
HAL Id: hal-03121235
https://hal.science/hal-03121235

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User-oriented Description of Emerging Services in
Ambient Systems

Maroun Koussaifi

To cite this version:
Maroun Koussaifi. User-oriented Description of Emerging Services in Ambient Systems. International
Conference on Service-Oriented Computing Workshops (ICSOC 2019 Workshops), Oct 2019, Toulouse,
France. pp.259-265, �10.1007/978-3-030-45989-5_21�. �hal-03121235�

https://hal.science/hal-03121235
https://hal.archives-ouvertes.fr


User-oriented Description
of Emerging Services in Ambient Systems

Maroun Koussaifi
Supervisors: Jean-Paul Arcangeli, Jean-Michel Bruel and Sylvie Trouilhet

University of Toulouse / IRIT, France

Abstract. Ambient intelligence aims at providing users the right services at
the right time. Our solution composes software components and their services,
automatically and on the fly, and makes composite services emerge from the
environment. An important question is their intelligible presentation to an av-
erage user (not a service composition expert). Our approach consists in the
automatic generation of user-oriented descriptions from unit descriptions of
components and services. For that, we propose a domain-specific language for
component and service descriptions and a combining method.

1 Introduction

Applications of the Internet of Things, ambient and cyber-physical systems consist
of fixed or mobile connected devices. Devices host independently developed and
managed software components that provide services specified by interfaces and, in
turn, may require other services [8]. Components are building blocks that can be as-
sembled by binding required and provided services to build composite applications.
Due to mobility and separate management, devices and software components may
appear and disappear without this dynamics being foreseen.

Humans are at the core of these dynamic and open systems. Ambient intelligence
aims at offering them a personalized environment adapted to the current situation,
anticipating their needs and providing them the right applications at the right time
with the least effort possible.

We are currently exploring and designing a solution in which components are dy-
namically and automatically assembled to build new composite applications and so
customize the environment at runtime. Our approach is quite disruptive: unlike the
traditional goal-directed top-down mode, applications are built on the fly in bottom-
up mode from the components that are present and available at the time, without
user needs being made explicit, and without relying on predefined plans. That way,
composite applications continuously emerge from the environment, taking advan-
tage of opportunities as they arise: for example, a slider on a smartphone, a software
adapter, and a connected lamp can opportunely be composed to provide the user
with a lighting service when entering a room.

Composition is automated by an opportunistic composition engine (OCE), in line
with the principles of autonomic computing [4]. OCE senses the existing compo-
nents and proactively makes the connections. The heart of OCE is a multi-agent sys-
tem where agents manage the services and their connections [10]. To make the right



decisions and build relevant applications, the agents learn online and by reinforce-
ment.

OCE behavior and decisions are out of the scope of this paper, which focuses
on placing the user in control of the deployment of emerging applications [6]. First
of all, she/he must be informed of an emerging, possibly unexpected, application.
Then, depending on its interest, she/he must be able to accept or reject it, or possibly
modify it (provided that she/he has the required skills). For that, an editor displays
the component-based architecture of the application, and allows modification [6].
However, such representation is only accessible to experts in component-based pro-
gramming. Moreover, it does not explain the service that is offered. It is then essential
to assist the user in the appropriation of the applications pushed by the engine. For
that, they must be described in a useful and understandable way. This is especially
important since the user’s reactions are the sources of feedback for learning: based
on them, OCE builds and updates a model of the user’s preferences and habits.

This paper focuses on a solution to provide the user with an intelligible descrip-
tion of emerging composite applications. Section 2 states the problem and the re-
quirements; Section 3 analyzes the state of the art; Section 4 describes the solution
and preliminary results; Section 5 concludes and outlines the main perspectives.

2 Problem statement and requirements

In the absence of prior specification, emerging applications may be unknown and
possibly surprising for the user. Thus, the way new applications are presented is
critical. The purpose of the application must be explicit [R1-Semantics] (e.g. “The
application allows to light up the lamp”), and how to use the application must be
explicit too [R2-Usage] (e.g. “Press the switch to turn ON/OFF the light”). The de-
scription must also be understandable [R3-Intelligibility]: here, we target average
users that are not familiar with programming or computer science (e.g. the inhabi-
tant of a smart house or a public transport traveller in a smart city). Moreover, the
description should remain intelligible even if the application consists of one to a few
dozen components [R4-Scalability].

