
https://doi.org/10.1007/s00145-023-09471-5
J Cryptol (2023)36:27

Research Article

Candidate iO from Homomorphic Encryption Schemes∗

Zvika Brakerski
Weizmann Institute of Science, Rehovot, Israel

Nico Döttling
CISPA Helmoltz Center for Information Security, Saarbrücken, Germany

Sanjam Garg
University of California, Berkeley, Berkeley, USA

Giulio Malavolta
Max Planck Institute for Security and Privacy, Bochum, Germany

giulio.malavolta@hotmail.it

Communicated by Alon Rosen

Received 4 January 2021 / Revised 10 May 2023 / Accepted 10 May 2023
Online publication 8 June 2023

Abstract. We propose a new approach to construct general-purpose indistinguisha-
bility obfuscation (iO). Our construction is obtained via a new intermediate primitive
that we call split fully homomorphic encryption (split FHE), which we show to be suf-
ficient for constructing iO. Specifically, split FHE is FHE where decryption takes the
following two-step syntactic form: (i) a secret decryption step that uses the secret key
and produces a hint which is (asymptotically) shorter than the length of the encrypted
message, and (ii) a public decryption step that only requires the ciphertext and the previ-
ously generated hint (and not the entire secret key) and recovers the encrypted message.
In terms of security, the hints for a set of ciphertexts should not allow one to violate
semantic security for any other ciphertexts. Next, we show a generic candidate con-
struction of split FHE based on three building blocks: (i) A standard FHE scheme with
linear decrypt-and-multiply (which can be instantiated with essentially all LWE-based
constructions), (ii) a linearly homomorphic encryption scheme with short decryption
hints (such as the Damgård-Jurik encryption scheme, based on the DCR problem), and
(iii) a cryptographic hash function (which can be based on a variety of standard as-
sumptions). Our approach is heuristic in the sense that our construction is not provably
secure and makes implicit assumptions about the interplay between these underlying
primitives. We show evidence that this construction is secure by providing an argument
in an appropriately defined oracle model. We view our construction as a big departure
from the state-of-the-art constructions, and it is in fact quite simple.

Keywords. Cryptography, Foundations, Obfuscation, Homomorphic encryption.

∗This paper was reviewed by Christian Matt and Aayush Jain.

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09471-5&domain=pdf

27 Page 2 of 41 Z. Brakerski et al.

1. Introduction

The goal of program obfuscation is to transform an arbitrary circuit C into an unintelli-
gible but functionally equivalent circuit C̃ . The notion of program obfuscation was first
studied by Hada [41] and Barak et al. [10]. However, these works showed that natural
notions of obfuscation are impossible to realize for general functionalities. Specifically,
Barak et al. [10] defined a very natural notion of security for program obfuscation called
virtual black-box (VBB) security, which requires that an obfuscated program does not
reveal anything beyond what could be learned from just the input–output behavior of the
original program. In the same work, they showed that this notion of program obfuscation
is impossible to achieve for arbitrary circuits.

In light of this impossibility result, much of the work on obfuscation focused on
realizing obfuscation for special functionalities. However, this changed with the work
of Garg et al. [30] that proposed the first candidate indistinguishability obfuscation
(iO) construction based on multilinear maps [28]. Furthermore, Garg et al. [30] showed
powerful applications of iO to tasks such as functional encryption. Loosely speaking, iO
requires that the obfuscations of two circuits C0 and C1 that have identical input-output
behavior are computationally indistinguishable. Subsequently, significant work on using
program obfuscation (e.g., [16,29,62]) has shown that most cryptographic applications
of interest can be realized using iO (and one-way functions), or that iO is virtually
crypto-complete.

Given its importance, significant effort has been poured into realizing secure obfus-
cation candidates. The first approach to obfuscation relied on using new candidate con-
structions of multilinear maps [23,28,35], an algebraic object that significantly expands
the structure available for cryptographic constructions. Unfortunately, all multilinear
map constructions so far have relied on ad-hoc and new computational intractability as-
sumptions. Furthermore, attacks [22,43] on the multilinear map candidates and attacks
[21,58] on several of the multilinear map based iO constructions [9,19,30] were later
found. In light of these attacks, follow up works (e.g., [31]) offered constructions that
defended against these attacks by giving constructions in the so-called weak multilinear
map model [58]. Several of these weak multilinear map model-based iO constructions are
still conjectured to be secure; however, the break-and-repair cycle of their development
has left cryptographers wary, and rightly so.

Around the time when attacks on multilinear map candidates were at an all-time high,
cryptographers started exploring new approaches to iO without using multilinear maps
(or reducing their usage). Toward this goal, Bitansky and Vaikunthanathan [15] and
Ananth and Jain [4] showed that iO could be realized assuming just functional encryp-
tion. In another approach, instead of trying to remove multilinear maps completely, Lin
[48] and Lin and Vaikuntanathan [53] attempted to reduce their usage, i.e., they pro-
posed iO constructions using only constant degree multilinear maps. With the goal of
ultimately basing iO constructions on standard assumptions on bilinear maps, cryptog-
raphers started developing new ideas for realizing iO candidates from smaller constant
degree multilinear maps [5,49]. Recently, Lin and Tessaro [51] described a candidate iO
construction from degree-L multilinear maps for any L ≥ 2 and additionally assuming
PRGs with certain special locality properties. Unfortunately, it was shown the needed

Candidate iO from Homomorphic... Page 3 of 41 27

PRGs for the case of L = 2 are insecure [8,54].1 Thus, still leaving a gap between
bilinear maps and iO constructions which could now be based on trilinear maps [52].
Very recent works [1,3,45] (and cryptanalysis [12]) develop new ideas to resolve these
problems and realize constructions based on bilinear maps. However, these bilinear map-
based constructions, which are still conjectured to be secure, additionally rely on certain
pseudorandom objects with novel security properties. Finally, we note that all the other
(perhaps less popular) approaches to iO (e.g., [37]) also start from new computational
hardness assumptions.

Given the prior work, it is natural to wonder whether new sources of hardness are
necessary for realizing iO candidates. Making progress on this dilemma is the focus of
this work.

1.1. Our Results

We propose a new approach to construct general-purpose indistinguishability obfus-
cation. Our approach is heuristic but combines (in a non-standard way) well-known
cryptographic building blocks, whose stand-alone security is well-established. In other
words, our constructions use well-studied cryptographic primitives in a generic way to
realize obfuscation, while still being heuristic in the sense that our constructions are not
provably secure and make implicit assumptions about the interplay of the underlying
primitives. The primitives we use can themselves be securely realized based on standard
assumptions, namely the hardness of the learning with errors (LWE) and the decisional
composite residues (DCR) problem. At a high level, our heuristics are similar in flavor
to (i) the random oracle heuristic that is often used in cryptographic constructions [13]
and (ii) the circular security heuristic that has been widely used in the construction of
fully homomorphic encryption schemes (FHE) [34].
Split-FHE The starting point of our work is the fact that iO can provably be based
on split FHE, a new primitive that we introduce in this work. A split FHE is an FHE
scheme that allows for certain special properties of the decryption algorithm. Specifically,
we consider FHE schemes for which the decryption algorithm can be split into two
subroutines:

• ρ ← PDec(sk, c) : A private procedure that takes the FHE secret key and a
ciphertext as input and produces a decryption hint ρ, of size much smaller than the
message encrypted in c.

• m ← Rec(ρ, c) : A public procedure that takes as input the decryption hint ρ

(generated by PDec) and the ciphertext c and recovers the full plaintext.

The security for a split FHE scheme requires that, for all pairs of messages (m0,m1) and
all circuits C such that C(m0) = C(m1), the encryption of m0 is computationally indis-
tinguishable from the encryption of m1, even given the decryption hint for the ciphertext
evaluated on C . We show that split FHE alone suffices to construct exponentially effi-
cient iO [50], which in turn allows us to build fully fledged iO. Concretely, we prove the
following theorem.

1More accurately, it was shown that such PRGs cannot exists, except for a narrow parameter regime, which
is not clear how to leverage to build iO.

27 Page 4 of 41 Z. Brakerski et al.

Theorem 1.1. (Informal) Assuming sub-exponentially hard LWE and the existence of
sub-exponentially secure split FHE, there exists indistinguishability obfuscation for all
polynomial-size circuits.
AGeneric CandidateNext, we show a generic candidate construction of split FHE based
on three building blocks: (i) a standard FHE scheme with linear decrypt-and-multiply
(which can be instantiated with essentially all LWE-based constructions), (ii) a linearly
homomorphic encryption scheme with short decryption hints (such as the Damgård-
Jurik encryption scheme [24], based on the DCR problem), and (iii) a cryptographic hash
functions. The security of the scheme can be based on a new conjecture on the interplay
of these primitives, which we view as a natural strengthening of circular security. In this
sense, it is aligned with Gentry’s heuristic step in the FHE bootstrapping theorem [34].
Additionally, our use of the cryptographic hash function has similarities to the other
heuristic uses of hash functions, e.g., in the Fiat-Shamir transformation [27].

We expect that there will exist instantiations of the underlying primitives (though
contrived) for which this construction is insecure. For example, if the underlying schemes
are not circular secure to begin with, then the resulting split FHE would also be insecure.
However, for natural instantiations of these primitives, security can be conjectured.
Evidence of Security In order to build confidence in our construction, we show evidence
that the above-mentioned conjecture on the interplay between the security holds in an
appropriate oracle model, inspired by the random oracle model, thus pushing all the
heuristic aspects of the construction to an oracle. In fact, we show that security can be
proved in this oracle model.

An alternate way to think of this result is that we construct split FHE based on an
obfuscation for a specific program (representing the oracle), for which we can offer a
relatively simple and natural heuristic implementation.
Conceptual Simplicity Another positive feature of our construction is its conceptual
simplicity, which makes it much easier to analyze and thus have confidence in. Finally, we
remark that our construction is a big departure from the previously mentioned multilinear
maps based and local PRG-based iO constructions and will be accessible to readers
without first understanding prior iO constructions.

1.2. Technical Overview

In the following we give an informal overview of the techniques we develop in this work
and we refer the reader to the technical sections for more precise statements.

1.2.1. Chimeric FHE

Our starting point is the hybrid FHE scheme recently introduced by Brakerski et al.
[17], which we recall in the following. The objective of their work is to build an FHE
scheme with best possible rate (in an asymptotic sense) by leveraging the fact that most
LWE-based FHE schemes admit an efficient linear noisy decryption. Specifically, given
an FHE ciphertext c and an LWE secret key (s1, . . . , sn) one can rewrite the decryption

Candidate iO from Homomorphic... Page 5 of 41 27

operation as a linear function Lc(·) such that

Lc(s1, . . . , sn) = ECC(m) + e

where e is a B-bounded noise term and ECC is some encoding of the plaintext (in their
scheme m is packed in the high-order bits so that it does not interfere with the noise
term). The idea then is to encrypt the secret key (s1, . . . , sn) under a (high-rate) linearly
homomorphic encryption (LHE) scheme, which allows one to compress evaluated FHE
ciphertexts by computing Lc(·) homomorphically.

One interesting property of this approach is that it is completely parametric in the
choice of the schemes, as long as they satisfy some simple structural requirements:
More concretely, one can use any LHE scheme as long as its plaintext domain matches
the LWE modulus of the FHE scheme. As an example, one can set the LHE to be the
Damgård-Jurik encryption scheme [24,59], which we briefly recall in the following. The
public key of the scheme consists of a large composite N = pq and an integer ζ , and
the encryption algorithm for a message m computes

c = ρN ζ · (1 + N)m mod N ζ+1

for some uniform ρ ←$ZN . Note that the corresponding plaintext space is ZN ζ and
therefore the rate of the scheme approaches 1 as ζ grows. Furthermore, we observe that
the scheme has one additional property that we refer to as split decryption. A scheme
has split decryption if the decryption algorithm can be divided into a private and a public
subroutine:

• The private procedure takes as input a ciphertext c and the secret key φ(N) and
computes a decryption hint

ρ = cN
−ζ

mod N

using the extended Euclidean algorithm. It is crucial to observe that ρ ∈ ZN is
potentially much smaller than the plaintext m.

• The public procedure takes as input a ciphertext c and the decryption hint ρ and
recovers the plaintext by computing

(1 + N)m = c/ρN ζ

mod N ζ+1

and decoding m in polynomial time using the binomial theorem.

In a nutshell, the subgroup homomorphism allows one to recompute the randomness,
which can be then publicly stretched and used to unmask the plaintext. This means that
m can be fully recovered by communicating a small hint of size fixed and, in particular,
independent of |m|. As we are going to discuss later, this property is going to be our
main leverage to build general-purpose obfuscation.

Temporarily glossing over the security implications, we point out that the hybrid
scheme of Brakerski et al. [17] already suffices to construct an FHE scheme with split
decryption (in short, split FHE): Simply instantiate the LHE scheme with Damgård-Jurik

27 Page 6 of 41 Z. Brakerski et al.

and convert evaluated FHE ciphertexts before decryption using the algorithm described
above.

