1905.02005v2 [cs.LG] 11 Jul 2019

arxXiv

Deep Ordinal Reinforcement Learning

Alexander Zap, Tobias Joppen, and Johannes Fiirnkranz

TU Darmstadt, 64289 Darmstadt, Germany
alexander.zap@stud.tu-darmstadt.de
{tjoppen, juffi}@ke.tu-darmstadt.de

Abstract. Reinforcement learning usually makes use of numerical re-
wards, which have nice properties but also come with drawbacks and
difficulties. Using rewards on an ordinal scale (ordinal rewards) is an al-
ternative to numerical rewards that has received more attention in recent
years. In this paper, a general approach to adapting reinforcement learn-
ing problems to the use of ordinal rewards is presented and motivated.
We show how to convert common reinforcement learning algorithms to
an ordinal variation by the example of Q-learning and introduce Ordinal
Deep Q-Networks, which adapt deep reinforcement learning to ordinal
rewards. Additionally, we run evaluations on problems provided by the
OpenAl Gym framework, showing that our ordinal variants exhibit a
performance that is comparable to the numerical variations for a num-
ber of problems. We also give first evidence that our ordinal variant
is able to produce better results for problems with less engineered and
simpler-to-design reward signals.

Keywords: Reinforcement Learning - Ordinal Rewards

1 Introduction

Conventional reinforcement learning (RL) algorithms rely on numerical feedback
signals. Their main advantages include the ease of aggregation, efficient gradient
computation, and many use cases where numerical reward signals come naturally,
often representing a quantitative property. However, in some domains numerical
rewards are hard to define and are often subject to certain problems. One issue of
numerical feedback signals is the difficulty of reward shaping, which is the task of
creating a reward function. Since RL algorithms use rewards as direct feedback to
learn a behavior which optimizes the aggregation of received rewards, the reward
function has a significant impact on the behavior that is learned by the algorithm.
Manual creation of the reward function is often expensive, non-intuitive and
difficult in certain domains and can therefore cause a bias in the optimal behavior
that is learned by an algorithm. Since the learned behavior is sensitive to these
reward values, the rewards of an environment should not be introduced or shaped
arbitrarily if they are not explicitly known or naturally defined. This can also lead
to another problem called reward hacking, where algorithms are able to exploit a
reward function and miss the intended goal of the environment, caused by being
able to receive better rewards through undesired behavior. The use of numerical

2 A. Zap et al.

rewards furthermore requires infinite rewards to model undesired decisions in
order to not allow trade-offs for a given state. This can be illustrated by an
example in the medical domain, where it is undesirable to be able to compensate
one occurrence of death of patient with multiple occurrences of cured patient to
stay at a positive reward in average and therefore artificial feedback signals
are used that can not be averaged. These issues have motivated the search for
alternatives, such as preference-based feedback signals [13].

In this paper, we investigate the use of rewards on an ordinal scale, where we
have information about the relative order of various rewards, but not about the
magnitude of the quality differences between different rewards. Our goal is to
extend reinforcement learning algorithms so that they can make use of ordinal
rewards as an alternative feedback signal type in order to avoid and overcome
the problems with numerical rewards.

Reinforcement learning with ordinal rewards has multiple advantages and
directly addresses multiple issues of numerical rewards. Firstly, the problem of
reward shaping is minimized, since the manual creation of the ordinal reward
function specifically by the reward ordering often is intuitive and can be done
easily without the need of exact specifications for reward values. Even though
the creation of ordinal reward values, so-called reward tiers, through the ascend-
ing order of feedback signals introduces a naturally defined bias, it omits the
largely introduced artificial bias by the manual shaping of reward values. At
the same time, ordinal rewards simplify the problem of reward hacking because
the omission of specific numeric reward values has the effect that any possible
exploitation of rewards by an algorithm is only dependent on an incorrect re-
ward order, which can be more easily fixed than the search for correct numerical
values. While the use of infinite rewards can not be modelled directly, it is still
possible to define infinite rewards as highest or lowest ordinal reward tier, and
implement policies which completely avoid and encourage certain tiers.

Since the creation of the ordinal reward function is cheap and intuitive, it
is especially suitable for newly defined environments since it enables the easy
definition of ordinal rewards by ordering the possible outcomes naturally by de-
sirability. Additionally it should be noted that for existing environments with
numerical rewards it is possible to extract ordinal rewards from these environ-
ments.