Henceforth, the problem is to build and display user-oriented understandable
descriptions. As applications are automatically assembled, the descriptions of the
services they provide must be computed automatically from the descriptions of their
components and services [R5-Automation]. Besides, the language that supports the
description of components and services should be expressive and easy-to-use for
engineers that provide them [R6-Expressiveness].

3 Related work

There exists many solutions for functional and extrafunctional service description.
They are mainly used to support automated service discovery and selection in a top-
down composition approach, that tends to build a complex service from unit ones.
However, there exists no solution which aims at combining descriptions to build the
description of a composite service to be presented to the user. To the best of our



knowledge, there is no work that meets our requirements, mainly those concern-
ing usage, intelligibility, and automated processing, in the context of bottom-up and
goal-free application construction. In the following, we synthesize the related work.

For whom and why describing a service? Basically, service description is used as
documentation for developers. It allows services to be located and used, as it is the
case with WSDL. In Web service composition, the required services are specified ex-
plicitly. Then, in a more or less automatic approach [7], they are discovered and se-
lected, based on their similarity with the expected ones, then assembled together.
Hence, this consists in a top-down mode approach where the service description are
no longer necessary in the composition phase. In [9], authors propose a user-centric
composition platform: end-users first specify their goals using keywords, then the
editor present the possible services that answer his/her needs, and suggest possible
and user-changeable processes.

How to describe a service? In automated service composition approaches, the de-
scription of services varies according to the requirements of the discovery and selec-
tion steps. The different solutions for service description have been classified [3]. De-
scriptions may be limited to a syntactic way. For example, in object-oriented middle-
ware (e.g. Java RMI), services are located only through a name. Otherwise, descrip-
tions may be functional. It can have the form of signature with inputs and outputs,
likely completed by preconditions and effects [5]. However, signature is not enough
because their might be different functions with the same signature or even two ser-
vices with the same function but with different quality levels. Therefore, a service
description should include extrafunctional characteristics that is QoS-related prop-
erties. According to [3], OWL-S has become a standard for industrial service compo-
sition. OWL-S is an ontology-based language for describing semantic Web services
that enables their automated discovery, composition and use. Ontology-driven de-
scription of services have proved to be efficient for selection and composition [9].

4 Proposition

Building the description of a composite application consists in combining unit de-
scriptions of the components and their services. For that, we propose (i) a domain-
specific description language and (ii) a combination method. Due to space limita-
tion, we do not detail our solution here (see [1]). The idea is to describe both the
services and the components with their services and possibly their states. Descrip-
tions mainly rely on logical rules which state how services interact and transform
data, and how the user can use the interactive components. Engineers that develop
components provide component and service descriptions. In addition, the latter are
completed by the engine with the emerging bindings. Then, the rules are combined
to produce application-level rules.

In order to validate our approach, we have developed a prototype solution and
tested it on several use cases, with different component assembly topologies. In the
following, we present two of them.



Fig. 1. Structural representation of the lighting service

Lighting service. The application (see Fig. 1) consists of three components assem-
bled in pipeline mode: a slider, a converter and a lamp. The slider acts as a switch. It
requires the ProcessValue service. The converter provides the Transform service (that
subsumes the ProcessValue service): it receives a value and, if greater than 50, trans-
forms it into an command for the lamp through the Order required service. The lamp
provides the OnOff service (that subsumes the Order service). Fig. 2 shows the rules
resulting from the combination of the service rules highlighted in Fig. 1. Rules are
then translated into a more intelligible version of the supplied service (see Fig. 3).

Fig. 2. Description rules of the lighting service

Fig. 3. User-oriented textual description of the lighting service

Multiple lighting service. The application (see Fig. 4) uses a wall switch and a com-
ponent responsible of controlling two lamps at the same time, assembled in a star
topology. Fig. 5 shows the rules resulting from the combination of the rules high-
lighted in Fig. 4. Fig. 6 shows the same rules but in a user-oriented intelligible ver-
sion.

In this example, the lamps are commanded in parallel. Note that our solution
supports other types of composition operators, e.g. a sequence operator.