1.2.2. Security for Split FHE

We now delve into the desired security property for a split FHE scheme. On a high
level, we would like to ensure that the decryption hint does not reveal any additional
information, beyond the plaintext of the corresponding ciphertext. It is instructive to
observe that if we do not insist on this property, then every FHE scheme has a trivial split
decryption procedure which simply outputs the secret key. We formalize this intuition as
an indistinguishability definition that, roughly speaking, demands that for all plaintext
pairs (m0,m1) and every set of circuits (C1, . . . ,Cβ) such that Ci (m0) = Ci (m1),
the encryption of m0 and m1 are computationally indistinguishable, even given the
decryption hints ρi of the evaluated ciphertexts. The condition Ci (m0) = Ci (m1) rules
out trivial attacks where the distinguisher just checks the output of the evaluation. Here
β = β(λ) is an arbitrary (but a priori bounded) polynomial in the security parameter.

Unfortunately, our candidate as described above falls short in satisfying this security
notion: The central problem is that our split decryption procedure reveals the complete
plaintext encoded in the Damgård-Jurik ciphertexts. This means that the distinguisher
learns arbitrarily many relations of the form

Lci (s1, . . . , sn) = ECC(Ci (mb)) + ei

where ci is the evaluated ciphertext and Lci is a publicly known linear function. Col-
lecting a large enough sample allows the distinguisher to recompute the FHE secret key
(s1, . . . , sn) via, e.g., Gaussian elimination. A standard approach to obviate this problem
is to smudge the noise ei with some mask ri uniformly sampled from an exponentially
larger domain. Thus, a natural solution would be to compute a randomizing ciphertext
di = DJ.Enc(pkDJ, ri) and output the decryption hint for

ci · di = DJ.Enc(pkDJ,ECC(Ci (mb))

+ei + ri) ≈ DJ.Enc(pkDJ,ECC(Ci (mb)) + ri)

where ri is sampled from a domain exponentially larger than the noise bound B but
small enough to allow one to decodeECC(Ci (mb)). While it is possible to show that this
approach indeed satisfies the security notion outlined above, it introduces an overhead
in the size of the hint, which now consists of the pair (ρi , di). Note that we cannot allow
the distinguisher to recompute di locally as it is crucial that ri remains hidden, so we
have no other choice but append it to the decryption hint. However, the decryption hint
is now of size O(|ci |), which does not satisfy our compactness requirement and makes
our efforts purposeless (one can just set the decryption hint to be Ci (mb) and achieve
better efficiency).

Although we appear to have encountered a roadblock, a closer look reveals that we
still gained something from this approach: The ciphertext di encodes a (somewhat small)
random value and in particular is completely independent from ci . Furthermore, the
decryption hint of ci · di can be computed using the secret key alone. Assume for the

Candidate iO from Homomorphic... Page 7 of 41 27

moment that we had access to an oracle Sample that outputs uniform Damgård-Jurik
encryption of bounded random values, then our idea is to delegate the sampling of di to
Sample. This allows us to bypass the main obstacle: We do not need to include di in
the decryption hint as it can be recomputed by querying Sample. One can think of this
approach as a more structured version of the Fiat-Shamir transform [27], which allows
us to state the following theorem.

Theorem 1.2. (Informal) Assuming the hardness of LWE and DCR, then there exists
a split FHE scheme in the Sample-hybrid model.

Looking ahead to our end goal, another interpretation of this theorem is as a univer-
sality result: Assuming the hardness of LWE and DCR, we can bootstrap an obfuscator
for a specific circuit (i.e., the one that samples a uniform Damgård-Jurik encryption of
a bounded random value) to an obfuscator for all circuits.

1.2.3. Instantiating the Oracle

The most compelling question which arises from our main theorem is whether there
exist plausible instantiations for the oracle Sample. A first (flawed) attempt is to devise
an oblivious sampling procedure for Damgård-Jurik ciphertext using a random oracle:
Note that Damgård-Jurik ciphertexts live in a dense domain ZN ζ +1 and indeed sampling
a random integer ci ←$ZN ζ+1 maps to a well-formed ciphertext with all but negligible
probability. However, since ci is uniform in the ciphertext domain, then so is the under-
lying plaintext ri ∈ ZN ζ . This makes ci unusable for our purposes since we require ri
to be bounded by some value q̃ , which is exponentially smaller than N ζ . If we were to
sample ri this way, then it would completely mask the term ECC(Ci (mb)), thus making
the plaintext impossible to decode.

Ideally, we would like to restrict the oblivious sampling to ciphertexts encrypting
q̃-bounded messages. Unfortunately, we are not aware of the existence of any such
algorithm. Instead, our idea is to still sample ci uniformly over the complete ciphertext
domain and remove the high-order bits of ri homomorphically: This can be done by
including an FHE encryption of the Damgård-Jurik secret key, then homomorphically
evaluating the circuit that decrypts ci and computes −�ri/q̃�·q̃ . The evaluated ciphertext
is then converted again to the Damgård-Jurik domain using the linear noisy decryption of
the FHE scheme. At this point, one can obtain a well-formed encryption of a q̃-bounded
value by computing

DJ.Enc(pkDJ,−�ri/q̃� · q̃ + e) · ci = DJ.Enc(pkDJ,−�ri/q̃� · q̃ + e + ri)

= DJ.Enc(pkDJ, (ri mod q̃) + e)

where the term (ri mod q̃) + e is q̃-bounded with all but negligible probability by
setting q̃ 	 B. While this approach brings us tantalizingly close to a provably secure
scheme, a careful analysis highlights two lingering conjectures.

(1) Circular Security Adding and FHE encryption of the Damgård-Jurik secret key
introduces a circular dependency in the security of the two schemes (recall that
our construction already encodes a Damgård-Jurik encryption of the FHE secret

27 Page 8 of 41 Z. Brakerski et al.

key). While circular security falls outside of the realm of provable statements, it
is widely accepted as a mild assumption and it is known to be achieved by most
natural encryption schemes [11]. We stress that circular security is also inherent
in the bootstrapping theorem of Gentry [34], the only known method to construct
fully (as opposed to leveled) homomorphic encryption from LWE.

(2) Correlations While the homomorphically evaluated circuit essentially ignores the
low-order bits of ri , the corresponding decryption noise e might still depend on
(ri mod q̃) in some intricate way. This might introduce some correlation and bias
the distribution of the term (ri mod q̃) + e with respect to a uniform u ←$Zq̃ .
However, the noise function is typically highly non-linear and therefore appears
to be difficult to exploit. We also point out that the distinguisher has no control
over the choice of e, which exclusively depends on an honest execution of the
homomorphic evaluation algorithm. We therefore conjecture that the distribution
of (ri mod q̃) + e is computationally indistinguishable from u.

In light of the above insights, we put forward the conjecture that the proposed algorithm
already gives us a secure implementation of the oracleSample. We view this as a natural
strengthening of Gentry’s heuristic for the bootstrapping theorem, which is justified
by our more ambitious objective. As the conjecture pertains to standard cryptographic
material (FHE and Damgård-Jurik encryption), we believe that any further insight on
its veracity would substantially improve our understanding on these important and well-
studied building blocks.

Finally, we mention that many heuristics can be used to weaken the correlation between
the decryption noise e and the low-order bits (ri mod q̃), such as repeated applications
of FHE bootstrapping [26]. We also propose a different heuristic approach to remove
correlations based on binary extractors and we refer the reader to the technical sections
for further details.

1.2.4. From Split FHE to iO

What is left to be shown is that split FHE does indeed suffice to construct program
obfuscation. With this goal in mind, we recall a surprising result by Lin et al. [50] which
states that, under the assumption that the LWE problem is sub-exponentially hard, iO
for all circuits is implied by an obfuscator for circuits with logarithmic-size inputs with
non-trivial efficiency. Here non-trivial efficiency means that the size of the obfuscated
circuit C̃ with input domain {0, 1}η is at most poly(λ, |C |) · 2η·(1−ε), for some constant
ε > 0. This means that it suffices to show that split FHE implies the existence of an
obfuscator (for circuits with polynomial-size input domain) with non-trivial efficiency.

The transformation is deceptively simple (and similar to [14]): The obfuscator com-
putes a split FHE encryption of the circuit C and partitions the input domains in 2η/2

disjoint sets (P1, . . . , P2η/2) of equal size. Then, for each partition Pi , the algorithm
homomorphically evaluates the universal circuit that evaluates C on all inputs in Pi and
returns the concatenation of all outputs. Finally, it returns the decryption hint ρi corre-
sponding to the evaluated ciphertext. The obfuscated circuit consists of the public-key of
the split FHE scheme, the encryption ofC , and all of the decryption hints (ρ1, . . . , ρ2η/2).
Note that the obfuscated circuit can be evaluated efficiently: On input x , let Px be the
partition that contains x , then the evaluator recomputes the homomorphic evaluation

Candidate iO from Homomorphic... Page 9 of 41 27

(which is a deterministic operation) of C on Px and recovers the output using the de-
cryption hint ρx . As for non-trivial efficiency, since the size of each decryption hint is
that of a fixed polynomial poly(λ), the total size of the obfuscated circuit is bounded by
poly(λ, |C |) · 2η/2, as desired.

1.2.5. Other Applications

To demonstrate that the scope of our split FHE scheme goes beyond program obfus-
cation, we outline two additional applications. In both cases we only rely on standard
assumptions, i.e., we do not need to introduce any new conjecture.
Two-Party Computation with Pre-Processing We obtain a (semi-honest) two-party com-
putation scheme for any circuit C : {0, 1}
 → {0, 1}k with an input- and circuit-
independent pre-processing where the communication complexity of the pre-processing
phase is poly(λ, k), whereas the communication complexity of the online phase is
poly(λ) +
. This improves over garbled circuit-based approaches that require a pre-
processing at least linear in |C |. The protocol works as follows: In the pre-processing
phase Alice and Bob exchange their (independently sampled) public-keys for a split FHE
scheme and Alice computes a randomizing ciphertext (in the scheme defined above this
corresponds to a Damgård-Jurik encryption of a bounded random value), which is sent
to Bob. In the online phase, Alice and Bob exchange their inputs encrypted under their
own public keys (to achieve best-possible rate this can be done using hybrid encryption)
and homomorphically compute the multi-key evaluation of f over both inputs. Note that
multi-key evaluation is generically possible for the case of two parties [55]: Given two
ciphertexts cA = Enc(pkA,mA) and cB = Enc(pkB,mB), Alice can homomorphically
evaluate the evaluation procedure of cB and f under pkA and cA, to obtain a “nested”
two-key ciphertext Enc(pkA,Enc(pkB, f (mA,mB))). Then Alice consumes the ran-
domizing ciphertext computed in the pre-processing and sends a partial decryption of
the evaluated ciphertext in the form of a decryption hint. Bob can then locally complete
the partial decryption using its own secret key and recover the output.
Rate-1 Reusable Garbled Circuits The work of Goldwasser et al. [39] showed, assuming
the hardness of the LWE problem, how to construct reusable garbled circuits where the
size of the input encodings is poly(λ, d,
 · k), where C : {0, 1}
 → {0, 1}k and d is
the depth of C . Using split FHE, we obtain a scheme with rate-1 encodings, i.e., of size
poly(λ, d,
)+ k. This is done by using their scheme to garble the circuit that computes
C homomorphically over the input encrypted under a split FHE scheme and returns the
decryption hint of the evaluated ciphertext. This effectively removes the dependency
of the underlying reusable garbled circuit on the output size k. However, we also need
to include in the input encoding the answer of the Sample oracle (a Damgård-Jurik
ciphertext, for the scheme describe above), which reintroduces an additive overhead in
k.

1.3. Related Work

In the following we discuss more in depth the relation of our approach when compared
with recent candidate constructions of iO from lattices and bilinear maps [1,3,45]. Very
informally, this line of works leverages weak pseudorandom generators (PRG) to mask

27 Page 10 of 41 Z. Brakerski et al.

the noise of the LWE decryption. However, the output domain of such a PRG is only poly-
nomially large: This is because of the usage of bilinear groups, where the plaintext space
is polynomially bounded (decryption requires one to compute a discrete logarithm). This
is especially problematic because statistical/computational indistinguishability cannot
hold in this regime of parameters. To circumvent this problem, all papers in this line of
work assume a strict bound on the distinguisher’s success probability (e.g., 0.99) and
then rely on amplification techniques. This, however, requires one to construct a weak
PRG where the advantage of any PPT distinguisher is non-negligible but at the same
time bounded by < 0.99.2

On the other hand, we rely on the Damgård-Jurik encryption scheme, where the
message domain is exponential. This allows us to sample the smudging factor from a
distribution that is exponentially larger than the noise bound, which is necessary in order
to argue about statistical indistinguishability. Thus, in our settings, conjecturing that the
advantage of the distinguisher is negligible is, at least in principle, plausible.
Follow-up Works After the publication of this manuscript, a series of follow-up works
[18,25,33,63] has shown how to instantiate this approach in a provably secure way, as-
suming (a strong flavor of) circular security of homomorphic encryption schemes. Such
works follow the general blueprint of our construction, but explore different instantia-
tions for the underlying cryptographic building blocks. As an added bonus, they build
exclusively on lattice-based cryptosystems and therefore the resulting iO constructions
are plausibly post-quantum secure. Subsequently, the hardness of the computational
problems stated in [33,63] has been called into question by the work of [42]. They
showed explicit counterexamples against their assumptions, thus suggesting a separa-
tion between standard circular security and the flavor needed to instantiate their works.
However, the counterexamples presented in [42] do not imply an attack against any of
the iO schemes. To the best of our knowledge, no attack is currently known against any
of the above-mentioned works.