The focus of this paper is the technique of using ordinal rewards for rein-
forcement learning. To this end, we propose an alternative reward aggregation
for ordinal rewards, introduce a method for policy determination from ordinal
rewards and compare the performance of ordinal reward algorithms to algo-
rithms for numerical rewards. In Section [2] we discuss related work and previous
approaches. A formal definition of common reinforcement learning terminology
can be found in Section [3] Section [d]introduce reinforcement learning algorithms
which use ordinal reward aggregations instead of numerical rewards, and illus-
trates the differences to conventional approaches. In Section [5| experiments are
executed on the framework of OpenAl Gym and common reinforcement learning
algorithms are compared to ordinal reinforcement learning.

Deep Ordinal Reinforcement Learning 3

2 Related Work

The technique of using rewards on an ordinal scale as an alternative to numerical
rewards is mainly based on the approach of preference learning (PL) [I]. In
contrast to traditional supervised learning, PL follows the core idea of having
preferences over states or symbols as labels and predicting these preferences
as the output on unseen data instances instead of labelling data with explicit
nominal or numerical values.

Recently, there have been several proposals for combining PL with RL, where
pairwise preferences over trajectories, states or actions are defined and applied as
feedback signals in reinforcement learning algorithms instead of the commonly
used numerical rewards. For a survey of such preference-based reinforcement
learning algorithms, we refer the reader to [13].

While preference-based RL provides algorithms for learning an agent’s be-
havior from pairwise comparison of trajectories, [12] presents an approach for
creating preferences over multiple trajectories in the order of ascending ordinal
reward tiers, thereby deviating from the concept of pairwise comparisons over
trajectories. Using a tutor as an oracle, this approach approximates a latent nu-
merical reward score from a sequence of received ordinal feedback signals. This
alternative reward computation functions as a reward transformation from the
ordinal to the numerical scale and is applicable on top of an existing reinforce-
ment learning algorithm.

Contrary to this approach, we do not use a tutor for the comparison of
trajectories but can directly use ordinal rewards as a feedback signal. In order to
use environments where numerical feedback already exists without the need for
acquiring human feedback about the underlying preferences, we automatically
extract rewards on an ordinal scale from existing environments with numerical
rewards. To this end, we adapt an approach that has been proposed for Monte-
Carlo Tree Search [4] to reinforcement learning.

Furthermore, we handle ordinal rewards in a similar manner as previous
approaches by directly using aggregated received ordinal rewards for comparing
different options. The idea of direct comparison of ordinal rewards builds on the
works of [10], [I1], [2] and [4], which provide criteria for the direct comparison
of ordinal reward aggregations. We utilize the approach of [4], which transfers
the numerical reward maximization problem into a best-choice maximization
problem for an alternative computation of the value function for reinforcement
learning from ordinal feedback signals. [4] used this idea for adapting Monte
Carlo Tree Search to the use of ordinal rewards.

In summary, we automatically transfer numerical feedback into preference-
based feedback and propose a new conceptual idea to utilize ordinal rewards
for reinforcement learning, which should not be seen as an alternative for the
existing algorithms stated above. Hence, we do not compare the performance of
our new approach to any of the algorithms that use additional human feedback,
but to common RL techniques that use numerical feedback.

4 A. Zap et al.

3 Markov Decision Process and Reinforcement Learning

In this section, we briefly recapitulate Markov decision processes and reinforce-
ment learning algorithms. Our notation and terminology is based on [§].

3.1 Value function and policy for Markov Decision Process

A Markov Decision Process (MDP) is defined as a tuple of (S, A, P, R) with S
being a finite set of states, A being a finite set of actions, T being the transition
function S x A x S — R that models the probability of reaching a state s’ when
action a is performed in state s, and R being the reward function S x A xS — R
which maps a reward r from a subset of possible rewards r € {r1,...,m,} C R to
executing action a in state s and reaching s’ in the process. For further work we
assume that 7" is deterministic and a transition always has the probability of 0
or 1. Furthermore it is assumed that each action a € A is executable in any state
s € S, hence the transition function is defined for every element in S x A x S. A
policy 7 is the specification which decision to take based on the environmental
state. In a deterministic setting, it is modeled as a mapping 7 : S — A which
directly maps an environmental state s to the decision a which should be taken in
this state. The value function V;:(s) represents the expected quality of a policy
7w in state s with respect to the rewards that will be received in the future.
Value functions for numerical rewards are computed by the expectation of the
discounted sum of rewards E[R]. The value function V(s) of a policy m in an
environmental state s therefore can be computed by

Vo(s) =E[R], R=Y ~'r, (1)
t=0

where R is the discounted sum of rewards when following policy m, v a discount
factor, and r; the direct reward at time step ¢. The optimal policy 7* in a state
s is the policy with the largest V,(s), which complies with the goal of an RL
algorithm to maximize expected future reward.

3.2 Reinforcement Learning

Reinforcement learning can be described as the task of learning a policy that
maximizes the expected future numerical reward. The agent learns iteratively by
updating its current policy m after every action and the corresponding received
reward from the environment. Furthermore, the agent may perform multiple
training sessions, so-called episodes, in the environment. Using the previously
defined formalism, this can be expressed as approximating the optimal policy
iteratively with a function 7, by repeatedly choosing actions that lead to states
s with the highest estimated value function V;(s). In the following section two
common reinforcement learning algorithms are introduced.

Deep Ordinal Reinforcement Learning 5

Q-learning. The key idea of the Q-learning algorithm [J] is to estimate Q-
values Q(s,a), which estimate the expected future sum of rewards E[R] when
choosing an action a in a state s and following the optimal policy 7* afterwards.
Hence the Q-value can be seen as a measure of goodness for a state-action pair
(s,a), and therefore, in a given state s, the optimal policy 7* should select the
action a that maximizes this value in comparison to other available actions in
that state. The approximated Q-values are stored and iteratively updated in a
Q-table. The Q-table is updated after an action a has been performed in a state
s and the reward r and the newly reached state s’ is observed. The computation
of the expected Q-value is done by

Q(s,a) = (s, a) +ymax Q(s', a') (2)

Following this so-called Bellman equation, every previously estimated Q-value is
updated with the newly computed expected Q-value with the formula

Q(s,a) = Q(s,a) + afr(s, a) + ymax Q(s',a) — Q(s, a)] 3)

where « represents a learning rate and - the discount factor.

Deep Q-Network. The original Q-learning algorithm is limited to very simple
problems, because of the explicitly stored Q-table, which essentially memorizes
the quality of each possible state-action pair independently. Thus it requires,
e.g., that each state-action pair has to be visited a certain number of times in
order to make a reasonable prediction for this pair. A natural extension of this
method is to replace the Q-table with a learned Q-function, which is able to
predict a quality value for a given, possibly previously unseen state-action pair.
The key idea behind the Deep Q-Network (DQN) [67] is to learn a continuous
function QP?N(s) in the form of a deep neural network with m input nodes,
which represent the feature vector of s, and n output nodes, each containing the
Q-value of one action a.

Neural networks can be iteratively updated to fit the output nodes to the
desired Q-values. The expected Q-value for a state-action pair is calculated in
the same manner as defined in with the difference that the Q-values are now
predicted by the DQN, with one output node Q2% (s) for each possible action
a. Therefore becomes

QTN (5) = (s, 0) +ymax Q¥ (') (4)

where QP@N () represents the Q-value node of action a in state s.

In order to optimize the learning procedure, DQN makes use of several opti-
mizations such as experience replay, the use of a separate target and evaluation
network, and Double Deep Q-Network. More details on these techniques can be
found in the following paragraphs.

6 A. Zap et al.

Ezperience replay. Using a neural network to fit the Q-value of the previously
executed state-action pair as described in leads to overfitting to recent ex-
periences because of the high correlation between environmental states across
multiple successive time steps, and the property of neural networks to overfit
recently seen training data. Instead of only using the previous state-action pair
for fitting the DQN, experience replay [0] uses a memory M to store previous
experience instances (s, a,r,s’) and iteratively reuses a random sample of these
experiences to update the network prediction at every time step.

Target and evaluation networks. Frequently updating the neural network, which
is simultaneously used for the prediction of the expected Q-value, leads to un-
stable fitting of the network. Therefore these two tasks, firstly the prediction of
the target Q-value for network fitting and secondly the prediction of the Q-value
which is used for policy computation, allows for a split into two networks. These
two networks are the evaluation network, which is used for policy computation,
and the target network, which is used for predicting the target value for contin-
uously fitting the evaluation network. In order to keep the target network up to
date, it is replaced by a copy of the evaluation network every c¢ steps.

Double Deep Q-Network. Deep Q-Networks tend to overestimate the prediction
of Q-values for some actions, which may result in an unjustified bias towards
certain actions. To address this problem, Double Deep Q-Networks [3] addition-
ally use the target and evaluation networks to decouple the action choice and
Q-value prediction by letting the evaluation network choose the next action to
be played, and letting the target network predict the respective Q-value.

4 Deep Ordinal Reinforcement Learning

In this section, Markov decision processes and reinforcement learning algorithms
are adapted to settings with ordinal reward signals. More concretely, we present
a method for reward aggregation that fits ordinal rewards and explain how this
method can be used in Q-learning and Deep Q-Networks in order to learn to
solve environments that return feedback signals on an ordinal scale.

4.1 Ordinal Markov Decision Process

Similar to the standard Markov Decision Process, [10] defines an ordinal version
of an MDP as a tuple of (S, A, T, R,) with the only difference that R, is the
reward function S x A x § — N is modified to return ordinal rewards instead of
numerical ones. Thus, it maps executing action a in state s and reaching state s’
to an ordinal reward r, from a subset of possible ordinal rewards r, € {1,...,n} C
N, with n representing the number of ordinal rewards. Whereas a real-valued
reward provides information about the qualitative size of the reward, the ordinal
scale breaks rewards down to naturally ordered reward tiers. These reward tiers
solely represent the rank of desirability of a reward compared to all other possible

Deep Ordinal Reinforcement Learning 7

rewards, which is noted as the ranking position r, of a reward r in the set of all
possible rewards {r1, ..., }. Interpreting the reward signals on an ordinal scale
still allows us to order and directly compare individual reward signals, but while
the numerical scale allows for comparison of rewards by means of the magnitude
of their difference, ordinal rewards do not provide this information.

In order to aggregate multiple ordinal rewards, a distribution to store and
represent the expected frequency of received rewards on the ordinal scale is
constructed. This distribution is represented by a vector D(s,a), in which d;(s, a)
represents the frequency of receiving the ordinal reward r; by executing a in s.
The distribution vector is defined by

dq(s,a)
D(s,a) = (5)
dn(s,a)

Through normalization of distribution vector D, a probability distribution P can
be constructed, which represents the expected probability of receiving a reward.
The probability distribution is represented by a probability vector P(s,a), in
which p; (s, a) represents the estimated probability of receiving the ordinal reward
r; by executing a in s. Hence the probability vector can be defined by

p1(s,a) n
P(s,a) = with Zpi(s,a) =1land 0 < p;(s,a) <1 (6)
pn(S,CL) i=1

Value function for ordinal rewards. While numerical rewards enable the
representation of value function V; (s) by the expected sum of rewards, the value
function for environments with ordinal rewards needs to be estimated differently.
Since ordinal rewards are aggregated in a distribution of received ordinal rewards,
the calculation of value function V,(s) in state s can be done based on P(s,a)
for action a that is selected by policy w. Hence the computation of the value
function can be modeled by the following formula of

Vz(s) = F(P(s,a)) with a = 7(s) (7)

The computation of the value function from probability distribution P(s,a)
through function F' is performed by the technique of measure of statistical supe-
riority [4]. This measure computes the probability that action a receives a better
ordinal reward than a random alternative action ¢’ in the same environmental
state s. This probability can be calculated through the sum of all probabilities of
a receiving a better ordinal reward o than a’. Hence the probability of an action
a performing better than another action a’ can be defined as

Pa - d') = ;po(s, a)- <po< (s,a’) + %po(s, a')>

o—1
with Po< (S, a) = Zpi(s, (l)
i=1

8 A. Zap et al.

To deal with ties, additionally half the probability of a receiving the same reward
tier as a’ is added.

The function of the measure of statistical superiority therefore is computed
through the averaged winning probability of a against all other actions a’ by

F(P(s,a)) = E[P(a = a')] = W .

for k available actions in state s.
Based on , the optimal policy 7* can be determined in the same way as
for numerical rewards by maximizing the respective value function V;(s).

4.2 Transformation of existing numerical rewards to ordinal
rewards

If an environment has pre-defined rewards on a numerical scale, transforming
numerical rewards r € {ry,...,r,} C R into ordinal rewards r, € {1,..,n} C N
can easily be done by translating every numerical reward to its ordinal position
within all possible numerical rewards. This way the lowest possible numerical
reward is mapped to position 1, and the highest numerical reward is mapped to
position n, with n representing the number of possible numerical rewards. This
transformation process simply results in removing the metric and semantic of
distances of rewards but keeping the order.

4.3 Ordinal Reinforcement Learning

In Section[4.1] we have shown how to compute a value function V;(s) and defined
the optimal policy 7* for environments with ordinal rewards. This can now be
used for adapting common reinforcement learning algorithms to ordinal rewards.

Ordinal Q-learning. For the adaptation of the Q-learning algorithm to ordinal
rewards, we do not directly update a Q-value Q(s, a) that represents the quality
of a state-action pair (s, a) but update the distribution D(s,a) of received ordi-
nal rewards. The target distribution is computed by adding the received ordinal
reward 4 (represented through unit vector e; of length n) to the distribution
D(s',7*(s")) of taking an action in the new state s’ according to the optimal
policy 7*. The previous distribution D(s,a) is updated with the target distribu-
tion by interpolating both values with learning rate «, which can be seen in the
formula

D(s,a) = D(s,a) + ofei(s,a) + 7D(s',7(s")) — D(s,)] (9)

In this adaptation of Q—le::u‘ningﬂ7 the expected quality of state-action pair (s, a)
is not represented by the Q-value Q(s,a) but by the function F'(P(s,a))
(8) of the probability distribution P(s,a), which is derived from the iteratively
updated distribution D(s,a).

! This technique of modifying the Q-learning algorithm to deal with rewards on an or-
dinal scale can analogously be applied to other Q-table based reinforcement learning
algorithms like Sarsa and Sarsa-A [14]

Deep Ordinal Reinforcement Learning 9

Input Hidden Output Input Hidden Output
layer layer layer layer layer layer

di(s,a1)

da(s,a1)

ds(s,a1)

di(s,a1)

Figure1: Example of an array of ordinal deep neural networks for DQN for
reward distribution prediction

Ordinal Deep Q-Network. Because ordinal rewards are aggregated by a dis-
tribution instead of a numerical value, the neural network is adapted to predict
distributions D(s, a) instead of Q-values for every possible action. Hence for one
action the network does not predict a 1-dimensional Q-value, but predicts an
n-dimensional reward distribution with n being the length of the ordinal scale.
Since this distribution has to be computed for each of k actions, the adapta-
tion of the Deep Q-Network algorithm to ordinal rewards requires a differently
structured neural network. Contrary to the original Deep Q-Network where one
network simultaneously predicts k Q-values for all actions, the structure of the
ordinal DQN consists of an array of k neural networks, from which every network
computes the expected ordinal reward distribution D(s,a) for one separate ac-
tion a. In a deep neural network for the prediction of distributions every output
node of the network computes one distribution value d;(s,a). The structure of
neural networks used for the prediction of distributions can be seen in Figure
The prediction of the ordinal reward distributions D(s, a) for all actions can
afterwards be normalized to a probability distribution and used in order to com-
pute the value function V;(s) through the measure of statistical superiority as
has been previously defined in . Once the value function and policy have been
evaluated, the ordinal variant of the DQN algorithm follows a similar procedure
as ordinal Q-learning and updates the prediction of the reward distribution for
(s,a) by fitting DP?PN (s) to the target reward distribution:
DPN(s) = ey, (s,a) + yDPLY (s (10)
The main difference in the update step between ordinal Q-learning @D and
ordinal DQN consists of fitting the neural network of action a for input s to the
expected reward distribution by backpropagation instead of updating a Q-table
entry (s,a). Additional modifications to the ordinal Deep Q-Network in form of
experience replay, the split of the target and evaluation network and the usage
of a Double DQN are done in a similar fashion as described with the standard
DQN algorithm in Section [3.2] These modifications can be seen in the following
paragraphs.

10 A. Zap et al.

Experience replay. A memory M is used to sample multiple saved experience
elements (s,a,r,,s’) randomly and replay these previously seen experiences by
fitting the ordinal DQN networks to the samples of earlier memory elements.

Target and evaluation networks. In order to prevent unstable behavior by using
the same networks for the prediction and updating step, we use separate evalu-
ation networks to predict reward distributions for the policy computation, and
use target networks to predict the target reward distributions which are used for
fitting the evaluation networks continuously.

Double Deep Q-Network. The neural networks of ordinal DQN tend to overes-
timate the prediction of the reward distributions for some actions, which may
result in an unjustified bias towards certain actions. Therefore, in order to de-
termine the next action to be played by 7*, the measure of statistical superiority
is computed based on the reward distributions predicted by the evaluation net-
works. Afterwards the prediction of the reward distribution for this action is
computed by the respective target network.

5 Experiments and Results

In the following, the standard reinforcement algorithms described in Section [3.2
and the ordinal reinforcement learning algorithms described in Section [4.3] are
evaluated and compared in a number of testing environmentsﬂ

5.1 Experimental setup

The environments which are used for evaluation are provided by OpenAl Gymﬂ
which can be viewed as a unified toolbox for our experiments. All environments
expect an action input after every time step and return feedback in form of the
newly reached environmental state, the direct reward for the executed action, and
the information whether the newly reached state is terminal. The environments
that the algorithms were tested on were CartPole and Acmbotﬁ

Policies of the reinforcement learning algorithms were modified to use e-greedy
exploration [8], which encourages early exploration of the state space and in-
creases exploitation of the learned policy over time. In the experiments the max-
imum exploitation is reached after half of the total episodes. In order to directly
compare the standard and the ordinal variants of reinforcement learning algo-
rithms, the quality of the learned policy and the computational efficiency are
investigated across all environments with varying episode numbers. Information

2 The source code for the implementation of the experiments can be found in https:
//github.com/az79nefy/OrdinalRL.

° For further information about OpenAl visit https://gym.openai.com.