Fig. 4. Structural representation of the multiple lighting service

Fig. 5. Description rules of the multiple lighting service

Fig. 6. User-oriented textual description of the multiple lighting service

5 Conclusion and Perspectives

In this paper, we have exposed an approach that aims to answer most of the iden-
tified requirements (see section 2): [R5-Automation] by automatically generating
user-oriented descriptions; [R1-Semantics] by the description of the behaviour of
the assembly by explicit rules; [R2-Usage] by integrating dedicated operators in the
language description; and [R3-Intelligibility] by making the descriptions intelligible
thanks to functions combination algorithms and generation of descriptions in natu-
ral language. We have experimented several use cases with standard topologies that
show that our approach can meet those requirements.

At this point of our work, through user-oriented textual descriptions, average
users can be informed and understand the service that is offered by emerging com-
posite applications. Further experiments must now be carried out on more complex
applications and topologies to address the missing requirement: [R4-Scalability]. In



addition, real users should be involved in the experiments to improve and validate
intelligibility and scalability of the presentation.

Our description language being a domain-specific language, and the input as-
sembly being a model, Model-Driven Engineering (MDE) which has been proved
useful in this particular case [2] will allow us to define transformation between as-
semblies and their descriptions. In order to easily upgrade and extend our descrip-
tion language, we intend to fully use the power of MDE approaches and tools to sup-
port the automatic generation of combination algorithms from the description lan-
guage definition itself. In addition, using MDE to manipulate (e.g. fold/unfold) the
descriptions should help to address the scalability issue [R4-Scalability].

Finally, we plan to investigate the use of ontologies to help in the combination
process, in order to provide more intelligible descriptions (e.g. by aligning hetero-
geneous but related service concepts). This should limit the risk of rejection of the
service by the end-user due to misdescription of emerging applications.

References

1. Component and service description language for automated description of com-
posite applications. https://www.researchgate.net/publication/333675107_
Component_and_service_description_language_for_automated_description_
of_composite_applications, Accessed: 2019-06-10

2. Bruneliere, H., Eramo, R., Gomez, A., Besnard, V., Bruel, J.M., Gogolla, M., Kästner, A.,
Rutle, A.: Model-Driven Engineering for Design-Runtime Interaction in Complex Systems:
Scientific Challenges and Roadmap. In: MDE@DeRun 2018 workshop. LNCS, vol. 11176
(Jun 2018). https://doi.org/10.1007/978-3-030-04771-9_40

3. Fanjiang, Y., Syu, Y., Ma, S., Kuo, J.: An overview and classification of service description
approaches in automated service composition research. IEEE Transaction on Services
Computing 10(2), 176–189 (March 2017). https://doi.org/10.1109/TSC.2015.2461538

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(Jan 2003). https://doi.org/10.1109/MC.2003.1160055

5. Klusch, M.: Semantic web service description. In: CASCOM: Intelligent Service Coordina-
tion in the Semantic Web. pp. 31–57. Birkhäuser Basel, Basel (2008)

6. Koussaifi, M., Trouilhet, S., Arcangeli, J.P., Bruel, J.M.: Ambient intelligence users in the
loop: Towards a model-driven approach. In: Mazzara, M., Ober, I., Salaün, G. (eds.)
Software Technologies: Applications and Foundations. pp. 558–572. Springer (2018).
https://doi.org/10.1007/978-3-030-04771-9_42

7. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: A decade’s overview. Information Sciences 280, 218 – 238 (2014).
https://doi.org/10.1016/j.ins.2014.04.054

8. Sommerville, I.: Component-based software engineering. In: Software Engineering,
chap. 16, pp. 464–489. Pearson Education, 10 edn. (2016)

9. Xiao, H., Zou, Y., Tang, R., Ng, J., Nigul, L.: Ontology-driven service composition
for end-users. Service Oriented Computing and Applications 5(3), 159 (Mar 2011).
https://doi.org/10.1007/s11761-011-0081-z

10. Younes, W., Trouilhet, S., Adreit, F., Arcangeli, J.P.: Towards an intelligent user-oriented
middleware for opportunistic composition of services in ambient spaces. In: Proc. of the
5th Workshop on Middleware and Applications for the Internet of Things. pp. 25–30. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3286719.3286725