In a parallel line of work, the bilinear groups-based constructions have been subse-
quently improved by removing the dependence on weak PRGs [32,44]. The culmination
of this line of research was a construction of iO from standard assumptions on bilinear
groups, LPN over large fields, and the existence of PRG in NC0 [46,47]. In contrast
with the “split-FHE approach”, the presence of bilinear groups makes such schemes
vulnerable to quantum attacks.

2. Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl(·) is negligible
if it vanishes faster than any polynomial. Given a set S, we denote by s ← $ S the
uniform sampling from S. We say that an algorithm is PPT if it can be implemented
by a probabilistic machine running in time poly(λ). We abbreviate the set {1, . . . , n} as
[n]. Matrices are denoted by M and vectors are denoted by v. We recall the smudging
lemma [6,7].

2After the publication of this work, this aspect has been improved in follow-up works [32,44,47] using
leakage resilience and privacy amplification techniques.

Candidate iO from Homomorphic... Page 11 of 41 27

Lemma 1. (Smudging) Let B1 = B1(λ) and B2 = B2(λ) be positive integers and
let e1 ∈ [B1] be a fixed integer. Let e2 ←$ [B2] chosen uniformly at random. Then
the distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as
B1/B2 = negl(λ).

2.1. Linear Algebra

We will need the following fact from linear algebra over rings, which holds immediately
for fields but is non-trivial for the case of rings.

Lemma 2. Let q be an arbitrary integer modulus and n be an integer. Let t ←$Zn
q be

chosen uniformly at random. Now let a ←$Zn
q be distributed uniformly random. Then

it holds that

Pr
t
[〈a, t〉 distributed uniformly in Zq] > 1 − log(q) · 2−n .

In other words, except with probability log(q) ·2−n over the choice of t the inner product
〈a, t〉 will be distributed uniformly random given that a is uniform.

We provide the proof of Lemma 2 for completeness. The proof assumes some basic
notions of algebra which we omit introducing here.

Proof. For a fixed t, 〈a, t〉 will be uniform for a uniform a ←$Zn
q given that the linear

form �t : Zn
q → Zq given by x → 〈x, t〉 has range Zq . To see this, note that by linearity

every y ∈ Zq has the same number of preimages under �t. Thus, �t maps a uniform
distribution to a uniform distribution.

We will thus establish that the linear form �t : Zn
1 → Zq given by → 〈x, t〉 has

range Zq , except with negligible probability over the choice of t ←$Zn
q . This function

is not full range, if and only if there exists a non-trivial ideal J ⊆ Zq such that for all i
we have ti ∈ J . To see this, note that if all ti ∈ J , then 〈a, t〉 ∈ J and therefore �t is
not full range. On the other hand, if no such J exists, then we can construct an a∗ ∈ Z

n
q

via Chinese Remaindering such that 〈a∗, t〉 = 1 and therefore �t is full range.
Thus, it suffices to show the above property for all maximal ideals in Zq , which are

the psZq , where the ps are the prime-factors of q. As ps ≥ 2 we can upper-bound
the number of maximal ideals in Zq by log(q). Fix a maximal ideal J = pZq and let
t = (t1, . . . , tn) ←$Zn

q be chosen uniformly at random. It holds for a single uniformly
random t ←$Zq that Pr[t ∈ J] = 1/p ≤ 1/2. Since the (t1, . . . , tn) are independent, it
holds that Pr[∀i : ti ∈ J] ≤ 2−n . Finally, as there are at most log(q) maximal ideals J
a union-bound yields Pr[∃J∀i : ti ∈ J] ≤ log(q) · 2−n . We conclude that �t has range
Zq , except with probability log(q) · 2−n over the choice of t. �

27 Page 12 of 41 Z. Brakerski et al.

2.2. Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [30].

Definition 2.1. (Indistinguishability Obfuscation) A PPT machine iO is an indistin-
guishability obfuscator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:
(Functionality) For all λ ∈ N, all circuit C ∈ Cλ, all inputs x it holds that

Pr
[
C̃(x) = C(x)

∣∣∣C̃ ← iO(C)
]

= 1.

(Indistinguishability) For all polynomial-size distinguishers D there exists a negligible
function negl(·) such that for all λ ∈ N, all pairs of circuits (C0,C1) ∈ Cλ such that
|C0| = |C1| and C0(x) = C1(x) on all inputs x , it holds that

∣∣Pr
[
1 = D(iO(C0))

]− Pr
[
1 = D(iO(C1))

]∣∣ = negl(λ).

2.3. Learning with Errors

We recall the (decisional) learning with errors (LWE) problem as introduced by Regev
[61].

Definition 2.2. (Learning with Errors) The LWE problem is parametrized by a mod-
ulus q, positive integers n,m and an error distribution χ . The LWE problem is hard if
for all polynomial-size distinguishers D there exists a negligible function negl(·) such
that for all λ ∈ N it holds that

∣∣∣Pr
[
1 = D(A, s� · A + e)

]
− Pr [1 = D(A,u)]

∣∣∣ = negl(λ),

where A is chosen uniformly from Z
n×m
q , s is chosen uniformly from Z

n
q , u is chosen

uniformly from Z
m
q and e is chosen from χm .

As shown in [60,61], for any sufficiently large modulus q the LWE problem where
χ is a discrete Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distri-

bution over Z where the probability of x is proportional to e−π(|x |/σ)2
), is at least as

hard as approximating the shortest independent vector problem (SIVP) to within a fac-
tor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = q/σ as the
modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE
instantiation. Hereby, LWE with polynomial α is (presumably) harder than LWE with
super-polynomial or sub-exponential α. We can truncate the discrete Gaussian distribu-
tion χ to σ · ω(

√
log(λ)) while only introducing a negligible error. Consequently, we

omit the actual distribution χ but only use the fact that it can be bounded by a (small)
value B.

Candidate iO from Homomorphic... Page 13 of 41 27

2.4. Decisional Composite Residuosity

In the following we recall the decisional composite residuosity (DCR) assumption over
Z

∗
N ζ+1 [24,59]. Let N = pq, where p and q are primes, be a uniformly sampled Blum

integer and let ζ be a fixed non-negative integer. Observe that the multiplicative group
Z

∗
N ζ+1 can be rewritten as the product of the subgroup HN = {(1 + N)i : i ∈ [N ζ]},

generated by (1 + N), and the group of N ζ -th residues NRN = {xN ζ : x ∈ Z
∗
N } of

order ϕ(N), where ϕ(·) denotes Euler’s totient function.

Definition 2.3. (Decisional Composite Residuosity) Let N = pq, where p and q are
primes, be a uniformly sampled Blum integer and let ζ be a fixed non-negative integer.
The DCR problem is hard if for all polynomial-size distinguishers D there exists a
negligible function negl(·) such that for all λ ∈ N it holds that

|Pr [1 = D(r)] − Pr [1 = D(u)]| = negl(λ).

where r ←$NRN and u ←$Z∗
N ζ+1 .

3. Homomorphic Encryption

We recall the definition of homomorphic encryption in the following.

Definition 3.1. (Homomorphic Encryption) A homomorphic encryption scheme for a
circuit family C consists of the following efficient algorithms.

KeyGen(1λ) : On input the security parameter 1λ, the key generation
algorithm returns a key pair (sk,pk).

Enc(pk,m) : On input a public key pk and a messagem, the encryption
algorithm returns a ciphertext c.

Eval(pk,C, (c1, . . . , c
)) : On input the public key pk, an
-inputs circuit C∈ C,
and a vector of ciphertexts (c1, . . . , c
), the evaluation
algorithm returns an evaluated ciphertext c.

Dec(sk, c) : On input the secret key sk and a ciphertext c, the decryp-
tion algorithm returns a message m.

We say that a scheme is fully homomorphic (FHE) if it is homomorphic for all (un-
bounded) polynomial-size circuits. If the maximum size of the circuit that can be eval-
uated is bounded in the public parameters, then we call such a scheme a leveled FHE.
We also consider a restricted class of homomorphism that supports linear functions and
we refer to such a scheme as linearly homomorphic encryption (LHE). We characterize
correctness of a single evaluation, which suffices for our purposes. This can be extended
to the more general notion of multi-hop correctness [36] if the condition specified below
is required to hold for arbitrary compositions of circuits.

Definition 3.2. (Correctness) A homomorphic encryption scheme (KeyGen,Enc,
Eval,Dec) is correct if for all λ ∈ N, all
-inputs circuitsC∈ C, all inputs (m1, . . . ,m
),

27 Page 14 of 41 Z. Brakerski et al.

all (sk,pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi) it
holds that

Pr
[
Dec(sk,Eval(pk,C, (c1, . . . , c
))) = C(m1, . . . ,m
)

] = 1.

We require a scheme to be compact in the sense that the size of the ciphertext should
not grow with the size of the evaluated circuit.

Definition 3.3. (Compactness) A homomorphic encryption scheme (KeyGen,Enc,
Eval,Dec) is compact if there exists a polynomial poly(·) such that for all λ ∈ N, all

-inputs circuits C∈ C in the supported family, all inputs (m1, . . . ,m
), all (sk,pk) in
the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi) it holds that

|Eval(pk,C, (c1, . . . , c
))| = poly(λ) · |C(m1, . . . ,m
)|.

We define a weak notion of security (implied by the standard semantic security [40])
which is going to be more convenient to work with.

Definition 3.4. (Semantic Security) A homomorphic encryption scheme (KeyGen,

Enc,Eval,Dec) is semantically secure if for all polynomial-size distinguishers D there
exists a negligible function negl(·) such that for all λ ∈ N, all pairs of message (m0,m1),
it holds that

∣∣Pr
[
1 = D(pk,Enc(pk,m0))

]− Pr
[
1 = D(pk,Enc(pk,m1))

]∣∣ = negl(λ)

where (sk,pk) ← KeyGen(1λ).

3.1. Linear Decrypt-and-Multiply

We consider schemes with a fine-grained correctness property. Specifically, we require
that the decryption consists of the application of a linear function in the secret key,
followed by some publicly computable function. Furthermore, we require that such a
procedure allows us to specify an arbitrary constant ω that is multiplied to the resulting
plaintext. We refer to such schemes as linear decrypt-and-multiply schemes. This prop-
erty was introduced in an oral presentation by Micciancio [57] and recently formalized
by Brakerski et al. [17]. We stress that all major candidate FHE constructions satisfy
(or can be adapted to) such a constraint, e.g., [2,20,38]. We recall the definition in the
following. In an abuse of notation, we often write KeyGen(1λ; q) to fix the modulus q
in the key generation algorithm.

Definition 3.5. (Decrypt-and-Multiply) We call a homomorphic encryption scheme
(KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exist bounds B =
B(λ) and Q = Q(λ) and an algorithm Dec&Mult such that the following holds. For
every q ≥ Q, all (sk,pk) in the support of KeyGen(1λ;q), every
-inputs circuit C∈ C,

Candidate iO from Homomorphic... Page 15 of 41 27

all inputs (m1, . . . ,m
), all ci in the support of Enc(pk,mi) and every ω ∈ Zq that

Dec&Mult(sk,Eval(pk,C, (c1, . . . , c
)), ω) = ω · C(m1, . . . ,m
) + e mod q

where Dec&Mult is a linear function in sk over Zq and |e| ≤ B with all but negligible
probability.

In our construction, we will need some additional structure for the modulus q. Fortu-
nately, most LWE-based FHE schemes can be instantiated with an arbitrary q that does
not depend on any secret input but only on the security parameter. Moreover, LWE-
based FHE schemes can be instantiated with any (sufficiently large) modulus q without
affecting the worst-case hardness of the underlying LWE problem [60]. In favor of a
simpler analysis, we assume that e is always non-negative. Note that this is without loss
of generality as it can be always guaranteed by adding B to the result of Dec&Mult and
setting a slightly looser bound B = 2B.

3.2. Split Decryption

We define the notion of homomorphic encryption with split decryption, which is going to
be central in our work. Loosely speaking, a scheme has split decryption if the decryption
algorithm consists of two subroutines: A private algorithm (that depends on the secret
key) that on input a ciphertext c computes a small hint ρ, and a publicly computable
algorithm that takes as input ρ and c and returns the corresponding plaintext. We hence-
forth refer to such schemes as split homomorphic encryption. We introduce the syntax
in the following.

Definition 3.6. (SplitDecryption) A homomorphic encryption scheme (KeyGen,Enc,
Eval,Dec) has split decryption if the decryption algorithm Dec consist of the following
two subroutines.

PDec(sk, c) : On input the secret key sk and a ciphertext c, the partial decryp-
tion algorithm returns a decryption hint ρ.

Rec(ρ, c) : On input the hint ρ and a ciphertext c, the recovery algorithm
returns a message m.

The notion of correctness is extended canonically.

Definition 3.7. (Split Correctness) A homomorphic encryption scheme with split de-
cryption (KeyGen,Enc,Eval,PDec,Rec) is correct if for all λ ∈ N, all
-inputs cir-
cuits C∈ C in the supported family, all inputs (m1, . . . ,m
), all (sk,pk) in the support
of KeyGen(1λ), and all ci in the support of Enc(pk,mi) it holds that

Pr
[
Rec(PDec(sk, c), c) = C(m1, . . . ,m
)

] = 1

where c = Eval(pk,C, (c1, . . . , c
)).