4 Further technical details about the environments CartPole and Acrobot from Ope-
nAl can be found in https://gym.openai.com/envs/CartPole-v0/| and https:
//gym.openai.com/envs/Acrobot-vi/.

https://github.com/az79nefy/OrdinalRL
https://github.com/az79nefy/OrdinalRL
https://gym.openai.com
https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/Acrobot-v1/
https://gym.openai.com/envs/Acrobot-v1/

Deep Ordinal Reinforcement Learning 11

200
175

o

g 150

"

o 125 Algorithms
()] !

© 100 Ordinal
g s —— Standard
<<

50 —— Standard CR

25

XmAR X%y
0 100 200 300 400 0 2000 4000 6000 8000 10000
Number of episodes Number of episodes

Figure 2: CartPole scores of standard and ordinal Q-learning for 400 and 10000
episodes

about the quality of the learned policy is derived from the sum of rewards over a
whole episode (score) or the win rate while the efficiency is measured by real-time
processing time. Additionally to the standard variant with unchanged rewards,
the performance of standard Q-learning algorithms is tested with changed re-
wards in order to simulate the performance on environments where no optimal
reward engineering has been performed. It should be noted that the modifica-
tions of the rewards is performed under the constraints of remaining existing
reward order, therefore not changing the transformation to the ordinal scale.
The change of rewards (CR) from the existing numerical rewards r € {rq, ..., 7}

is performed for all rewards by the calculation of 7., , = %%n(r)

The parameter configuration of the Q-learning algorithms is learning rate
a = 0.1 and discount factor v = 0.9. The parameter configuration of the Deep
Q-Network algorithm is learning rate o« = 0.0005 and discount factor v = 0.9. As
for the network specific parameters, the Adam optimizer is used for the network
fitting, the target network is getting replaced every 300 fitting updates, the

experience memory size is 200000 and the replay batch size is 64.

5.2 Experimental results

The results of the comparison between numerical and ordinal algorithms for
the CartPole- and Acrobot-environment in terms of score, win rate and compu-
tational time are shown and investigated in the following. This comparison is
performed based on the averaged results from 10 and respectively 5 independent
runs of Q-learning and Deep Q-Network on the environments.

Q-learning. In Figure[2]the scores for the CartPole-environment over the course
of 400 and 10000 episodes can be seen which were played by an agent using the
ordinal (orange) as well as the standard Q-learning algorithm, with (red) and
without (blue) modified rewards. Additionally the individual dots in this figure
represent the scores achieved by the respective algorithms by using the optimal
policy instead of e-greedy exploration. The evaluation of these scores shows that
the ordinal variant of Q-learning performs better than the standard variant with

12 A. Zap et al.

0.30
0.25
0.20

Ordinal
—— Standard

o
w
3

Ordinal
—— Standard

W

°
o
&

o
o
S

°
S

Average value function margin
° °
o o
& G

Average value function margin
°
2
G

o
=)
3
o
=
3

0 50 100 150 200 250 300 350 400 0 2000 4000 6000 8000 10000
Number of episodes Number of episodes
Figure 3: Comparison of value function margin for best action of standard and
ordinal Q-learning for 400 and 10000 episodes of CartPole

engineered rewards for 400 episodes and reaches the optimal score of 200 quicker
for 10000 episodes. Additionally the use of ordinal rewards significantly outper-
forms the standard variant with modified rewards for both episode numbers.
Therefore it can be seen that ordinal Q-learning is able to learn a good policy
better than the standard variants for the CartPole-environment.

In order to explain the difference of learned behavior between the standard
and ordinal variant, the average relative difference of Q-values Q(s, a) and respec-
tively measure of statistical superiority functions F(P(s,a)) for the two possible
actions were plotted and compared in Figure [3| for standard (blue) and ordinal
(orange) Q-learning. It can be seen for both episode numbers that the policy
which is learned by ordinal RL through the measure of statistical superiority
converges to a difference of 0, meaning that the function F(P(s,a)) converges
to similar values for both actions. This can be interpreted as the policy learning
to play safely and rarely entering any critical states where this function would
indicate strong preference towards one action (e.g. in big angles). On the other
side it can be seen for 400 episodes that common RL does not converge towards
similar Q-values for the actions over time and therefore a policy is learned that
enters critical states more often. It should be noted that the Q-value differences
for standard Q-learning converges to 0 for evaluations with more episodes and a
safe policy is eventually learned as well.

