Skip to main content

SCUT Sampling and Classification Algorithms to Identify Levels of Child Malnutrition

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1070))

Included in the following conference series:

  • 633 Accesses

Abstract

Child malnutrition results in millions of deaths every year. This condition is a potential problem in Peruvian society, especially in the rural parts of the country. The consequences of malnutrition range from physical limitations to declining mental performance and productivity for the individual. Government initiatives contribute to decreasing the causes of this disorder; however, these efforts are focused on long term solutions. The need for a fast and reliable way to detect these cases early on still exists. This paper compares classification techniques to determine which one is the most appropriate to classify cases of malnutrition. Neural networks and decision trees are used in combination with different sampling techniques, such as SCUT, SMOTE, random oversampling, random undersampling, and Tomek links. The models produced using oversampling techniques achieved high accuracies. Further, the models produced by the SCUT algorithm achieved high accuracies, preserved the behavior of the data and allowed for better representations of minority classes. The multilayer perceptron model that used the SCUT sampling techniques was chosen as the best model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Viktor, H.L., Paquet, E.: SCUT: multi-class imbalanced data classification using SMOTE and cluster-based undersampling. In: Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, vol. 1, pp. 226–234 (2015). https://doi.org/10.5220/0005595502260234

  2. Aruna, S., Sudha, P.: An efficient identification of malnutrition with unsupervised classification using logical decision tree algorithm. Res. J. Pharm. Biol. Chem. Sci. 4(2), 365–373 (2016)

    Google Scholar 

  3. Azarkhish, I., Raoufy, M.R., Gharibzadeh, S.: Artificial intelligence models for predicting iron deficiency anemia and iron serum level based on accessible laboratory data. J. Med. Syst. 36(3), 2057–2061 (2012). https://doi.org/10.1007/s10916-011-9668-3

    Article  Google Scholar 

  4. Batista, G., Prati, R., Monard, C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  5. Bullón, C., Astete, R.: Determinantes de la Desnutrición Crónica de los Menores de Tres Años en las Regiones del Perú: Sub-Análisis de la Encuesta Endes 2000. Anales Científicos 77(2), 249 (2016). https://doi.org/10.21704/ac.v77i2.636

    Article  Google Scholar 

  6. Çarkli Yavuz, B., Karagül Yildiz, T., Yurtay, N., Pamuk, Z.: Comparison of K nearest neighbours and regression tree classifiers used with clonal selection algorithm to diagnose haematological diseases. AJIT-e Online Acad. J. Inf. Technol. 5(16), 7 (2014)

    Article  Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. JAIR 16, 321–357 (2002)

    MATH  Google Scholar 

  8. Chinchay, K.: Costos Económicos en Salud de la Prevalencia de Desnutrición Crónica en Niños Menores de 5 Años en el Perú en el Período 2007–2013, Lima (2015)

    Google Scholar 

  9. Dalvi, P.T., Vernekar, N.: Anemia detection using ensemble learning techniques and statistical models. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1747–1751. IEEE (2016)

    Google Scholar 

  10. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998). https://doi.org/10.1162/089976698300017197

    Article  Google Scholar 

  11. Garcia, L.S., Jave, C.M., Cárdenas, M.E.H., López, P.A., Sánchez, G.B.: Pobreza y desnutrición infantil. PRISMA ONGD (2002)

    Google Scholar 

  12. Instituto Nacional de Estadística e Informática: Desnutrición Crónica Infantil en niñas y niños menores de cinco años disminuyó en 3.1 puntos porcentuales. https://gestion.pe/economia/disminuye-desnutricion-cronica-infantil-pais-revela-inei-114809. Accessed 6 July 2019

  13. Instituto Nacional de Estadística e Informática: Desnutrición Crónica afectó al 12.2% de la población menor de cinco años de edad en el año 2018. https://www.inei.gob.pe/prensa/noticias/desnutricion-cronica-afecto-al-122-de-la-poblacion-menor-de-cinco-anos-de-edad-en-el-ano-2018-11370/. Accessed 6 July 2019