27 Page 16 of 41 Z. Brakerski et al.

Beyond the standard compactness for homomorphic encryption, a scheme with split
decryption must satisfy the additional property that the size of the decryption hint ρ

is independent (or, more generally, sublinear) of the size of the message. Furthermore,
the size of the public key and of a fresh encryption of a message m should depend
polynomially on the security parameter (and on the length of m) and otherwise be linear
in the size of the output. These are the properties that make split decryption non-trivial
and that are going to be our main leverage to bootstrap this primitive into a more powerful
machinery. We formally characterize these requirements below.

Definition 3.8. (Split Compactness) A homomorphic encryption scheme with split
decryption (KeyGen,Enc,Eval,PDec,Rec) is compact if there exists a polynomial
poly(·) such that for all λ ∈ N, all
-inputs circuits C∈ C in the supported family, all
inputs (m1, . . . ,m
), all (sk,pk) in the support ofKeyGen(1λ), and all ci in the support
of Enc(pk,mi) it holds that

• |pk| ≤ poly(λ) · |C(m1, . . . ,m
)|,
• |ci | ≤ poly(λ, |mi |) · |C(m1, . . . ,m
)|, and
• |ρ| ≤ poly(λ)

where ρ = PDec(sk,Eval(pk,C, (c1, . . . , c
))).

Finally the notion of semantic security for split schemes requires that the decryption
hint ρ for a certain ciphertext does not reveal any information beyond the corresponding
plaintext. Note that we define a very weak notion where the above must hold only for a
bounded number of ciphertexts, and the inputs are fixed prior to the public parameters
of the scheme.

Definition 3.9. (Security) A homomorphic encryption scheme with split decryption
(KeyGen,Enc,Eval,PDec,Rec) is secure if for all polynomial-size distinguishers
D there exists a negligible function negl(·) such that for all λ ∈ N, all polynomials
β = β(λ), all pairs of messages (m0,m1), all vectors of circuits (C1, . . . ,Cβ)∈ Cβ such
that, for all i ∈ [β], Ci (m0) = Ci (m1) it holds that

∣∣Pr
[
1 = D(pk, c0, ρ(1,0), . . . , ρ(β,0))

]− Pr
[
1 = D(pk, c1, ρ(1,1), . . . , ρ(β,1))

]∣∣
= negl(λ)

where (sk,pk) ← KeyGen(1λ), for all b ∈ {0, 1} define cb ← Enc(pk,mb) and, for
all i ∈ [β] and all b ∈ {0, 1}, define ρ(i,b) ← PDec(sk,Eval(pk,Ci , cb)).

We also present the stronger definition of simulation security for decryption hints, which
requires the existence of a simulator that can compute the decryption hint without the
knowledge of the secret key. It appears challenging to achieve this notion in the standard
model, for the simple reason that the size of the hint is smaller than the size of the
message that we want to simulate. Nevertheless, we show that this notion is useful as it
may be achievable in the presence of a (programmable) oracle.

Candidate iO from Homomorphic... Page 17 of 41 27

Definition 3.10. (Simulatable Hints) A homomorphic encryption scheme with split
decryption (KeyGen,Enc,Eval,PDec,Rec) has simulatable hints if there exists a
polynomial-size simulator Sim such that for all λ ∈ N, all (sk,pk) in the support of
KeyGen(1λ), all messages m, and all ciphertexts c in the support of Enc(pk,m) it holds
that

PDec(sk, c) ≡ Sim(1λ,pk, c,m),

where ≡ denotes the equivalence of the two distributions.

3.3. Damgård-Jurik Encryption

In the following we recall a variant of the Damgård-Jurik encryption linearly homo-
morphic encryption scheme [24]. We present a variant of the scheme that satisfies the
notion of split correctness, which is going to be instrumental for our purposes. The
scheme is parametrized by a non-negative integer ζ that we assume is given as input to
all algorithms.

DJ.KeyGen(1λ) : On input the security parameter 1λ, sample a uniform
Blum integer N = pq, where p and q are λ-bits
primes. Set pk = (N , ζ) and sk = ϕ(N).

DJ.Enc(pk,m) : On input a message m ∈ ZN ζ , sample a random r ←
$ZN and compute

c = r N
ζ · (1 + N)m mod N ζ+1.

DJ.Eval(pk, f, (c1, . . . , c
)) : On input a vector of ciphertexts (c1, . . . , c
) and a lin-
ear function f = (α1, . . . , α
) ∈ Z

N ζ , compute

c =

∏

i=1

cα1
i mod N ζ+1.

DJ.PDec(sk, c) : On input a ciphertext c, set s = c mod N . Then com-
pute N−ζ such that N ζ · N−ζ = 1 mod ϕ(N) using
the extended Euclidean algorithm. Return

ρ = sN
−ζ

mod N .

DJ.Rec(ρ, c) : On input a hint ρ and a ciphertext c, compute

(1 + N)m = c/ρN ζ

mod N ζ+1

and recover m using the polynomial-time algorithm
described in [24].

It is well known that the scheme satisfies (standard) semantic security assuming the
intractability of the decisional composite residuosity (DCR) problem. To prove correct-

27 Page 18 of 41 Z. Brakerski et al.

ness, we are going to use the fact that

xN
ζ

mod N ζ+1 = (x mod N)N
ζ

mod N ζ+1 (1)

for all non-negative integers (x, ζ). We refer the reader to [56] for a proof of this equality.
Recall that c = r N

ζ · (1 + N)m and that

ρ = (c mod N)N
−ζ

mod N

=
(
r N

ζ · (1 + N)m mod N
)N−ζ

mod N

=
(
r N

ζ

mod N
)N−ζ

mod N .

Therefore, we have that

ρN ζ

mod N ζ+1 =
((

r N
ζ

mod N
)N−ζ

mod N

)N ζ

mod N ζ+1

=
(
r N

ζ

mod N
)N−ζ ·N ζ

mod N ζ+1

= r N
ζ

mod N ζ+1

by an application of Equation (1). Taking the inverse on both sides of the equation above
we obtain

c/ρN ζ

mod N ζ+1 = c/r N
ζ

mod N ζ+1

= r N
ζ · (1 + N)m/r N

ζ

mod N ζ+1

= (1 + N)m mod N ζ+1

as desired for correctness. Although such a scheme does not immediately give us a
secure split LHE, we highlight a few salient properties that we are going to leverage in
our main constructions.
Split Compactness The hint ρ ∈ ZN consists of �log(N)� bits and in particular is
independent of the size of the message space ZN ζ , as the integer ζ can be set to be
arbitrarily large (within the range of polynomials in λ).
Simulatable Hints Given a ciphertext c and a plaintext value m, the simulator can effi-
ciently compute a ciphertext c̃ such that the homomorphic sum of c and c̃ results in a
uniform encryption of m and the corresponding decryption hint can be computed given
only the random coins used to generate c̃. Concretely, let

Candidate iO from Homomorphic... Page 19 of 41 27

c̃ = r N
ζ · (1 + N)m

c
mod N ζ+1

for some r ←$ZN . It follows, that for ciphertexts of the form c · c̃ (looking ahead, c̃
will be the output of an oracle), we can define the output of the simulator to be ρ = r .
The message can be then recovered using the DJ.Rec algorithm as described above.
Dense Ciphertexts Sampling a random integer in ZN ζ+1 gives a well-formed ciphertext
with all but negligible probability. This is because the group order ϕ(N) · N ζ is close to

N ζ+1, i.e., ϕ(N)·N ζ

N ζ+1 = ϕ(N)
N = 1 − negl(λ).

4. Split Fully Homomorphic Encryption

In the following we present our construction for FHE with split decryption. We first
present a generic construction in the presence of (a structured version of) a random
oracle, then we propose concrete instantiations for the building blocks and plausible
candidates for the implementation of the oracle.

4.1. Generic Construction

Our scheme assumes the existence of the following primitives:

• A fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,
FHE.Eval,FHE.Dec) with linear decrypt-and-multiply and with noise bound B.

• A linearly homomorphic encryption LHE = (LHE.KeyGen,LHE.Enc,
LHE.Eval,LHE.PDec,LHE.Rec) with simulatable decryption hints.

If the underlying FHE scheme is leveled then so is going to be the resulting split FHE.
Conversely, if the FHE scheme supports the evaluation of unbounded circuits, then so
does the resulting split FHE construction. The scheme is described below, assuming that
the Eval algorithm has oracle access to the Sample interface.

27 Page 20 of 41 Z. Brakerski et al.

KeyGen(1λ) : On input the security parameter 1λ, sample a key pair
(skLHE,pkLHE) ← LHE.KeyGen(1λ). Let Zq be the plaintext space de-
fined by LHE, then sample (skFHE,pkFHE) ← FHE.KeyGen(1λ; q). Let
skFHE = (s1, . . . , sn) ∈ Z

n
q , then return

sk = skLHE and pk = (
pkFHE,pkLHE, c(LHE,1), . . . , c(LHE,n)

)

where, for all i ∈ [n], we define c(LHE,i) ← LHE.Enc(pkLHE, si).
Enc(pk,m) : On input a message m return

c ← FHE.Enc(pkFHE,m).

EvalSample(pk,C, (c1, . . . , c
)) : On input a circuit C with
 bits of input and k
bits of output and a vector of ciphertexts (c1, . . . , c
), let, for all j ∈ [k], C j

be the circuit that returns the j-th bit of the output of C , then compute

d j ← FHE.Eval(pkFHE,C j , (c1, . . . , c
)).

Define the following linear function over Zq :

g(x1, . . . , xn) =
k∑
j=1

Dec&Mult
(
(x1, . . . , xn), d j , 2�log(q̃+(k+1)B)�+ j

)
.

Compute d ← LHE.Eval(pkLHE, g, (c(LHE,1), . . . , c(LHE,n))), query a ←
Sample(pk, d) and return

c ← LHE.Eval
(
pkLHE,

∑
, (d, a)

)

where
∑

denotes the homomorphic summation.
PDec(sk, c) : On input an evaluated ciphertext c return

ρ ← LHE.PDec(skLHE, c).

Rec(ρ, c) : On input an evaluated ciphertext c, compute

m̃ ← LHE.Rec(ρ, c)

and return the binary representation of m̃ without its �log(q̃ + (k + 1)B)�
least significant bits.

What is left to be shown is the exact specification of the oracleSample(pk, x), which we
describe in the following. The oracle is accessible by all parties and it is stateful: on input

Candidate iO from Homomorphic... Page 21 of 41 27

the same x , the oracle will always return the same output. The oracle is parametrized by
an integer q̃ , which we are going to define later.

Sample(pk, x) : On input a string x ∈ {0, 1}∗ return a uniformly distributed ci-
phertext

LHE.Enc(pkLHE, r)

where r ←$Zq̃ .

We formally analyze our scheme in the following. During the analysis, we set the pa-
rameters on demand and we show afterward that our choices lead to a satisfiable set of
constraints for which the underlying computational problems are still conjectured to be
hard. The following theorem establishes correctness.

Theorem 4.1. (Split Correctness) Let q ≥ 2k + 2�log(q̃+kB)�. Let FHE be a correct
fully homomorphic encryption scheme with linear decrypt-and-multiply and let LHE be
a split correct linearly homomorphic encryption scheme. Then the scheme as described
above satisfies split correctness.

Proof. Let us rewrite

m̃ = LHE.Rec(ρ, c) = LHE.Rec(LHE.PDec(skLHE, c), c)

where c = LHE.Eval
(
pkLHE,

∑
, (d, a)

)
. We first expand the d term as

d = LHE.Eval(pkLHE, g, (c(LHE,1), . . . , c(LHE,n)))

= LHE.Eval(pkLHE, g, (LHE.Enc(pkLHE, s1), . . . ,LHE.Enc(pkLHE, sn)))

= LHE.Enc

⎛
⎝pkLHE,

k∑
j=1

Dec&Mult
(
(s1, . . . , sn), d j , 2�log(q̃+(k+1)B)�+ j

)⎞
⎠

by the correctness of the LHE scheme, where

d j = FHE.Eval(pkFHE,C j , (c1, . . . , c
))

and ci = FHE.Enc(pkFHE,mi). Thus, by the decrypt-and-multiply correctness of the
FHE scheme we can rewrite

d = LHE.Enc

⎛
⎝pkLHE,

k∑
j=1

2�log(q̃+(k+1)B)�+ j · C j (m1, . . . ,m
) + e j

⎞
⎠

27 Page 22 of 41 Z. Brakerski et al.

= LHE.Enc

⎛
⎜⎜⎜⎜⎜⎝
pkLHE,

k∑
j=1

2�log(q̃+(k+1)B)�+ j · C j (m1, . . . ,m
) +
k∑
j=1

e j

︸ ︷︷ ︸
ẽ

⎞
⎟⎟⎟⎟⎟⎠

.

For the a variable we have that a = LHE.Enc(pkLHE, r), for some uniform r ←$Zq̃ ,
by definition of the oracle Sample. Thus,

c = LHE.Eval
(
pkLHE,

∑
, (d, a)

)

= LHE.Enc

⎛
⎝pkLHE,

⎛
⎝

k∑
j=1

2�log(q̃+(k+1)B)�+ j · C j (m1, . . . ,m
) + ẽ

⎞
⎠+ r

⎞
⎠

by the correctness of the LHE scheme. Note that the sum ẽ is bounded from above by
k · B, whereas the term r is trivially bounded from above by q̃ . This implies that the
output of the circuit is encoded in the higher order bits of m̃ with probability 1, for a
large enough q. �

We then argue about the split security of the scheme. We remark that we analyze security
in the presence of an oracle and we refer the reader to Sect. 4.3 and Sect. 4.4 for concrete
instantiations.