In Figure [4] the win rates from the Acrobot-environment were plotted over
the course of 400 and 10000 episodes similarly as the scores for the CartPole-
environment and it can be seen for low episode numbers that while the policy
learned by the standard variant of Q-learning with unchanged rewards performs
better than the policy learned by the ordinal variant, changing the numerical
values of rewards yields the same performance as the ordinal variant. But for high
episode numbers it should be noted that the ordinal variant reaches a similar
performance as the standard variant with a win rate of 0.3 after 10000 episodes

and clearly outperforms the win rate of the standard Q-learning algorithm with
CR.

Deep Ordinal Reinforcement Learning 13

1.0 1.0
0.8 0.8

2 0.6 2 0.6

o [Algorithms

c c ;

§ 0.4 § 0.4 Ordinal

—— Standard

0.2 0.2 —— Standard CR
0.0 — 0.0 =

0 100 200 300 400 0 2000 4000 6000 8000 10000
Number of episodes Number of episodes

Figure 4: Acrobot win rates of standard and ordinal Q-learning for 400 and 10000
episodes

c 0200 Ordinal c 0200 Ordinal
go.us —— Standard % 0175 —— Standard
£ £
c 0150 c 0.150
2 L
0125 0125
c <
2 0.100 2 0100
o
= =
F 0075 5 0075
>
© 00501 | @ 0,050
\
3 0.025 M $ 0.025
N
< 0,000 ™~ < 0000{ \
0 5 100 150 200 250 300 350 400 0 2000 4000 6000 8000 10000
Number of episodes Number of episodes

Figure 5: Comparison of value function margin for best action of standard and
ordinal Q-learning for 400 and 10000 episodes of Acrobot

Similar as for the CartPole-environment, the F- and Q-function margins of
the best actions over the course of 400 and 10000 episodes were compared in
Figure p| and yield different observations for the standard and ordinal variants,
and it can be therefore be concluded that the learned policies differ. While the
ordinal variant decreases the relative margin of F'(P(s, a)) of the best action and
therefore learns a policy which plays safely, the standard variant learns a policy
which maximizes the Q-value margin of the best action and therefore follows a
policy which enters critical states more often. While the standard variant learns
a good policy quicker, it should be noted that both policies perform comparably
after many episodes despite the policy differences.

As can be seen in Table [I} using the ordinal variant results in an additional
computational load by a factor between 0.8 and 1.2 for CartPole and 0.5 for
Acrobot. The additionally required computational capacity is caused by the
computation of the measure of statistical superiority which is less efficient than
computing the expected sum of rewards. This factor could be reduced by using
the iterative update of the function measure of statistical superiority described

in [4].

14 A. Zap et al.

Table 1: Computation time comparison of standard and ordinal Q-learning for
varying episode numbers

Number of CartPole Acrobot

episodes Standard Ordinal Standard Ordinal
400 2.10 s 417 s 35.74 s 52.85 s
2000 10.07 s 24.86 s 174.38 s 266.40 s
10000 67.29 s 130.09 s 855.15 s 1258.30 s
50000 35452 s 667.87s 4149.78 s 6178.76 s

Deep Q-Network. In Figure[f]the scores achieved in the CartPole-environment
by the ordinal as well as the standard Deep Q-Network, with and without CR,
can be seen over the course of 160 and 1000 episodes. For 160 episodes it can
be seen that ordinal DQN as well as the standard variant without CR converge
to a good policy reaching an episode score close to 150. Contrary to this perfor-
mance, modified rewards negatively impact standard Q-learning and therefore
its performance is significantly worse, not reaching a score above 100. Addition-
ally for low episode numbers it should be noted that the policy learned by the
ordinal variant of Deep Q-Network is able to achieve good scores faster than the
standard variant, matching the observation made for the Q-learning algorithms.
The evaluation for 1000 episodes shows that the performances of standard, with
and without CR, and ordinal DQNs are comparable.

Figure [7] plots the win rate of Deep Q-Network algorithms for the Acrobot-
environment over the course of 160 and 1000 episodes. For 160 episodes standard
DQN with engineered rewards performs better than the ordinal variant, but loses
this quality once the rewards are modified. For high episode numbers it can be
seen that the ordinal variant is comparable to the standard algorithm without
CR and solves the environment with a win rate of close to 1.0, but clearly
outperforms the standard DQN with modified rewards which is only able to
achieve a win rate of 0.6. It should be noted that all variants of DQN are able
to learn a better policy than their respective Q-learning algorithms, achieving a
higher win rate in less than 160 episodes.

Additionally, it should be noted that the use of the ordinal variant of DQN
adds an additional computational factor between 0 and 0.5 for the CartPole-
environment and 1.0 for the Acrobot-environment, as can be seen in Table 2}

Since the evaluation of the ordinal Deep Q-Network algorithm shows compa-
rable results to the standard DQN with engineered rewards and furthermore out-
performs the standard variant with modified rewards, it can be concluded that
the conversion of the Deep Q-Network algorithm to ordinal rewards is successful.
Therefore it has been shown that algorithms of deep reinforcement learning can
as well be adapted to the use of ordinal rewards.

Deep Ordinal Reinforcement Learning 15

200 200
175 175

o

S 150

b

o 125 Algorithms

()] !

© 100 Ordinal

g s —— Standard

< 50 —— Standard CR
25

L1 L3

0 25 50 75 100 125 150 0 200 400 600 800 1000
Number of episodes Number of episodes

Figure 6: CartPole scores of standard and ordinal DQN for 160 and 1000 episodes

1.0 1.0
0.8 0.8
3 3
0.6 0.6)
o [Algorithms
= = H
§ 0.4 g 0.4 Ordinal
—— Standard
0.2 0.2 —— Standard CR
0.0 \ 0.0
0 25 50 75 100 125 150 0 200 460 600 800 1000
Number of episodes Number of episodes

Figure 7: Acrobot win rates of standard and ordinal DQN for 160 and 1000
episodes

6 Conclusion

In this paper we have shown that the use of ordinal rewards for reinforcement
learning is able to reach and even improve the quality of standard reinforcement
learning algorithms with numerical rewards. We compared RL algorithms for
both numerical and ordinal rewards on a number of tested environments and
demonstrated that the performance of the ordinal variant is mostly comparable
to the learned common RL algorithms that make use of engineered rewards while
being able to significantly improve the performance for modified rewards.

Finally, it should be noted that ordinal reinforcement learning enables the
learning of a good policy for environments without much effort to manually
shape rewards. We hereby lose the possibility of reward shaping to the same
degree that numerical rewards would allow, but therefore gain a more simple-
to-design reward structure. Hence, our variant of reinforcement learning with
ordinal rewards is especially suitable for environments that do not have a natural
semantic of numerical rewards or where reward shaping is difficult. Additionally
this method enables the usage of new and unexplored environments for RL only
with the specification of an order of desirability instead of the needed effort of
manually engineering numerical rewards with sensible semantic meaning.

16 A. Zap et al.
Table 2: Computation time comparison of standard and ordinal DQN
Number of CartPole Acrobot
episodes Standard Ordinal Standard Ordinal
160 1520.01 s 2232.48 s 3659.44 s 7442.49 s
400 6699.69 s 7001.79 s 9678.80 s 19840.88 s
1000 15428.41s 15526.84 s 23310.36 s 47755.90 s
Acknowledgements

This work was supported by DFG. Calculations for this research were conducted
on the Lichtenberg high performance computer of the TU Darmstadt.

References

1.
2.

11.

12.

Fiirnkranz, J., Hilllermeier, E. (eds.): Preference Learning. Springer-Verlag (2011)
Gilbert, H., Weng, P.: Quantile reinforcement learning. CoRR abs/1611.00862
(2016)

Hasselt, H.v., Guez, A., Silver, D.: Deep Reinforcement Learning with Double
Q-Learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence. pp. 2094-2100. AAAT’16, AAAI Press (2016)

Joppen, T., Filirnkranz, J.: Ordinal Monte Carlo Tree Search. CoRR
abs/1901.04274 (2019)

Lin, L.J.: Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1992), uMI Order No. GAX93-
22750

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.A.: Playing Atari with Deep Reinforcement Learning. CoRR
abs/1312.5602 (2013)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529-533 (2015)

Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press, second edn. (2018)

Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8, 279-292 (1992)

. Weng, P.: Markov decision processes with ordinal rewards: Reference point-based

preferences. In: Proceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS-11). AAAI Press, Freiburg, Germany (2011)
Weng, P.: Ordinal Decision Models for Markov Decision Processes. In: Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI-12). pp. 828-833.
I0S Press, Montpellier, France (2012)

Weng, P., Busa-Fekete, R., Hiillermeier, E.: Interactive Q-Learning with Ordinal
Rewards and Unreliable Tutor. In: Proceedings of the ECML/PKDD-13 Workshop
on Reinforcement Learning from Generalized Feedback: Beyond Numeric Rewards
(2013)

Deep Ordinal Reinforcement Learning 17

13. Wirth, C., Akrour, R., Neumann, G., Flirnkranz, J.: A Survey of Preference-Based
Reinforcement Learning Methods. Journal of Machine Learning Research 18(136),
1-46 (2017)

14. Zap, A.: Ordinal Reinforcement Learning. Master’s thesis, Technische Universitit
Darmstadt (2019), To appear

	Deep Ordinal Reinforcement Learning

