 3751 Xo7 0 302 T80 0 302 821
1 3283 T26 0 302 x78 0 302 820
1 9637 T24 0 302 T76 0 (10656 T7
1 10083 23 0 164 73 0 |11580 6
1 1701 22106 O 166 X2 0 942 X623
1 1701 X22X97 0 2 71 0 17098 x5
1 1701 22T 64 0 1106 69 0 304 547
1 1701 T22X52 0 304 Te6 0 302 T5T21
1 1701 X22X48 0 942 65 0 302 T5X21T47
1 1701 X22X47 O 4344 T64 0 302 517
1 1701 X22X43 0 4170 Z63 0 14668 T4
1 1701 X22X38 0 4008 62 0 11768 X3
1 1701 2197 0 768 61 0 302 3T20
1 2003 | z21763 0 |3706 58 0 302 T3T15
1 1701 2143 0 302 L5496 0 17552 X1
1 1701 2138 O 5752 52 0 3402 X1X43
1 25965 T18 0 6232 T51 0 (17242 To
1 1701 X18XT97 0 12450 50 0 302 ToT9e
1 1701 1860 0 6832 X49 0 604 o422
1 1701 r18%43 0 5250 Ta6 0 302 XoI37
1 1701 X18T38 0 5624 45 0 302 ToT17
1 18219 Ti7 0 7744 T44

	Modeling for Three-Subset Division Propertywithout Unknown Subset
	Introduction
	Division Property.
	Cube Attack.
	Motivation.
	Our Contribution.

	Differences between This Paper and Its Conference Version EC:HLMTW20

	Brief Introduction of Division Property
	Conventional Division Property
	Three-Subset Division Property
	Propagation Rules for Division Property
	Various Algorithms to Evaluate Propagation of Division Property and Three-Subset Division Property
	Breadth-First Search Algorithm.
	MILP Modeling for Conventional Division Property.
	MILP Modeling for Variant Three-Subset Division Property.
	Pruning Technique for Three-Subset Division Property.

	Cube Attack and Division Property
	Cube Attack
	Division Property and Cube Attack
	Three-Subset Division Property and Cube Attack

	Three-Subset Division Property w/o Unknown Subset
	Motivation and Limitation of Pruning Technique
	Three-Subset Division Property without Unknown Subset
	Unknown-Producing Property.
	Cancellation Property.

	New Modeling Method
	Algorithm to Recover ANF Coefficients of Public Function

	Improved Cube Attacks against Trivium
	Specification of Trivium and Its MILP Model
	MILP Model.

	Practical Verification
	Cube Attacks against 840-round, 841-round and 842-round Trivium
	Superpoly of 840-Round Trivium.
	Superpoly of 841-Round Trivium.
	Superpoly of 842-Round Trivium.

	Verification of the 855-Round Attack from CRYPTO 2018C:FWDM18
	MILP Model to Verify 855-Round Attack.

	Improved Cube Attacks against Grain-128AEAD
	Specification of Grain-128AEAD and Its MILP Model
	MILP Model.

	Verification of the 184-Round Attack from C:WHTLIM18
	Additional Constraints and Superpoly for 190 Rounds
	Superpoly from 185 to 189 rounds.
	Superpoly for 190 rounds.

	Towards Efficient Key-Recovery Attacks

	Improved Cube Attacks against ACORN
	Specification of ACORN and Its MILP Model
	MILP Model.

	Verification of the 772-Round Attack from ISC:YanLiuLin19
	Cube Attacks on 773-, 774- and 775-Round ACORN
	Superpoly of 773-round ACORN.
	Superpoly of 774-round ACORN.
	Superpoly of 775-round ACORN.

	Improved Cube Attacks against Kreyvium
	Specification of Kreyvium and Its MILP Model
	MILP Model.

	Verified and Improved Key-Recovery Attack on 892-Round Kreyvium
	New Key-Recovery Attack on 893-Round Kreyvium

	Conclusion
	On Source Code
	Code for Superpoly Recovery on Trivium and Grain-128AEAD
	Code for Verification of Statement1

	Proof of Propagation of Modified Three-Subset Division Property
	Proof of Rule1' (copy)
	Proof of Rule2' (and)
	Proof of Rule3' (xor)

	Another View of the Three-Subset Division Property without Unknown Subset
	The Practical Verification using Parameters from Fu et al.'s Refinements incryptoeprint:2018:999
	Detailed Result for Cube Attacks against Trivium
	Model for Modified Three-Subset Division Property for Components of Grain-128AEAD
	Model for Modified Three-Subset Division Property for Components of ACORN
	Detailed Result for Cube Attacks against ACORN