Theorem 4.2. (Split Security) Let q̃ ≥ 2λ · k · B. Let FHE be a semantically secure
fully homomorphic encryption scheme and let LHE be a semantically secure linearly
homomorphic encryption scheme with simulatable decryption hints. Then the scheme as
described above satisfies split security in the Sample-hybrid model.

Proof. Fix any admissible (m0,m1,C1, . . . ,Cβ) as per Definition 3.9. Consider the
following series of hybrids.
Hybrid H0 : Is defined as the original experiment. Denote the distribution induced by
the random coins of the challenger by

(
pk, c = FHE.Enc(pkFHE,mb), ρ1, . . . , ρβ

)

where

pk = (
pkFHE,pkLHE,LHE.Enc(pkLHE, s1), . . . ,LHE.Enc(pkLHE, sn)

)

and ρi is computed as PDec(sk,Eval(pk,Ci , c)).
HybridsH1 . . .Hβ :Letd(i) be the variabled defined during the execution ofEval(pk,Ci , c).
The i-th hybridHi is defined to be identical toHi−1, except that the oracleSample(pk, ·)
on input d(i) is programmed to output a uniformly sampled a such that the resulting c

Candidate iO from Homomorphic... Page 23 of 41 27

is of the form

c = LHE.Enc
(
pkLHE,ECC(Ci (mb)) + ẽ + r

)

where ECC is the high-order bits encoding defined in the evaluation algorithm, ẽ is
the sum of the decryption noises of the ciphertexts (d(1), . . . , d(k)), as defined in the
evaluation algorithm, and r ←$Zq̃ . Then ρ̃i is defined to be the decryption hint of c,
computed using the random coins of the simulated a, rather than the secret key.

First observe that ẽ is efficiently computable given the secret key of the FHE scheme
and therefore ρ̃i is also computable in polynomial time. It is important to observe that
the distribution of c is identical to the previous hybrid and the difference lies only in
the way ρ̃i is computed. Since the LHE scheme has simulatable hints, it follows that
the distribution of Hi is identical to that of Hi−1 and the change described here is only
syntactical. That is,

(
pk,FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃i−1, ρi , ρi+1, . . . , ρβ

)

= (
pk,FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃i−1, ρ̃i , ρi+1, . . . , ρβ

)
.

HybridsHβ+1 . . .H2β : The (β + i)-th hybrid is defined to be identical to the previous
ones except that the a variable corresponding to the i-th call in the evaluation algorithm
is programmed such that

c = LHE.Enc
(
pkLHE,ECC(Ci (mb)) + r̃

)
.

I.e., the noise term ẽ is omitted from the computation. Concretely, a is computed as

a = LHE.Enc
(
pkLHE,ECC(Ci (mb)) + r̃

)
/d,

where d is defined as in the Eval algorithm and the denominator is uniformly sampled.
Thus, the only difference with respect to the previous hybrid is whether the noise term ẽ is
included in the ciphertext or not. Since ẽ is bounded from above by k ·B and q̃ ≥ 2λ ·k ·B,
by Lemma 1 the distribution induced by this hybrid is statistically indistinguishable from
that of the previous one.
Hybrids H2β+1 . . .H2β+n : The (2β + i)-th hybrid is defined as the previous one, ex-
cept that the ciphertext c(LHE,i) in the public parameters is computed as the encryption
of 0. Note that the secret key of the LHE scheme is no longer used in the computa-
tion of (ρ̃1, . . . , ρ̃β) and therefore indistinguishability follows from an invocation of
the semantic security of the LHE scheme. Specifically, the following distributions are
computationally indistinguishable

(
LHE.Enc(pkLHE, 0), . . . ,LHE.Enc(pkLHE, 0),LHE.Enc(pkLHE, si),
LHE.Enc(pkLHE, si+1), . . . ,LHE.Enc(pkLHE, sn)

)

≈
(
LHE.Enc(pkLHE, 0), . . . ,LHE.Enc(pkLHE, 0),LHE.Enc(pkLHE, 0),

LHE.Enc(pkLHE, si+1), . . . ,LHE.Enc(pkLHE, sn)

)
.

27 Page 24 of 41 Z. Brakerski et al.

Hybrid H(b)
2β+n : We define the hybrid H(b)

2β+n as H2β+n with the challenger bit fixed to
b. Note that the distribution induced by these hybrids is

(
pk, c = FHE.Enc(pkFHE,mb), ρ̃1, . . . , ρ̃β

)

where

pk = (
pkFHE,pkLHE,LHE.Enc(pkLHE, 0), . . . ,LHE.Enc(pkLHE, 0)

)
.

Observe that the secret key of the FHE scheme is no longer encoded in the public pa-
rameters and is not needed to compute (ρ̃1, . . . , ρ̃β) either. It follows that any advantage

that the adversary has in distinguishing H(0)
3β+n from H(1)

3β+n cannot be greater than the
advantage in distinguishing FHE.Enc(pkFHE,m0) from FHE.Enc(pkFHE,m1). Thus,
computational indistinguishability follows from an invocation of the semantic security
of the FHE scheme. This concludes our proof. �

4.2. Instantiating the Oracle

To complete the description of our scheme, we discuss a few candidate instantiations for
the oracle Sample. We require the underlying LHE scheme to have a dense ciphertext
domain (which is the case for the Damgård-Jurik encryption scheme). Both of our
proposals require to augment the public key of the scheme with an FHE encryption of
the LHE secret key cFHE ← FHE.Enc(pkFHE, skLHE) and introduce new circularity
assumptions between the FHE and the LHE schemes.

An alternate way to think of the oracle in Theorem 4.2 is to see it as an obfuscation for a
special program, which is sufficient for realizing split FHE. The candidate constructions
that we provide below can be seen as a natural and simple obfuscation of this special
program.

4.2.1. A Simple Candidate

Let C be the ciphertext domain of LHE. Throughout the following description, we fix the
random coins of the algorithm (whenever needed) by drawing them from the evaluation
of a cryptographic hash function Hash over the input. The intuition for our candidate is
very simple: We sample an LHE ciphertext sampled using a random oracle (which is the
reason why we need dense ciphertexts) and then we cancel out the high-order bits of the
underlying plaintext by homomorphically decrypting the random ciphertext, isolating
the chunk of information that we are interested in, and finally key-switching into the
LHE scheme. The formal description is elaborated below.

Candidate iO from Homomorphic... Page 25 of 41 27

Sample(pk, x) : On input a string x ∈ {0, 1}∗ sample y ←$C, (using Hash(x)
as the random coins) then compute

ỹ ← FHE.Eval
(
pkFHE,−�LHE.Dec(·, y)/q̃� · q̃, cFHE

)
.

Define the following linear function over Zq :

h(x0, x1, . . . , xn) = x0 + Dec&Mult ((x1, . . . , xn), ỹ, 1) .

Return

z ← LHE.Eval
(
pkLHE, h, (y, c(LHE,1), . . . , c(LHE,n))

)
.

Observe that y is an element in the ciphertext domain of LHE and it is of the form
y = LHE.Enc(pkLHE,m), for some m ∈ Zq , since LHE has a dense ciphertext domain.
Furthermore, by the correctness of the FHE and the LHE scheme, we have that

ỹ = FHE.Eval
(
pkFHE,−�LHE.Dec(·, y)/q̃� · q̃, cFHE

)

= FHE.Eval
(
pkFHE,−�LHE.Dec(·, y)/q̃� · q̃,FHE.Enc(pkFHE, skLHE)

)

= FHE.Enc
(
pkFHE,−�LHE.Dec(skLHE, y)/q̃� · q̃)

= FHE.Enc
(
pkFHE,−�m/q̃� · q̃) .

Let q ≥ 2λ · q̃ (this additional constraint is compatible with the parameters settings
defined above), then we have that

z = LHE.Eval
(
pkLHE, h, (y, c(LHE,1), . . . , c(LHE,n))

)

= LHE.Enc
(
pkLHE,m + Dec&Mult ((s1, . . . , sn), ỹ, 1)

)

= LHE.Enc
(
pkLHE,m − �m/q̃� · q̃ + e

)

= LHE.Enc
(
pkLHE, (m mod q̃) + e

)

Wherem mod q is distributed uniformly overZq̃ except for the event wherem ∈ {q−(q
mod q̃), . . . , q}, which happens only with negligible probability. It follows that the
output of the oracle is syntactically well formed. However, a closer look to the oracle
instantiation reveals two lingering assumptions.

(1) Circular Security The addition of cFHE = FHE.Enc(pkFHE, skLHE) introduces
a circular dependency in the security of the LHE and FHE schemes (recall that
our split FHE construction includes in the public key an encryption of skFHE
under pkLHE). Circular security is, however, widely considered to be a very mild
assumption and currently is the only known approach to construct plain (as opposed
to leveled) FHE from LWE via the bootstrapping theorem [34].

27 Page 26 of 41 Z. Brakerski et al.

(2) Correlations Although ỹ is an FHE encryption of the correct value, it is not nec-
essarily uniformly distributed, conditioned on y. In particular the randomness of
ỹ may depend in some intricate way on the low-order bits of m. For the specific
case of LWE-based schemes, the noise term might carry some information about
m mod q̃ , which could introduce some harmful correlation. However, the noise
function is typically highly nonlinear and therefore appears to be difficult to ex-
ploit. We also stress that we only consider honest executions of the FHE.Eval
algorithm.

While (1) can be regarded as a standard assumption, we view (2) as a natural conjecture
which we believe holds true for any natural/known candidate instantiation of the FHE and
LHE schemes. In light of these considerations, we conjecture that the implementation
as describe above already leads to a secure split FHE scheme.

4.2.2. Toward Removing Correlations

A natural approach toward removing the correlation of the LHE and FHE ciphertexts
is that of ciphertext sanitization [26]: One could expect that repeatedly bootstrapping
the FHE ciphertext would decorrelate the noise from the companion LHE ciphertext.
Unfortunately our settings are different than those typically considered in the litera-
ture, in the sense that the sanitization procedure must be carried out by the distin-
guisher and therefore cannot use private random coins. Although it appears hard to
formally analyze the effectiveness of these methods in our settings, we expect that
these techniques might (at least heuristically) help to obliterate harmful correlations. In
this work we take a different route and we suggest a simple heuristic method to pre-
vent correlations. In a nutshell, the idea is to sample a set of random plaintexts and
define the random string as the sum of a uniformly sampled subset S of these plain-
text. The key observation is that subset sum is a linear operation and therefore can
be performed directly in the LHE scheme, which implies that the leakage of the FHE
scheme cannot depend on S. As for the previous construction, our instantiation con-
tains a ciphertext cFHE = FHE.Enc(pkFHE, skLHE). The scheme is parametrized by
some σ ∈ poly(λ), which defines the size of the set S. In the following description we
present the algorithm as randomized, although this simplification can be easily bypassed
with standard techniques (e.g., computing the random coins using a cryptographic hash
Hash(x)).

Candidate iO from Homomorphic... Page 27 of 41 27

Sample(pk, x) : On input a string x ∈ {0, 1}∗ sample a random set S ←$ {0, 1}σ .
Then, for all i ∈ [σ], do the following:

• If Si = 1, sample a uniform yi ←$C.
• If Si = 0, sample a uniform encryption yi ←$LHE.Enc(pkLHE,mi), for

a random known mi .

Then compute

ỹ ← FHE.Eval

(
pkFHE,−

σ∑
i=1

�LHE.Dec(·, yi)/q̃� · q̃, cFHE

)
.

Let h be the following linear function over Zq :

h(w1, . . . , w|S|, x1, . . . , xn) =
∑
i∈S

wi +
∑
i /∈S

�mi/q̃� · q̃

+Dec&Mult ((x1, . . . , xn), ỹ, 1) .

Return

z ← LHE.Eval
(
pkLHE, h,

({yi }i∈S , c(LHE,1), . . . , c(LHE,n)

))
.

To see why the implementation is syntactically correct, observe that

ỹ = FHE.Eval

(
pkFHE,−

σ∑
i=1

�LHE.Dec(·, yi)/q̃� · q̃, cFHE

)

= FHE.Enc

(
pkFHE,−

σ∑
i=1

�LHE.Dec(skLHE, yi)/q̃� · q̃
)

= FHE.Enc

(
pkFHE,−

σ∑
i=1

�mi/q̃� · q̃
)

27 Page 28 of 41 Z. Brakerski et al.

by the evaluation correctness of the FHE scheme. Invoking the correctness of the LHE
scheme we have that

z = LHE.Eval
(
pkLHE, h,

({yi }i∈S , c(LHE,1), . . . , c(LHE,n)

))

= LHE.Eval
(
pkLHE, h,

({
LHE.Enc(pkLHE,mi)

}
i∈S , c(LHE,1), . . . , c(LHE,n)

))

= LHE.Enc

(
pkLHE,

∑
i∈S

mi +
∑
i /∈S

�mi/q̃� · q̃ −
σ∑
i=1

�mi/q̃� · q̃ + e

)

= LHE.Enc

(
pkLHE,

∑
i∈S

(mi mod q̃) +
σ∑
i=1

�mi/q̃� · q̃ −
σ∑
i=1

�mi/q̃� · q̃ + e

)

= LHE.Enc

⎛
⎜⎜⎜⎜⎝
pkLHE,

∑
i∈S

(mi mod q̃)

︸ ︷︷ ︸
m̃

+e

⎞
⎟⎟⎟⎟⎠

which is exactly what we want, except that m̃ is slightly larger than q̃ , by a factor of
at most σ . This can still be used in our main construction by adjusting the factor ω

used in the decrypt-and-multiply procedure accordingly. The intuition why we believe
that this variant is secure is that the leakage in the FHE randomness cannot depend on
the set S, since the distributions of all yi are statistically close (recall that LHE has
dense ciphertexts). Thus, S (which is chosen uniformly) resembles the behavior of a
binary extractor on (mi mod q̃). Nevertheless, proving a formal statement remains an
interesting open question.

4.3. Damgård-Jurik Instantiation

When instantiating the LHE scheme with the Damgård-Jurik encryption scheme (as
described in Sect. 3.3) and the FHE scheme with any LWE-based scheme with linear
decrypt-and-multiply (e.g., the scheme proposed in [38]) we obtain a split FHE which
satisfies the notion of split compactness: The hint ρ is of size N = poly(λ) and in
particular is arbitrarily smaller than the size of the plaintext spaceq = N ζ . For essentially
any choice of the LWE-based FHE scheme with modulus q, the size of the public key and
fresh ciphertexts depends polynomially in λ and linearly in log(q) = log(N ζ), which
gives us the desired bound. The analysis above sets the following additional constraints:

Candidate iO from Homomorphic... Page 29 of 41 27

• q ≥ 2k + 2�log(q̃+(k+1)B)� and
• q̃ ≥ 2λ · (k + 1) · B

which are always satisfied for q = N ζ , by setting the integer ζ to be large enough. Note
that this choice of parameters fixes the modulus of the FHE with linear decrypt-and-
multiply to ZN ζ , which is super-polynomially larger than the noise bound B. Finally,
the LWE parameter n is free and can be set to any value for which the corresponding
problem (with super-polynomial modulus-to-noise ratio) is conjectured to be hard.

4.4. Lattice-Based Instantiation

In the following we describe a split FHE construction based exclusively on LWE. Our
scheme assumes the existence of a fully homomorphic encryption scheme FHE =
(FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec)with linear decrypt-and-multiply with
noise bound B and (for simplicity prime) modulus q. To simplify the exposition, we also
assume the existence of a public-key encryption scheme PKE = (PKE.KeyGen,

PKE.Enc,PKE.Dec). This is without loss of generality since any FHE scheme is also
a public-key encryption scheme. We define the gadget matrix G as

G = (1, 2, . . . , 2�log(q)�) ⊗ I =

⎡
⎢⎢⎢⎢⎣

(1, 2, . . . , 2�log(q)�) 0 . . . 0
0 (1, 2, . . . , 2�log(q)�) . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . (1, 2, . . . , 2�log(q)�)

⎤
⎥⎥⎥⎥⎦

and in an abuse of notation we define the (non-linear) bit-decomposition operator as
G−1, since it acts as the inverse of G.

In favor of a simpler exposition, we present a direct construction of FHE with split
decryption, instead of instantiating each building block individually. We stress that, in
contrast with the instantiation based on the Damgård-Jurik encryption scheme (Sect. 4.3),
this scheme does not satisfy the syntactical requirements to apply the generic transfor-
mations (described in Sect. 4.2) to lift the scheme to the plain model. Nevertheless, such
a scheme is still useful a building block to construct rate-1 reusable garbled circuits
(Sect. 6).

27 Page 30 of 41 Z. Brakerski et al.

KeyGen(1λ) : On input the security parameter 1λ sample (skFHE,pkFHE) ←
FHE.KeyGen(1λ) and parse skFHE = (s1, . . . , sn). Sample A ←$Zk×n

q ,

R ← Z
n×nk�log(q)�
q , and compute

B = AR + E + (s1, . . . , sn) ⊗ G

where E is a noise matrix and G is the gadget matrix, both of proper dimen-
sions. Then sample (skPKE,pkPKE) ← PKE.KeyGen(1λ) and set

sk = (skPKE,R) and pk = (pkPKE,pkFHE,A,B).

Enc(pk,m) : On input a message m return

c ← FHE.Enc(pkFHE,m).

EvalSample(pk,C, (c1, . . . , c
)) : On input a circuit C with
 bits of input and k
bits of output and a vector of ciphertexts (c1, . . . , c
), let, for all j ∈ [k], C j

be the circuit that returns the j-th bit of the output of C , then compute

c̃ j ← FHE.Eval(pkFHE,C j , (c1, . . . , c
)).

Query the sampling oracle (τ, cτ) ← Sample(c̃1, . . . , c̃k) and return
(c̃1, . . . , c̃k, cτ , τ).

PDec(sk, c) : On input an evaluated ciphertext c = (c̃1, . . . , c̃k, cτ , τ) compute

t ← PKE.Dec(skPKE, cτ)

and return

ρ = RG−1(Lc) − t

where Lc is the vector concatenation corresponding to the coefficients of the
linear function Dec&Mult ((· · ·), (c̃1, . . . , c̃k), �q/2�).

Rec(ρ, c) : On input an evaluated ciphertext c = (c̃1, . . . , c̃k, cτ , τ) and a decryp-
tion hint ρ return

m̃ = MSB
(
BG−1(Lc) − Aρ

)
⊕ τ

where Lc is defined as above.

The sampling oracle is defined below. For simplicity we describe the oracle as random-
ized and we implement the deterministic variant by fixing the random coins using, e.g.,
a hash function.

Candidate iO from Homomorphic... Page 31 of 41 27

Sample(pk, x) : On input a string x ∈ {0, 1}∗ sample a uniform t ←$Zn
q and

compute encryption cτ ← PKE.Enc(pkPKE, t). Let

τ = MSB(At)

whereMSB returns the most significant bit of each element of the input vector.
Return (τ, cτ).

The correctness of the scheme follows since

MSB
(
BG−1(Lc) − Aρ

)
= MSB

(
(AR + E + (s1, . . . , sn) ⊗ G)G−1(Lc) − Aρ

)

= MSB
(
ARG−1(Lc) + EG−1(Lc) + Lc(s1, . . . , sn) − Aρ

)

= MSB
(
ARG−1(Lc) + e + Lc(s1, . . . , sn) − A

(
RG−1(Lc) − t

))

= MSB (Lc(s1, . . . , sn) + At + e)

= MSB (Dec&Mult ((s1, . . . , sn), (c̃1, . . . , c̃k), �q/2�) + At + e)

where

c̃ j = FHE.Eval(pkFHE,C j , (c1, . . . , c
))

= FHE.Eval(pkFHE,C j , (FHE.Enc(pkFHE,m1), . . . ,FHE.Enc(pkFHE,m
)))

= FHE.Enc(pk,C j (m1, . . . ,m
))

thus

MSB
(
BG−1(Lc) − Aρ

)
⊕ τ = MSB (�q/2� · C(m1, . . . ,m
) + ẽ + At + e) ⊕ τ

(2)

= C(m1, . . . ,m
) ⊕ MSB (At + e + ẽ) ⊕ τ (3)

= C(m1, . . . ,m
) ⊕ MSB (At) ⊕ MSB (At) (4)

= C(m1, . . . ,m
) (5)

with all but negligible probability over the random choice of t. To establish this, we need
to show that equality (4) holds, except with negligible probability over the choice of t
and A.

Observe that ‖ẽ + e‖∞ ≤ B · (n · k · �log(q)� + 1). For a given z ∈ Zq say that z is
bad if |z − q/4| < B · (n · k · �log(q)� + 1) or |z + q/4| < B · (n · k · �log(q)� + 1). By
choosing q sufficiently large, e.g. by q/4 > 2λ · B · (n · k · �log(q)� + 1), we get that
the probability that a uniformly random z ←$Zq is bad is negligible. Further say that a
vector z ∈ Z

k
q is bad if any of its components is bad.

By Lemma 2 we can fix a t ∈ Z
n
q such if a ←$Zn

q is chosen uniformly random, then
〈a, t〉 is distributed uniformly random, as a uniformly random t ∈ Z

n
q has this property

27 Page 32 of 41 Z. Brakerski et al.

except with probability log(q)·2−n . Let ai , . . . , ak be the rows ofA. Since the ai are uni-
formly random, so are the 〈ai , t〉. Thus, it holds for every i that Pr[〈ai , t〉 bad] < negl(λ).
By a union bound we immediately get that PrA[At bad] = PrA[∃i : 〈ai , t〉 bad] < k ·
negl(λ) = negl(λ). Putting everything together, we get that PrA,t[At bad] < negl(λ)+
log(q) · 2−n = negl(λ). We can conclude that MSB (At + e + ẽ) = MSB (At), except
with negligible choice over t and A.

We now proceed to argue about the security of our scheme.

Theorem 4.3. (Split Security) Let FHE be a semantically secure fully homomorphic
encryption scheme with simulatable hints and let PKE be a semantically secure public-
key encryption scheme. If the LWE problem is hard, then the scheme as described above
satisfies split security in the Sample-hybrid model.

Proof. Let (m0,m1,C1, . . . ,Cβ) be the inputs specified by the adversary at the begin-
ning of the experiment. Consider the following series of hybrids.
Hybrid H0 : Is defined as the original experiment.
HybridsH1 . . .Hβ : We define the hybrid Hi to be identical to the previous one except
that the i-th hint ρi is sampled uniformly from Z

n
q and the corresponding query to the

Sample oracle is answered by computing cτ ← PKE.Enc(pkPKE, 0) and setting

τ = MSB(BG−1(Lc) − Aρ) ⊕ C(m1, . . . ,m
).

It is not hard to see that the distribution induced by this hybrid is computationally
indistinguishable from the previous one, by a reduction against the semantic security of
PKE.
Hybrid Hβ+1 : This hybrid is defined to be exactly as the previous one except that the

element B is chosen uniformly over Zk×nk�log(q)�
q . Indistinguishability follows from a

standard hybrid argument against the LWE assumption.
Hybrid H(b)

β+1 : We define the hybrid H(b)
β+1 as Hβ+1 with the challenger bit fixed to b.

By the semantic security of the FHE scheme, it follows that H(0)
β and H(1)

β are compu-
tationally indistinguishable. This concludes our proof. �

Note that the above prove implicitly defines a simulator (in the Sample-hybrid model)
for decryption hints: Sample ρ ←$Zn

q and program the corresponding query to the
Sample oracle to cτ ← PKE.Enc(pkPKE, 0) and

τ = MSB(BG−1(Lc) − Aρ) ⊕ m.

where Lc is the linear function defined by the input ciphertext c and m is the message
given as input to the simulator. This implies that the scheme as described above satisfies
(computational) hint simulatability in the Sample-hybrid model.

Finally, we observe that the scheme satisfies split compactness as the size of the
decryption hints is O(n log(q)) = poly(λ) and in particular is independent of the output
size k.

Candidate iO from Homomorphic... Page 33 of 41 27

5. Split Fully Homomorphic Encryption Implies Obfuscation

In order to construct fully fledged iO from split FHE, we rely on a theorem from Lin et al.
[50], which we recall in the following. Roughly speaking, the theorem states that, under
the assumption that the LWE problem is sub-exponentially hard, it suffices to consider
circuits with a polynomial-size input domain and obfuscators that output obfuscated
circuits of size slightly sublinear in size of the truth table of the circuit.

Theorem 5.1. ([50]) Assuming sub-exponentially hard LWE, if there exists a sub-
exponentially secure indistinguishability obfuscator for Plog/poly with non-trivial effi-
ciency, then there exists an indistinguishability obfuscator forP/polywith sub-exponential
security.

Here Plog/poly denotes the class of polynomial-size circuits with inputs of length
η = O(log(λ)) and by non-trivial efficiency we mean that the size of the obfuscated
circuit is bounded by poly(λ, |C |) · 2η·(1−ε), for some constant ε > 0. Note that the
above theorem poses no restriction on the runtime of the obfuscator, which can be as
large as poly(λ, |C |) · 2η.

In the following we show how to construct an obfuscator for Plog/poly with non-
trivial efficiency. We assume only the existence of a (leveled) split FHE scheme sFHE =
(KeyGen,Enc,Eval,PDec,Rec).

iO(C) : On input the description of a circuit C , sample a pair (sk,pk) ←
KeyGen(1λ) and compute c ← Enc(pk,C). For all i ∈ [

2η/2
]

define the
universal circuit Ui as

Ui (C) = C
(
(i − 1) · 2η/2

)
‖ . . . ‖C

(
i · 2η/2 − 1

)
.

Then compute ci ← Eval(pk,Ui , c) andρi ← PDec(sk, ci). The obfuscated
circuit is defined to be

(
pk, c, ρ1, . . . , ρ2η/2

)
.

First, we discuss how to evaluate an obfuscated circuit: On input some x ∈ {0, 1}η, parse
it as an integer and round it to the nearest multiple of 2η/2 (let such integer be x̄) such
that x̄ ≤ x . Then compute cx̄ ← Eval(pk,Ux̄ , c) and m ← Rec(ρx̄ , cx̄). Read the
output as the (x − x̄)-th bit of m.

5.1. Analysis

Note that the runtime of the obfuscator is dominated by 2η/2 evaluations of the split FHE
ciphertext, where each subroutine homomorphically evaluates the circuit C 2η/2-many
times. Thus, the total runtime of the obfuscator is in the order of poly(λ, |C |) · 2η. We
now argue that our obfuscator has non trivial efficiency in terms of output size. We
analyze the size of each component of the obfuscated circuit:

27 Page 34 of 41 Z. Brakerski et al.

• By the compactness of the split FHE scheme, the public key pk grows linearly with
the size of the output domain, i.e., 2η/2, and polynomially in the security parameter.

• The ciphertext c grows linearly with the size of the encrypted message and, there-
fore, by the compactness of the split FHE scheme, is bounded by poly(λ, |C |)·2η/2.

• Each decryption hint ρi is of sizepoly(λ), since the underlying split FHE is compact.
As an obfuscated circuit consists of 2η/2-many decryption hints, the size of the
vector (ρ1, . . . , ρ2η/2) is poly(λ) · 2η/2.

It follows that the total size of the obfuscated circuit is bounded from above by
poly(λ, |C |) · 2η/2. What is left to be shown is that our obfuscator satisfies the notion of
indistinguishability obfuscation.

Theorem 5.2. (Indistinguishability Obfuscation) Let sFHE be a sub-exponentially se-
cure leveled split FHEscheme.Then the schemeasdescribedabove is a sub-exponentially
secure indistinguishability obfuscator.

Proof. By the perfect correctness of the split FHE scheme it follows that the obfuscated
circuit is functionally equivalent to the plain circuit. Indistinguishability follows imme-
diately from the split security of sFHE: If the split FHE is secure against a distinguisher
running in sub-exponential time, then so is iO. �

6. Rate-1 Reusable Garbled Circuits

In this section we recall the definition of reusable garbled circuits (rGC) and discuss
how to construct a scheme with rate-1 input encodings (in the output length).

6.1. Definition

We briefly recall the syntax of garbling schemes as defined by Yao [64].

Definition 6.1. (Garbling Scheme) A garbling scheme consists of the following effi-
cient algorithms

GC.Garble(1λ,C) : On input the security parameter 1λ and a circuitC , the garbling
algorithm returns a garbled circuit C̃ and a secret key sk.
GC.Encode(sk, x) : On input the secret key sk and an input x , the encoding
algorithm returns an encoding c.
GC.Eval(C̃, c) : On input a garbled circuit C̃ and an encoding c, the evaluation
algorithm returns an output y.

We define correctness for a garbling scheme.

Candidate iO from Homomorphic... Page 35 of 41 27

Definition 6.2. (Correctness) A garbling scheme (GC.Garble,GC.Encode,GC.Eval)
is correct if for all λ ∈ N, all circuits C , all inputs x , and all pairs (C̃, sk) in the support
of GC.Garble(1λ,C) it holds that

Pr[GC.Eval(C̃,GC.Encode(sk, x)) = C(x)] = 1.

We recall the notion of reusable security from [39], that requires that the encodings of
inputs x with respect to a garbled circuit C reveal nothing beyond C(x).

Definition 6.3. (Reusable Security) A garbling scheme (GC.Garble,GC.Encode,

GC.Eval) is reusably secure if there exists a PPT simulator Sim = (Sim0,Sim1) such
that for all PPT attackers A = (A1,A2) there exists a negligible function negl(λ) such
that

∣∣∣∣∣∣∣∣

Pr

[
1 ← AGC.Encode(sk,·)

2 (C̃, st)
∣∣∣ (C, st) ← A1(1λ)

(C̃, sk) ← GC.Garble(1λ,C)

]
−

Pr

[
1 ← AOC,s̃t(·)

2 (C̃, st)
∣∣∣ (C, st) ← A1(1λ)

(C̃, s̃t) ← Sim0(1λ, 1|C|)

]

∣∣∣∣∣∣∣∣
= negl(λ)

where OC,s̃t, on input x , runs (c, s̃t
′
) ← Sim1(1|x |, s̃t,C(x)), sets s̃t = s̃t

′
and returns

c.

Theorem 6.4. ([39]) Assuming sub-exponentially hard LWE, there exists a reusable
garbled circuit scheme with input encodings of size poly(λ, d, |x |, |y|), where d is the
depth of the circuit.

6.2. Rate-1 Construction

In the following we present our rGC scheme with rate-1 encodings. We assume the
existence of the following building blocks.

• A one-time secure split FHE schemeFHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,
FHE.Sample,FHE.PDec,FHE.Rec) with simulatable decryption hints.

• A reusable garbled circuit rGC = (GC.Garble,GC.Encode,GC.Eval).

We stress that the former can be constructed using the schemes presented in Sect. 4.1
and Sect. 4.4, without making any additional assumption. As a main corollary, we obtain
that assuming the hardness of the LWE problem is sufficient.

27 Page 36 of 41 Z. Brakerski et al.

Garble(1λ,C) : On input the security parameter 1λ and a circuit C , sample a
key pair (skFHE,pkFHE) ← FHE.KeyGen(1λ) and compute (C̃, skrGC) ←
GC.Garble(1λ, �) where � is the following circuit.

�(x, r, s) : Compute c̃ ← FHE.Enc(pkFHE, x; r), a ←
Sample(pkFHE, c̃; s), and c ← FHE.Evala(pkFHE,C, c̃), where
the answer a to the oracle query is hardwired in the evaluation circuit.
Return ρ ← FHE.PDec(skFHE, c).

Return (C̃,pkFHE) as the garbled circuit and (skrGC,pkFHE) as the secret
key.

Encode(sk, x) : On input the secret key (skrGC,pkFHE) and an input x , sam-
ple two random strings (r, s) ← $ {0, 1}2λ and compute the ciphertext
c̃ ← FHE.Enc(pkFHE, x; r), the oracle answer a ← Sample(pkFHE, c̃; s)
and the encoding e ← GC.Encode(skrGC, (x, r, s)). The input encoding
consists of the tuple (c̃, a, e).

Eval(C̃, c) : On input a garbled circuit (C̃,pkFHE) and an encoding (c̃, a, e),
evaluate ρ ← GC.Eval(C̃, e) and compute c ← FHE.Evala(pkFHE,C, c̃).
Return FHE.Rec(ρ, c).

To see why the scheme satisfies correctness, observe that

FHE.Rec(ρ, c) = FHE.Rec(GC.Eval(C̃, e), c)

= FHE.Rec(GC.Eval(C̃,GC.Encode(skrGC, (x, r, s))), c)

where (C̃, skrGC) ← GC.Garble(1λ, �). By definition of � and by the correctness of
the garbling scheme, we have that

FHE.Rec(ρ, c) = FHE.Rec(FHE.PDec(skFHE, c), c)

where

c = FHE.Evala(pkFHE,C, c̃)

= FHE.Evala(pkFHE,C,FHE.Enc(pkFHE, x))

= FHE.Enc(pkFHE,C(x))

and therefore

FHE.Rec(ρ, c) = C(x).

We analyze the security of our scheme in the following theorem.

Candidate iO from Homomorphic... Page 37 of 41 27

Theorem 6.5. (Reusable Security) Let FHE be a split FHE scheme with simulatable
decryption hints and let rGC be a reusably secure garbling scheme. Then the scheme as
described above is reusably secure.

Proof. The proof consists the description of an efficient simulatorSim = (Sim0,Sim1).
The algorithmSim0 computes the public-key of the split-FHE scheme honestly and sim-
ulates the garbled circuit C̃ using the simulator of the underlying garbling scheme. On
the other hand, the algorithm Sim1 evaluates the FHE ciphertext honestly to obtain c̃
and samples a as dictated by the Sample algorithm. Finally, it computes a simulated
decryption hint ρ for the input value C(x) using the simulator provided by the split-FHE
scheme and feeds ρ as an input to the simulator of the underlying garbling scheme to
obtain an encoding e. The algorithm returns (c̃, a, e). Indistinguishability follows from
a standard hybrid argument over the security of the reusable garbling scheme and by an
invocation of the simulatability of the decryption hints of the split FHE scheme. �

All is left to be shown is that the scheme has rate-1 encodings (in the output length), by
instantiating the garbling scheme with construction of [39]. The input encoding consists
of three components:

(1) A ciphertext c̃ of the split FHE scheme encrypting the input x , whose size can be
bounded by poly(λ, |x |).

(2) The answer a to a query to the Sample oracle, whose size is (for the choice of
parameters discussed in, e.g., Sect. 4.3) bounded by |y| + poly(λ).

(3) The encoding e for the garbling of the circuit �. Note that the size of the output
of � depends only on the security parameter (and in particular is independent of
|y|); thus, the size of e can be bounded by poly(λ, d, |x |), where d is the depth of
the circuit C .

It follows that the total size of the input encoding is bounded by poly(λ, d, |x |) + |y|.

Acknowledgements

Z. Brakerski was supported by the Israel Science Foundation (Grant No. 3426/21),
and by the European Union Horizon 2020 Research and Innovation Program via ERC
Project REACT (Grant 756482). N. Döttling was funded by the European Union (ERC,
LACONIC, 101041207). Views and opinions expressed are, however, those of the au-
thor(s) only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held
responsible for them. S. Garg was supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation and Visa Inc. G. Malavolta was partially funded
by the German Federal Ministry of Education and Research (BMBF) in the course of the
6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsge-

27 Page 38 of 41 Z. Brakerski et al.

meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA – 390781972.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] S. Agrawal, Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping
and instantiation, in Y. Ishai, V. Rijmen (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I,
volume 11476 of Lecture Notes in Computer Science (Springer, Heidelberg, 2019), pp. 191–225

[2] J. Alperin-Sheriff, C. Peikert, Faster bootstrapping with polynomial error, in J.A. Garay, R.G. (eds.)
Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science
(Springer, Heidelberg, 2014) pp. 297–314

[3] P. Ananth, A. Jain, H. Lin, C. Matt, A. Sahai, Indistinguishability obfuscation without multilinear maps:
nw paradigms via low degree weak pseudorandomness and security amplification, in A. Boldyreva, D.
Micciancio (eds.) Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in
Computer Science (Springer, Heidelberg, 2019), pp. 284–332

[4] P. Ananth, A. Jain, Indistinguishability obfuscation from compact functional encryption, in R. Gennaro,
M.J.B. Robshaw (eds.) Advances in Cryptology—CRYPTO 2015, Part I, volume 9215 of Lecture Notes
in Computer Science (Springer, Heidelberg, 2015), pp. 308–326

[5] P. Ananth, A. Sahai, Projective arithmetic functional encryption and indistinguishability obfusca-
tion from degree-5 multilinear maps, in J.-S. Coron, J.B. Nielsen (eds.) Advances in Cryptology—
EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science (Springer, Heidelberg,
017), pp. 152–181

[6] B. Applebaum, Y. Ishai, E. Kushilevitz, How to garble arithmetic circuits. in R. Ostrovsky (ed.) 52nd
Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, 2011), pp.
120–129

[7] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs, Multiparty computation with
low communication, computation and interaction via threshold FHE, in D. Pointcheval, T. Johansson
(eds.)Advances in Cryptology—EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science
(Springer, Heidelberg, 2012) , pp. 483–501

[8] B. Barak, Z. Brakerski, I. Komargodski, P.K. Kothari, Limits on low-degree pseudorandom generators
(or: Sum-of-squares meets program obfuscation). Cryptology ePrint Archive, Report 2017/312, (2017).
http://eprint.iacr.org/2017/312.

[9] B. Barak, S. Garg, Y. Tauman Kalai, O. Paneth, A. Sahai, Protecting obfuscation against algebraic
attacks. in P.Q. Nguyen, E. Oswald (eds.) Advances in Cryptology—EUROCRYPT 2014, volume 8441
of Lecture Notes in Computer Science (Springer, Heidelberg, 2014), pp. 221–238

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, K. Yang, On the (im)possibility
of obfuscating programs, in J. Kilian (ed.) Advances in Cryptology—CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science (Springer, Heidelberg, 2001), pp. 1–18

[11] B. Barak, I. Haitner, D. Hofheinz, Y. Ishai, Bounded key-dependent message security. in H. Gilbert
(ed) Advances in Cryptology—EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
(Springer, Heidelberg, 2010), pp. 423–444

http://creativecommons.org/licenses/by/4.0/
http://eprint.iacr.org/2017/312

Candidate iO from Homomorphic... Page 39 of 41 27

[12] B. Barak, S.B. Hopkins, A. Jain, P. Kothari, A. Sahai, Sum-of-squares meets program obfuscation,
revisited, in Y. Ishai, V. Rijmen (eds.) Advances in Cryptology–EUROCRYPT 2019, Part I, volume
11476 of Lecture Notes in Computer Science (Springer, Heidelberg, 2019), pp. 226–250

[13] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
D.E. Denning, R. Pyle, R. Ganesan, R.S. Sandhu, V. Ashby (eds.) ACM CCS 93: 1st Conference on
Computer and Communications Security (ACM Press, 1993), pp. 62–73

[14] N. Bitansky, R. Nishimaki, A. Passelègue, D. Wichs, From cryptomania to obfustopia through secret-
key functional encryption, in M. Hirt, A.D. Smith (eds.) TCC 2016-B: 14th Theory of Cryptography
Conference, Part II, volume 9986 of Lecture Notes in Computer Science (Springer, Heidelberg, 2016),
pp. 391–418

[15] N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption. in V. Gu-
ruswami (ed) 56th Annual Symposium on Foundations of Computer Science (IEEE Computer Society
Press, 2015), pp. 171–190.

[16] D. Boneh, M. Zhandry, Multiparty key exchange, efficient traitor tracing, and more from indistinguisha-
bility obfuscation, in J.A. Garay, R. Gennaro (eds.) Advances in Cryptology—CRYPTO 2014, Part I,
volume 8616 of Lecture Notes in Computer Science (Springer, Heidelberg, 2014), pp. 480–499

[17] Z. Brakerski, N. Döttling, S. Garg, G. Malavolta, Leveraging linear decryption: rate-1 fully-homomorphic
encryption and time-lock puzzles, inTheory of CryptographyConference (Springer, 2019), , pp. 407–437

[18] Z. Brakerski, N. Döttling, S. Garg, G. Malavolta, Factoring and pairings are not necessary for io: Circular-
secure lwe suffices. Cryptology ePrint Archive, Report 2020/1024, (2020). https://eprint.iacr.org/2020/
1024.

[19] Z. Brakerski, G.N. Rothblum, Virtual black-box obfuscation for all circuits via generic graded encoding,
in Y. Lindell (ed.) TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes
in Computer Science (Springer, Heidelberg, 2014), pp. 1–25

[20] Z. Brakerski, V. Vaikuntanathan, Lattice-based FHE as secure as PKE, in M. Naor (ed) ITCS 2014: 5th
Conference on Innovations in Theoretical Computer Science (Association for Computing Machinery,
2014), pp. 1–12

[21] Y. Chen, C. Gentry, S. Halevi, Cryptanalyses of candidate branching program obfuscators, in J.-S.
Coron, J.B. Nielsen (eds.) Advances in Cryptology—EUROCRYPT 2017, Part III, volume 10212 of
Lecture Notes in Computer Science (Springer, Heidelberg, 2017), pp. 278–307

[22] J.H. Cheon, K. Han, C. Lee, H. Ryu, D. Stehlé, Cryptanalysis of the multilinear map over the integers,
in E. Oswald, M. Fischlin (eds.) Advances in Cryptology—EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science (Springer, Heidelberg, 2015), pp. 3–12

[23] J.-S. Coron, T. Lepoint, M. Tibouchi, Practical multilinear maps over the integers, in R. Canetti, J.A.
Garay (eds.)Advances in Cryptology—CRYPTO2013, Part I, volume 8042 ofLectureNotes in Computer
Science (Springer, Heidelberg, 2013), pp. 476–493

[24] I. Damgård, M. Jurik, A generalisation, a simplification and some applications of Paillier’s probabilistic
public-key system, in K. Kim (ed) PKC 2001: 4th International Workshop on Theory and Practice in
Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science (Springer, Heidelberg,
2001), pp. 119–136

[25] L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, D. Wichs, Succinct lwe sampling, random polyno-
mials, and obfuscation, in Theory of Cryptography Conference (Springer, 2021), pp. 256–287

[26] L. Ducas, D. Stehlé, Sanitization of FHE ciphertexts, in M. Fischlin, J.-S. Coron (eds.) Advances in
Cryptology—EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science (Springer,
Heidelberg, 2016), pp. 294–310

[27] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems, in
A.M. Odlyzko (ed). Advances in Cryptology—CRYPTO’86, volume 263 of Lecture Notes in Computer
Science (Springer, Heidelberg, 1987), pp. 186–194

[28] S. Garg, C. Gentry, S. Halevi, Candidate multilinear maps from ideal lattices, in T. Johansson, P.Q.
Nguyen (eds.)Advances inCryptology—EUROCRYPT2013, volume 7881 ofLectureNotes inComputer
Science (Springer, Heidelberg, 2013), pp. 1–17

[29] S. Garg, C. Gentry, S. Halevi, M. Raykova, Two-round secure MPC from indistinguishability obfuscation,
in Y. Lindell (ed) TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes
in Computer Science (Springer, Heidelberg, 2014), pp. 74–94

https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2020/1024

27 Page 40 of 41 Z. Brakerski et al.

[30] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters, Candidate indistinguishability obfusca-
tion and functional encryption for all circuits, in 54th Annual Symposium on Foundations of Computer
Science (IEEE Computer Society Press, 2013), pp. 40–49

[31] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, M. Zhandry, Secure obfuscation in a weak
multilinear map model, in M. Hirt, A.D. Smith (eds.) TCC 2016-B: 14th Theory of Cryptography
Conference, Part II, volume 9986 of Lecture Notes in Computer Science (Springer, Heidelberg, 2016),
pp. 241–268

[32] R. Gay, A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from simple-to-state hard problems:
new assumptions, new techniques, and simplification, in Annual International Conference on the Theory
and Applications of Cryptographic Techniques (Springer, 2021), pp. 97–126

[33] R. Gay, R. Pass, Indistinguishability obfuscation from circular security, in Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 736–749

[34] C. Gentry, Fully homomorphic encryption using ideal lattices, in M. Mitzenmacher (ed.) 41st Annual
ACM Symposium on Theory of Computing (ACM Press,2009), pp. 169–178

[35] C. Gentry, S. Gorbunov, S. Halevi, Graph-induced multilinear maps from lattices, in Y. Dodis, J.B.
Nielsen (eds.) TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture
Notes in Computer Science (Springer, Heidelberg, 2015), pp. 498–527

[36] C. Gentry, S. Halevi, V. Vaikuntanathan, i-Hop homomorphic encryption and rerandomizable Yao cir-
cuits, in T. Rabin (ed) Advances in Cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science (Springer, Heidelberg, 2010), pp. 155–172

[37] C. Gentry, C.S. Jutla, D. Kane, Obfuscation using tensor products. Cryptology ePrint Archive, Report
2018/756, (2018)

[38] C. Gentry, A. Sahai, B. Waters, Homomorphic encryption from learning with errors: conceptually-
simpler, asymptotically-faster, attribute-based, in R. Canetti, J.A. Garay (ed.) Advances in Cryptology—
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science (Springer, Heidelberg, 2013),
pp. 75–92

[39] S. Goldwasser, Y.T. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, Reusable garbled circuits and
succinct functional encryption, in D. Boneh, T. Roughgarden, J. Feigenbaum (eds.) 45th Annual ACM
Symposium on Theory of Computing (ACM Press, 2013), pp. 555–564

[40] S. Goldwasser, S. Micali, Probabilistic encryption and how to play mental poker keeping secret all partial
information, in 14th Annual ACM Symposium on Theory of Computing (ACM Press, 1982), pp. 365–377

[41] S. Hada, Zero-knowledge and code obfuscation, in T. Okamoto (ed) Advances in Cryptology—
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science (Springer, Heidelberg, 2000),
pp. 443–457

[42] S. Hopkins, A. Jain, H. Lin, Counterexamples to new circular security assumptions underlying io, in
Annual International Cryptology Conference (Springer, 2021), pp. 673–700

[43] Y. Hu, H. Jia, Cryptanalysis of GGH map, in M. Fischlin, J.-S. Coron (eds.) Advances in Cryptology –
EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science (Springer, Heidelberg,
2016), pp. 537–565

[44] A. Jain, A. Korb, N. Manohar, A. Sahai, Amplifying the security of functional encryption, uncondition-
ally, in Annual International Cryptology Conference (Springer, 2020), pp. 717–746

[45] A. Jain, H. Lin, C. Matt, A. Sahai, How to leverage hardness of constant-degree expanding polynomials
overa R to build iO, in Y. Ishai, V. Rijmen (eds.) Advances in Cryptology – EUROCRYPT 2019, Part I,
volume 11476 of Lecture Notes in Computer Science (Springer, Heidelberg, 2019), pp. 251–281

[46] A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from lpn over f_p, dlin, and prgs in nĉ 0.
Cryptology ePrint Archive, (2021)

[47] A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from well-founded assumptions, in Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 60–73

[48] H. Lin, Indistinguishability obfuscation from constant-degree graded encoding schemes, in M. Fischlin,
J.-S. Coron (eds.) Advances in Cryptology—EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes
in Computer Science (Springer, Heidelberg, 2016), pp. 28–57

[49] H. Lin, Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs, in J. Katz,
H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Part I, volume 10401 of Lecture Notes in
Computer Science (Springer, Heidelberg, 2017), pp. 599–629

Candidate iO from Homomorphic... Page 41 of 41 27

[50] H. Lin, R. Pass, K. Seth, S. Telang, Indistinguishability obfuscation with non-trivial efficiency, in C.-
M. Cheng, K.-M. Chung, G. Persiano, B.-Y. Yang (eds.) PKC 2016: 19th International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer
Science (Springer, Heidelberg, 2016), pp. 447–462

[51] H. Lin, S. Tessaro, Indistinguishability obfuscation from bilinear maps and block-wise local prgs. Cryp-
tology ePrint Archive, Report 2017/250, Version 20170320:142653 (2017)

[52] H. Lin, S. Tessaro, Indistinguishability obfuscation from trilinear maps and block-wise local PRGs, in
J. Katz, H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Part I, volume 10401 of Lecture
Notes in Computer Science (Springer, Heidelberg, 2017), pp. 630–660

[53] H. Lin, V. Vaikuntanathan, Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings, in I. Dinur (ed.) 57th Annual Symposium on Foundations of Computer Science
(IEEE Computer Society Press, 2016), pp. 11–20

[54] A. Lombardi, V. Vaikuntanathan, Limits on the locality of pseudorandom generators and applications to
indistinguishability obfuscation, in Y. Kalai, L. Reyzin (eds.) TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science (Springer, Heidelberg, 2017),
pp. 119–137

[55] A. López-Alt, E. Tromer, V. Vaikuntanathan, On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption, in H.J. Karloff, T. Pitassi (eds.), 44th Annual ACMSymposium on Theory
of Computing (ACM Press, 2012) pp. 1219–1234

[56] G. Malavolta, S.A. Krishnan Thyagarajan, Homomorphic time-lock puzzles and applications, in A.
Boldyreva, D. Micciancio (eds.) Advances in Cryptology—CRYPTO 2019, Part I, volume 11692 of
Lecture Notes in Computer Science (Springer, Heidelberg, 2019), pp. 620–649

[57] D. Micciancio. From linear functions to fully homomorphic encryption. Technical report, (2019). https://
bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf.

[58] E. Miles, A. Sahai, M. Zhandry, Annihilation attacks for multilinear maps: cryptanalysis of indis-
tinguishability obfuscation over GGH13, in M. Robshaw, J. Katz (eds.) Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science (Springer, Heidelberg,
2016), pp. 629–658

[59] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in J. Stern (ed.) Ad-
vances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science (Springer,
Heidelberg, 1999), pp. 223–238

[60] C. Peikert, O. Regev, N. Stephens-Davidowitz, Pseudorandomness of ring-LWE for any ring and mod-
ulus, in H. Hatami, P. McKenzie, V. King (eds.) 49th Annual ACM Symposium on Theory of Computing
(ACM Press, 2017), pp. 461–473

[61] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in H.N. Gabow, R.
Fagin (eds.) 37th Annual ACM Symposium on Theory of Computing (ACM Press, 2005), pp. 84–93

[62] A. Sahai, B. Waters,How to use indistinguishability obfuscation: deniable encryption, and more, in D.B.
Shmoys (ed.) 46th Annual ACM Symposium on Theory of Computing (ACM Press, 2014), pp. 475–484

[63] H. Wee, D. Wichs, Candidate obfuscation via oblivious lwe sampling, inAnnual InternationalConference
on the Theory and Applications of Cryptographic Techniques (Springer, 2021), pp. 127–156

[64] A.C.-C. Yao, How to generate and exchange secrets (extended abstract), in 27th Annual Symposium on
Foundations of Computer Science (IEEE Computer Society Press, 1986), pp. 162–167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf
https://bacrypto.github.io/presentations/2018.11.30-Micciancio-FHE.pdf

	Candidate iO from Homomorphic Encryption Schemes
	1. Introduction
	1.1. Our Results
	1.2. Technical Overview
	1.2.1. Chimeric FHE
	1.2.2. Security for Split FHE
	1.2.3. Instantiating the Oracle
	1.2.4. From Split FHE to iO
	1.2.5. Other Applications

	1.3. Related Work

	2. Preliminaries
	2.1. Linear Algebra
	2.2. Indistinguishability Obfuscation
	2.3. Learning with Errors
	2.4. Decisional Composite Residuosity

	3. Homomorphic Encryption
	3.1. Linear Decrypt-and-Multiply
	3.2. Split Decryption
	3.3. Damgård-Jurik Encryption

	4. Split Fully Homomorphic Encryption
	4.1. Generic Construction
	4.2. Instantiating the Oracle
	4.2.1. A Simple Candidate
	4.2.2. Toward Removing Correlations

	4.3. Damgård-Jurik Instantiation
	4.4. Lattice-Based Instantiation

	5. Split Fully Homomorphic Encryption Implies Obfuscation
	5.1. Analysis

	6. Rate-1 Reusable Garbled Circuits
	6.1. Definition
	6.2. Rate-1 Construction

	Acknowledgements
	References