  14. Mariños-Anticona, C., Chaña-Toledo, R., Medina-Osis, J., Vidal-Anzardo, M., Valdez-Huarcaya, W.: Determinantes sociales de la desnutrición cronica infantil en el Perú. Revista Peruana de Epidemiología 18(1), 1–7 (2014)

    Google Scholar 

  15. Markos, Z., Doyore, F., Yifiru, M., Haidar, J.: Predicting under nutrition status of under-five children using data mining techniques: the case of 2011 Ethiopian Demographic and Health Survey. J. Health Med. Inform. 5, 152 (2014)

    Article  Google Scholar 

  16. Mehta, N.M., et al.: American Society for Parenteral and Enteral Nutrition Board of Directors. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. J. Parenter. Enter. Nutr. JPEN 37(4), 460–481 (2013)

    Article  Google Scholar 

  17. Ministerio de Salud: Desnutrición Infantil Crónica y sus Determinantes de Riesgo, Lima, Perú, Marzo de 2010

    Google Scholar 

  18. Park, M., Kim, H., Kyung, S.: Knowledge discovery in a community data set: malnutrition among the elderly. Healthc. Inform. Res. 20(1), 30–38 (2014). https://doi.org/10.4258/hir.2014.20.1.30

    Article  Google Scholar 

  19. Prati, R.C., Batista, G.E., Monard, M.C.: Data mining with imbalanced class distributions: concepts and methods. Paper Presented at the IICAI (2009)

    Google Scholar 

  20. Sanap, S.A., Nagori, M., Kshirsagar, V.: Classification of anemia using data mining techniques. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011. LNCS, vol. 7077, pp. 113–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27242-4_14

    Chapter  Google Scholar 

  21. Sobrino, M., Gutiérrez, C., Cunha, A.J., Dávila, M., Alarcón, J.: Desnutrición infantil en menores de cinco años: tendencias y factores determinantes. Revista Panamericana de Salud Pública 35(2), 104–122 (2014)

    Google Scholar 

  22. Thangamani, D., Sudha, P.: Identification of malnutrition with use of supervised datamining techniques-decision trees and artificial neural networks. Int. J. Eng. Comput. Sci. 3(9), 8236–8241 (2014)

    Google Scholar 

  23. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Commun. SMC–6(11), 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Wisbaum, W., et al.: DESNUTRICIÓN INFANTIL: Causas, consecuencias y estrategias para su prevención y tratamiento. Unicef, vol. 1, p. 21 (2011). https://old.unicef.es/sites/www.unicef.es/files/Dossierdesnutricion.pdf. Accessed 6 July 2019

  25. World Health Organization: Malnutrición. https://www.who.int/es/news-room/fact-sheets/detail/malnutrition. Accessed 6 July 2019

  26. Ye, F., et al.: Chi-squared automatic interaction detection decision tree analysis of risk factors for infant anemia in Beijing, China. Chin. Med. J. 129(10), 1193–1199 (2016). https://doi.org/10.4103/0366-6999.181955

    Article  Google Scholar 

  27. Yilmaz, Z., Bozkurt, M.R.: Determination of women iron deficiency anemia using neural networks. J. Med. Syst. 36(5), 2941–2945 (2012). https://doi.org/10.1007/s10916-011-9772-4

    Article  Google Scholar 

  28. Yu, C.H., Bhatnagar, M., Hogen, R., Mao, D., Farzindar, A., Dhanireddy, K.: Anemic status prediction using multilayer perceptron neural network model. In: 3rd Global Conference on Artificial Intelligence, GCAI, pp. 213–220 (2017)

    Google Scholar 

  29. Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Comput. Inform. 34(5), 1017–1037 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gutiérrez-Cárdenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baraybar-Huambo, J., Gutiérrez-Cárdenas, J. (2020). SCUT Sampling and Classification Algorithms to Identify Levels of Child Malnutrition. In: Lossio-Ventura, J.A., Condori-Fernandez, N., Valverde-Rebaza, J.C. (eds) Information Management and Big Data. SIMBig 2019. Communications in Computer and Information Science, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-46140-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46140-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46139-3

  • Online ISBN: 978-3-030-46140-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics