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Abstract. Learning domain-invariant representation is a dominant ap-
proach for domain generalization (DG), where we need to build a classifier
that is robust toward domain shifts. However, previous domain-invariance-
based methods overlooked the underlying dependency of classes on do-
mains, which is responsible for the trade-off between classification accuracy
and domain invariance. Because the primary purpose of DG is to classify
unseen domains rather than the invariance itself, the improvement of the
invariance can negatively affect DG performance under this trade-off. To
overcome the problem, this study first expands the analysis of the trade-
off by Xie et. al. [33], and provides the notion of accuracy-constrained
domain invariance, which means the maximum domain invariance within
a range that does not interfere with accuracy. We then propose a novel
method adversarial feature learning with accuracy constraint (AFLAC),
which explicitly leads to that invariance on adversarial training. Empirical
validations show that the performance of AFLAC is superior to that of
domain-invariance-based methods on both synthetic and three real-world
datasets, supporting the importance of considering the dependency and
the efficacy of the proposed method.

Keywords: Invariant Feature Learning · Adversarial Training · Domain
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1 Introduction

In supervised learning we typically assume that samples are obtained from the
same distribution in training and testing; however, because this assumption does
not hold in many practical situations it reduces the classification accuracy for
the test data [30]. This motivates research into domain adaptation (DA) [9] and
domain generalization (DG) [3]. DA methods operate in the setting where we
have access to source and (either labeled or unlabeled) target domain data during
training, and run some adaptation step to compensate for the domain shift. DG
addresses the harder setting, where we have labeled data from several source
domains and collectively exploit them such that the trained system generalizes
to target domain data without requiring any access to them. Such challenges
arise in many applications, e.g., hand-writing recognition (where domain shifts
are induced by users, [28]), robust speech recognition (by acoustic conditions,
[29]), and wearable sensor data interpretation (by users, [7]).
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Fig. 1. Explanation of domain-class dependency and the induced trade-off. (a) When
the domain and the class are independent, (b) domain invariance and classification
accuracy can be optimized at the same time, and the invariance prevents the classifier
from overfitting to source domains. (c) When they are dependent, a trade-off exists
between these two: (d) optimal classification accuracy cannot be achieved when perfect
invariance is achieved, and (e) vice versa. We propose a method to lead explicitly to (e)
rather than (d), because the primary purpose for domain generalization is classification,
not domain-invariance itself.

This paper considers DG under the situation where domain d and class
labels y are statistically dependent owing to some common latent factor z
(Figure 1-(c)), which we referred to as domain-class dependency. For example, the
WISDM Activity Prediction dataset [16], where classes and domains correspond
to activities and wearable device users, exhibits this dependency because of
the (1) data characteristics: some activities (jogging and climbing stairs) are
strenuous to the extent that some unathletic subjects avoided them, and (2)
data-collection errors: other activities were added only after the study began
and the initial subjects could not perform them. Note that the dependency is
common in real-world datasets and a similar setting has been investigated in DA
studies [36,12], but most prior DG studies overlooked the dependency; moreover,
we need to follow a approach separate from DA because DG methods cannot
require any access to target data, as we discuss further in Sec. 2.2.

Most prior DG methods utilize invariant feature learning (IFL) [27,7,10,33],
which can be negatively affected by the dependency. IFL attempts to learn
latent representation h from input data x which is invariant to domains d,
or match multiple source domain distributions in feature space. When source
and target domains have some common structure (see, [27]), matching multiple
source domains leads to match source and target ones and thereby prevent the
classifier from overfitting to source domains (Figure 1-(b)). However, under the
dependency, merely imposing the perfect domain invariance (which means h and
d are independent) adversely affects the classification accuracy as pointed out by
Xie et al. [33] and illustrated in Figure 1. Intuitively speaking, since y contains
information about d under the dependency, encoding information about d into h
helps to predict y; however, IFL attempts to remove all domain information from
h, which causes the trade-off. Although that trade-off occurs in source domains
(because we use only source data during optimization), it can also negatively
affect the classification performance for target domains. For example, if the target
domain has characteristics similar (or same as an extreme case) to those of a
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certain source domain, giving priority to domain invariance obviously interferes
with the DG performance (Figure 1-(d)).

In this paper, considering that prioritizing domain invariance under the trade-
off can negatively affect the DG performance, we propose to maximize domain
invariance within a range that does not interfere with the classification accuracy
(Figure 1-(e)). We first expand the analysis by [33] about domain adversarial nets
(DAN), a well-used IFL method, and derive Theorem 1 and 2 which show the
conditions under which domain invariance harms the classification accuracy. In
Theorem 3 we show that accuracy-constrained domain invariance, which we define
as the maximum H(d|h) (H denotes entropy) value within a range that does not
interfere with accuracy, equals H(d|y). In other words, when H(d|h) = H(d|y),
i.e., the learned representation h contains as much domain information as the
class labels, it does not affect the classification performance. After deriving the
theorems, we propose a novel method adversarial feature learning with accuracy
constraint (AFLAC), which leads to that invariance on adversarial training.
Empirical validations show that the performance of AFLAC is superior to that
of baseline methods, supporting the importance of considering domain-class
dependency and the efficacy of the proposed approach for overcoming the issue.

The main contributions of this paper can be summarized as follows. Firstly,
we show that the implicit assumption of previous IFL methods, i.e., domain
and class are statistically independent, is not valid in many real-world datasets,
and it degrades the DG performance of them. Secondly, we theoretically show
to what extent latent representation can become invariant to domains without
interfering with classification accuracy. This is significant because the analysis
guides the novel regularization approach that is suitable for our situation. Finally,
we propose a novel method which improves domain invariance while maintaining
classification performance, and it enjoys higher accuracy than the IFL methods
on both synthetic and three real-world datasets.

2 Preliminary and Related Work

2.1 Problem Statement of Domain Generalization

Denote X ,Y , and D as the input feature, class label, and domain spaces, respec-
tively. With random variables x ∈ X , y ∈ Y, d ∈ Dwe can define the probability
distribution for each domain as p(x, y|d). For simplicity this paper assumes that
y and d are discrete variables. In domain generalization, we are given a training
dataset consisting of {xsi , ysi }n

s

i=1 for all s ∈ {1, 2, ...,m}, where each {xsi , ysi }n
s

i=1

is drawn from the source domain p(x, y|d = s). Using the training dataset, we
train a classifier g : X → Y, and use the classifier to predict labels of samples
drawn from unknown target domain p(x, y|d = t).

2.2 Related Work

DG has been attracting considerable attention in recent years [27,28]. [18] showed
that non-end-to-end DG methods such as DICA [27] and MTAE [11] do not
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tend to outperform vanilla CNN, thus end-to-end methods are desirable. End-
to-end methods based on domain invariant representation can be divided into
two categories: adversarial-learning-based methods such as DAN [9,33] and pre-
defined-metric-based methods [10,20].

In particular, our analysis and proposed method are based on DAN, which
measures the invariance by using a domain classifier (also known as a discrim-
inator) parameterized by deep neural networks and imposes regularization by
deceiving it. Although DAN was originally invented for DA, [33] demonstrated
its efficacy in DG. In addition, they intuitively explained the trade-off between
classification accuracy and domain invariance, but did not suggest any solution
to the problem except for carefully tuning a weighting parameter. AFLAC also
relates to domain confusion loss [31] in that their encoders attempted to mini-
mize Kullback-Leibler divergence (KLD) between the output distribution of the
discriminators and some domain distribution (p(d|y) in AFLAC and uniform
distribution in [31]), rather than to deceive the discriminator as DAN.

Several studies that address DG without utilizing IFL have been conducted.
For example, CCSA [26], CIDG [21], and CIDDG [22] proposed to make use of
semantic alignment, which attempts to make latent representation given class
label (p(h|y)) identical within source domains. This approach was originally
proposed by [12] in the DA context, but its efficacy to overcome the trade-off
problem is not obvious. Also, CIDDG, which is the only adversarial-learning-based
semantic alignment method so far, needs the same number of domain classification
networks as domains whereas ours needs only one. [37] also proposed a variant
of adversarial-learning-based IFL method similar to ours, i.e., their method is
also intended to maximize domain-invariance without affecting classification
performance. Although their method needs to estimate true data distribution
p(y|x) with DNN, ours only needs to estimate p(d|y), which is easily conducted
when y and d are discrete random variable. CrossGrad [28], which is one of the
recent state-of-the-art DG methods, utilizes data augmentation with adversarial
examples. However, because the method relies on the assumption that y and d
are independent, it might not be directly applicable to our setting. MLDG [19],
MetaReg [2], and Feature-Critic [23], other state-of-the-art methods, are inspired
by meta-learning. These methods make no assumption about the relation between
y and d; hence, they could be combined with our proposed method in principle.

As with our paper, [21,22] also pointed out the importance of considering the
types of distributional shifts that occur, and they address the shift of p(y|x) across
domains caused by the causal structure y → x. However, the causal structure
does not cause the trade-off problem as long as y and d are independent (Figure
1-(a, b)), thus it is essential to consider and address domain-class dependency
problem. They also proposed to correct the domain-class dependency with the
class prior-normalized weight, which enforces the prior probability for each class
to be the same across domains. Its motivation is different from ours in that it is
intended to avoid overfitting whereas we address the trade-off problem.

In DA, [36,12] address the situation where p(y) changes across the source and
target domains by correcting the change of p(y) using unlabeled target domain
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data, which is often accomplished at the cost of classification accuracy for the
source domain. However, this approach is not applicable (or necessary) to DG
because we are agnostic on target domains and cannot run such adaptation step
in DG. Instead, this paper is concerned with the change of p(y) within source
domain and proposes to maximize the classification accuracy for source domains
while improving the domain invariance.

It is worth mentioning that IFL has been used for many other context other
than DG, e.g., DA [32,9], domain transfer [17,6], and fairness-aware classification
[35,24,25]. However, adjusting it to each specific task is likely to improve perfor-
mance. For example, in the fairness-aware classification task [25] proposed to
optimize the fairness criterion directly instead of applying invariance to sensitive
variables. By analogy, we adapted IFL for DG so as to address the domain-class
dependency problem.

3 Our approach

3.1 Domain Adversarial Networks

In this section, we provide a brief overview of DAN [9], on which our analysis and
proposed method are based. DAN trains a domain discriminator that attempts
to predict domains from latent representation encoded by an encoder, while
simultaneously training the encoder to remove domain information by deceiving
the discriminator.

Formally, we denote fE(x), qM (y|h), and qD(d|h) (E,M , and D are their
parameters) as the deterministic encoder, probabilistic model of the label classifier,
and that of domain discriminator, respectively. Then, the objective function of
DAN is described as follows:

min
E,M

max
D

J(E,M,D) =Ep(x,d,y)[−γLd + Ly], (1)

where Ld := − log qD(d|h = fE(x)), Ly := − log qM (y|h = fE(x)).

Here, the second term in Eq. 1 simply maximizes the log likelihood of qM and
fE as well as in standard classification problems. On the other hand, the first
term corresponds to a minimax game between the encoder and discriminator,
where the discriminator qD(d|h) tries to predict d from h and the encoder fE(x)
tries to fool qD(d|h).

As [33] originally showed, the minimax game ensures that the learned repre-
sentation has no or little domain information, i.e., the representation becomes
domain-invariant. This invariance ensures that the prediction from h to y is
independent from d, and therefore hopefully facilitates the construction of a
classifier capable of correctly handling samples drawn from unknown domains
(Figure 1-(b)). Below is a brief explanation.
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Because h is a deterministic mapping of x, the joint probability distribution
p(h, d, y) can be defined as follows:

p(h, d, y) =

∫
x

p(x, d, h, y)dx =

∫
x

p(x, d, y)p(h|x)dx

=

∫
x

p(x, d, y)δ(fE(x) = h)dx, (2)

and in the rest of the paper, we denote p(h, d, y) as p̃E(h, d, y) because it depends
on the encoder’s parameter E. Using Eq. 2, Eq. 1 can be replaced as follows:

min
E,M

max
D

J(E,M,D) = Ep̃E(h,d,y)[γ log qD(d|h)− log qM (y|h)]. (3)

Assuming E is fixed, the solutions M∗ and D∗ to Eq. 3 satisfy qM∗(y|h) = p̃E(y|h)
and qD∗(d|h) = p̃E(d|h). Substituting qM∗ and qD∗ into Eq. 3 enable us to obtain
the following optimization problem depending only on E:

min
E

J(E) =− γHp̃E
(d|h) +Hp̃E

(y|h). (4)

Solving Eq. 4 allows us to obtain the solutions M∗, D∗, and E∗, which are
in Nash equilibrium. Here, Hp̃E

(d|h) means conditional entropy with the joint
probability distribution p̃E(d, h). Thus, minimizing the second term in Eq. 4
intuitively means learning (the mapping function fE to) the latent representation
h which contains as much information about y as possible. On the other hand,
the first term can be regarded as a regularizer that attempts to learn h that is
invariant to d.

3.2 Trade-off Caused by Domain-Class Dependency

Here we show that the performance of DAN is impeded by the existence of
domain-class dependency. Concretely, we show that the dependency causes the
trade-off between classification accuracy and domain invariance: when d and y
are statistically dependent, no values of E would be able to optimize the first
and second term in Eq. 4 at the same time. Note that the following analysis also
suggests that most IFL methods are negatively influenced by the dependency.

To begin with, we consider only the first term in Eq. 4 and address the
optimization problem:

min
E

J1(E) =− γHp̃E
(d|h). (5)

Using the property of entropy, Hp̃E
(d|h) is bounded:

Hp̃E
(d|h) ≤ H(d). (6)

Thus, Eq. 5 has the solution E∗
1 which satisfies the following condition:

Hp̃E∗
1
(d|h) = H(d). (7)
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Eq. 7 suggests that the regularizer in DAN is intended to remove all information
about domains from latent representation h, thereby ensuring the independence
of domains and latent representation.

Next, we consider only the second term in Eq. 4, thereby addressing the
following optimization problem:

min
E

J2(E) = Hp̃E
(y|h). (8)

Considering h is the mapping of x, i.e., h = fE(x), the solution E∗
2 to Eq. 8

satisfies the following equation:

Hp̃E∗
2
(y|h) = H(y|x). (9)

Here we obtain E∗
1 and E∗

2 , which can achieve perfect invariance and optimal
classification accuracy, respectively. Using them, we can obtain the following
theorem, which shows the existence of the trade-off between invariance and
accuracy: perfect invariance (E∗

1 ) and optimal classification accuracy (E∗
2 ) cannot

be achieved at the same time.

Theorem 1 When H(y|x) = 0 ,i.e., there is no labeling error, and H(d) >
H(d|y), i.e., the domain and class are statistically dependent, E∗

1 6= E∗
2 holds.

Proof 1 Assume E∗
1 = E∗

2 = E∗. Using the properties of entropy, we can obtain
the following:

Hp̃E
(d|h) ≤ Hp̃E

(d, y|h) = Hp̃E
(d|h, y) +Hp̃E

(y|h) ≤ Hp̃E
(d|y) +Hp̃E

(y|h).
(10)

Substituting Hp̃E∗ (y|h) = H(y|x) and Hp̃E∗ (d|h) = H(d) into Eq. 10, we can
obtain the following condition:

H(d)−H(d|y) ≤ H(y|x). (11)

Because the domain and class are dependent on each other, the following condition
holds:

0 < H(d)−H(d|y) ≤ H(y|x), (12)

but Eq. 12 contradicts with H(y|x) = 0. Thus, E∗
1 6= E∗

2 .

Theorem 1 shows that the domain-class dependency causes the trade-off
problem. Although it assumes H(y|x) = 0 for simplicity, we cannot know the
true value of H(y|x) and there are many cases in which little or no labeling errors
occur and thus H(y|x) is close to 0.

In addition, we can omit the assumption and obtain a more general result:

Theorem 2 When I(d; y) := H(d)−H(d|y) > H(y|x), E∗
1 6= E∗

2 holds.
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Proof 2 Similar to Proof 1, we assume that E∗
1 = E∗

2 and thus Eq. 11 is obtained.
Obviously, Eq. 11 does not hold when H(d)−H(d|y) > H(y|x).

Theorem 2 shows that when the mutual information of the domain and class
I(d; y) is greater than the labeling error H(y|x), the trade-off between invariance
and accuracy occurs. Then, although we cannot know the true value of H(y|x),
the performance of DAN and other IFL methods are likely to decrease when
I(d; y) has large value.

3.3 Accuracy-Constrained Domain Invariance

If we cannot avoid the trade-off, the next question is to decide how to accommo-
date it, i.e., to what extent the representation should become domain-invariant
for DG tasks. Here we provide the notion of accuracy-constrained domain invari-
ance, which is the maximum domain invariance within a range that does not
interfere with the classification accuracy. The reason for the constraint is that
the primary purpose of DG is the classification for unseen domains rather than
the invariance itself, and the improvement of the invariance could detrimentally
affect the performance. For example, in WISDM, if we know the target activity
was performed by a young rather than an old man, we might predict the activity
to be jogging with a higher probability; thus, we would have to avoid removing
such domain information that may be useful in the classification task.

Theorem 3 Define accuracy-constrained domain invariance as the maximum
Hp̃E

(d|h) value under the constraint that H(y|x) = 0, i.e., there is no labeling
error, and classification accuracy is maximized, i.e., Hp̃E

(y|h) = H(y|x). Then,
accuracy-constrained domain invariance equals H(d|y).

Proof 3 Using Eq. 10 and Hp̃E
(y|h) = H(y|x), the following inequation holds:

Hp̃E
(d|h) ≤ H(y|x) +H(d|y). (13)

Substituting H(y|x) = 0 into Eq. 13, the following inequation holds:

Hp̃E
(d|h) ≤ H(d|y). (14)

Thus, the maximum Hp̃E
(d|h) value under the optimal classification accuracy

constraint is H(d|y).

Note that we could improve the invariance more when H(y|x) > 0 (that is obvious
considering Eq. 13), but we cannot know the true value of H(y|x) as we discussed
in Sec. 3.2. Thus, accuracy-constrained domain invariance can be viewed as the
worst-case gurantee.
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Fig. 2. Comparative illustration of DAN and AFLAC. (a) The classifier and discrimi-
nator try to minimize Ly and Ld, respectively. The encoder tries to minimize Ly and
maximize Ld (fool the discriminator). (b) The discriminator tries to approximate true
p̃E(d|h) by minimizing Ld. The encoder tries to minimize divergence between p̃E(d|h)
and p(d|y) by minimizing LDKL .

3.4 Proposed Method

Based on the above analysis, the remaining challenge is to determine how to
achieve accuracy-constrained domain invariance, i.e., imposing regularization such
that makes Hp̃E

(d|h) = H(d|y) holds. Although DAN might be able to achieve
this condition by carefully tuning the strength of the regularizer (γ in Eq. 1),
such tuning is time-consuming and impractical, as suggested by our experiments.
Alternatively, we propose a novel method named AFLAC by modifying the
regularization term of DAN: whereas the encoder of DAN attempts to fool the
discriminator, that of AFLAC attempts to directly minimize the KLD between
p(d|y) and qD(d|h). Formally, AFLAC solves the following joint optimization
problem by alternating gradient descent.

min
D

W (E,D) = Ep(x,d)[Ld] (15)

min
E,M

V (E,M) = Ep(x,d,y)[γLDKL
+ Ly], (16)

where LDKL
:= DKL[p(d|y)|qD(d|h = fE(x))].

The minimization of Ly and Ld, respectively, means maximization of the log-
likelihood of qM and qD as well as in DAN. However, the minimization of LDKL

differs from the regularizer of DAN in that it is intended to satisfy qD(d|h) =
p(d|y). And if qD(d|h) well approximates p̃E(d|h) by the minimization of Ld in
Eq. 15, the minimization of LDKL

leads to p̃E(d|h) = p(d|y). Figure 2-(b) outlines
the training of AFLAC.

Here we formally show that AFLAC is intended to achieve Hp̃E
(d|h) = H(d|y)

(accuracy-constrained domain invariance) by a Nash equilibrium analysis smilar
to [13,33]. As well as in Section 3.1, D∗ and M∗, which are the solutions to Eqs.
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15, 16 with fixed E, satisfy q∗D = p̃E(d|h) and q∗M = p̃E(y|h), respectively. Thus,
V in Eq. 16 can be written as follows:

V (E) = E[γDKL[p(d|y)|p̃E(d|h)]] +Hp̃E
(y|h). (17)

E∗, which is the solution to Eq. 17 and in Nash equilibrium, satisfies not only
Hp̃E∗ (y|h) = H(y|x) (optimal classification accuracy) but also
Eh,y∼p̃E∗ (h,y)[DKL[p(d|y)|p̃E∗(d|h)]] = 0, which is a sufficient condition for
Hp̃E∗ (d|h) = H(d|y) by the definition of the conditional entropy.

In training, p(x, d, y) in the objectives (Eqs. 15, 16) is approximated by empir-
ical distribution composed of the training data obtained from m source domains,

i.e., {x(1)i , y
(1)
i , d = 1}n(1)

i=1 , ..., {x
(m)
i , y

(m)
i , d = m}n(m)

i=1 . Also, p(d|y) used in Eq. 16
can be replaced by the maximum likelihood or maximum a posteriori estimator of
it. Note that, we could use some distances other than DKL[p(d|y)|qD(d|h)] in Eq.
16, e.g., DKL[qD(d|h)|p(d|y)], but in doing so, we could not observe performance
gain, hence we discontinued testing them.

4 Experiments

4.1 Datasets

Here we provide a brief overview of one synthetic and three real-world datasets
(PACS, WISDM, IEMOCAP) used for the performance evaluation. Although
WISDM and IEMOCAP have not been widely used in DG studies, previous
human activity recognition and speech emotion recognition studies (e.g., [1,8,5])
used them in the domain generalization setting (i.e., source and target domains are
disjoint), so they can be regarded as the practical use case of domain generalization.
The concrete sample sizes for each d and y, and the network architectures for
each dataset are shown in supplementary.1

BMNISTR We created the Biased and Rotated MNIST dataset (BMNISTR)
by modifying the sample size of the popular benchmark dataset MNISTR [11],
such that the class distribution differed among the domains. In MNISTR, each
class is represented by 10 digits. Each domain was created by rotating images by
15 degree increments: 0, 15, 30, 45, 60, and 75 (referred to as M0, ..., M75). Each
image was cropped to 16×16 in accordance with [11]. We created three variants
of MNISTR that have different types of domain-class dependency, referred to as
BMNISTR-1 through BMNISTR-3. As shown in Table 1-left, BMNISTR-1, -2
have similar trends but different degrees of dependency, whereas BMNISTR-1
and BMNISTR-3 differ in terms of their trends.

PACS The PACS dataset [18] contains 9991 images across 7 categories (dog,
elephant, giraffe, guitar, house, horse, and person) and 4 domains comprising
different stylistic depictions (Photo, Art painting, Cartoon, and Sketch). It
has domain-class dependency probably owing to the data characteristics. For
example, p(y = person|d = Phot) is much higher than p(y = person|d = Sketch),

1 Code and Supplementary are available at https://github.com/akuzeee/AFLAC
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indicating that photos of a person are easier to obtain than those of animals, but
sketches of persons are more difficult to obtain than those of animals in the wild.
For training, we used the ImageNet pre-trained AlexNet CNN [15] as the base
network, following previous studies [18,19]. The two-FC-layer discriminator was
connected to the last FC layer, following [9].

WISDM The WISDM Activity Prediction dataset contains sensor data of
accelerometers of six human activities (walking, jogging, upstairs, downstairs, sit-
ting, and standing) performed by 36 users (domains). WISDM has the dependency
for the reason noted in Sec. 1. In data preprocessing, we use the sliding-window
procedure with 60 frames (=3 seconds) referring to [1], and the total number of
samples was 18210. We parameterized the encoder using three 1-D convolution
layers followed by one FC layer and the classifier by logistic regression, following
previous studies [34,14].

IEMOCAP The IEMOCAP dataset [4] is the popular benchmark dataset
for speech emotion recognition (SER), which aims at recognizing the correct
emotional state of the speaker from speech signals. It contains a total of 10039
utterances pronounced by ten actors (domains, referred to as Ses01F, Ses01M
through Ses05F, Ses05M) with emotional categories, and we only consider the four
emotional categories (happy, angry, sad, and neutral) referring to [5,8]. Also, we
refered to [5] about data preprocessing: we split the speech signal into equal-length
segments of 3s, and extracted 40-dimensional log Mel-spectrogram, its deltas, and
delta-deltas. We parameterized the encoder using three 2-D convolution layers
followed by one FC layer and the classifier by logistic regression.

4.2 Baselines

To demonstrate the efficacy of the proposed method AFLAC, we compared it
with vanilla CNN and adversarial-learning-based methods. Specifically, (1) CNN
is a vanilla convolutional networks trained on the aggregation of data from all
source domains. Although CNN has no special treatments for DG, [18] reported
that it outperforms many traditional DG methods. (2) DAN [33] is expected
to generalize across domains utilizing domain-invariant representation, but it
can be affected by the trade-off between domain invariance and accuracy as
explained in Section 3.2. (3) CIDDG is our re-implementation of the method
proposed in [22], which is designed to achieve semantic alignment on adversarial
training. Additionally, we used (4) AFLAC-Abl, which is a version of AFLAC
modified for ablation studies. AFLAC-Abl replaces DKL[p(d|y)|qD(d|h)] in Eq.
16 of DKL[p(d)|qD(d|h)], thus it attempts to learn the representation that is
perfectly invariant to domains or make H(d|h) = H(d) hold as well as DAN.
Comparing AFLAC and AFLAC-Abl, we measured the genuine effect of taking
domain-class dependency into account. When training AFLAC and AFLAC-Abl,
we cannot obtain true p(d|y) and p(d), hence we used their maximum likelihood
estimators for calculating the KLD terms.
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Table 1. Left: Sample sizes for each domain-class pair in BMNISTR. Those for the
classes 0∼4 are variable across domains, whereas the classes 5∼9 have identical sample
sizes across domains. Right: Mean F-measures for the classes 0∼4 and classes 5∼9 with
the target domain M0. RI denotes relative improvement of AFLAC to AFLAC-Abl

Dataset Class M0 M15 M30 M45 M60 M75

BMNISTR-1 0∼4 100 85 70 55 40 25
5∼9 100 100 100 100 100 100

BMNISTR-2 0∼4 100 90 80 70 60 50
5∼9 100 100 100 100 100 100

BMNISTR-3 0∼4 100 25 100 25 100 25
5∼9 100 100 100 100 100 100

CNN DAN CIDDG AFLAC AFLAC RI
Dataset Class -Abl

BMNISTR-1 0∼4 83.86 84.54 87.50 87.46 90.62 3.6%
5∼9 83.90 85.24 87.46 86.46 88.10 1.9%

BMNISTR-2 0∼4 82.54 85.30 87.64 88.60 89.64 1.2%
5∼9 82.18 85.80 86.74 87.60 89.04 1.6%

BMNISTR-3 0∼4 71.26 79.22 76.76 76.56 80.02 4.5%
5∼9 78.62 83.14 82.64 82.94 82.80 -0.2%

4.3 Experimental Settings

For all the datasets and methods, we used RMSprop for optimization. Further,
we set the learning rate, batch size, and the number of iterations as 5e-4, 128,
and 10k for BMNISTR; 5e-5, 64, and 10k for PACS; 1e-4, 64, and 10k for IEMO-
CAP; 5e-4 (with exponential decay with decay step 18k and 24k, and decay
rate 0.1), 128, and 30k for WISDM, respectively. Also, we used the annealing of
weighting parameter γ proposed in [9], and unless otherwise mentioned chose γ
from {0.0001, 0.001, 0.01, 0.1, 1, 10} for DAN, CIDDG, AFLAC-Abl, and AFLAC.
Specifically, on BMNISTR and PACS, we employed a leave-one-domain-out set-
ting [11], i.e., we chose one domain as target and used the remaining domains as
source data. Then we split the source data into 80% of training data and 20%
of validation data, assuming that target data are not absolutely available in the
training phase. On IEMOCAP, we chose the best γ from
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000} using disjoint validation domain, refer-
ring to [8,5]. On WISDM, we randomly selected <20 / 16> users as <source
/ target> domains, and split the source data into training and validation data
because one-domain-leave-out evaluation is computationally expensive. Then, we
conducted experiments multiple times with different random weight initialization;
we trained the models on 10, 20, and 20 seeds in BMNISTR, WISDM, and
IEMOCAP, chose the best hyperparameter that achieved the highest validation
accuracies measured in each epoch, and reported the mean scores (accuracies
and F-measures) for the hyperparameter. On PACS, because it requires a long
time to train on, we chose the best γ from {0.0001, 0.001, 0.01, 0.1} after three
experiments, and reported the mean scores in experiments with 15 seeds.

4.4 Results

We first investigated the extent to which domain-class dependency affects the
performance of the IFL methods. In Table 1-right, we compared the mean F-
measures for the classes 0 through 4 and classes 5 through 9 in BMNISTR with
the target domain M0. Recall that the sample sizes for the classes 0∼4 are variable
across domains, whereas the classes 5∼9 have identical sample sizes across domains
(Table 1-left). The F-measures show that AFLAC outperformed baselines in most
dataset-class pairs, which supports that domain-class dependency reduces the
performance of domain-invariance-based methods and that AFLAC can mitigate



Adversarial Invariant Feature Learning with Accuracy Constraint 13

Table 2. Accuracies for each dataset and target domain. The I(d; y) column is estimated
from source domain data, which indicates the domain-class dependency.

I(d; y) CNN DAN CIDDG AFLAC-Abl AFLAC
Dataset Target

BMNISTR-1 M0 0.026 83.9 ± 0.4 85.0 ± 0.4 87.4 ± 0.3 87.0 ± 0.4 89.3 ± 0.4
M15 0.034 98.5 ± 0.2 98.5 ± 0.1 98.3 ± 0.2 98.3 ± 0.2 98.8 ± 0.1
M30 0.037 97.5 ± 0.1 97.4 ± 0.1 97.4 ± 0.2 97.6 ± 0.1 98.3 ± 0.2
M45 0.036 89.9 ± 0.9 90.2 ± 0.6 89.8 ± 0.5 92.8 ± 0.5 93.3 ± 0.6
M60 0.030 96.7 ± 0.3 97.0 ± 0.2 97.2 ± 0.1 96.6 ± 0.2 97.4 ± 0.2
M75 0.017 87.1 ± 0.5 87.3 ± 0.4 88.2 ± 0.3 87.7 ± 0.5 88.1 ± 0.4
Avg 92.3 92.6 93.1 93.3 94.2

BMNISTR-2 Avg 92.2 92.7 93.1 94.0 94.5

BMNISTR-3 Avg 90.6 91.7 91.4 91.6 92.9

PACS photo 0.102 82.2 ± 0.4 81.8 ± 0.4 - 82.5 ± 0.4 83.5 ± 0.3
art painting 0.117 61.0 ± 0.5 60.9 ± 0.5 - 62.6 ± 0.4 63.3 ± 0.3
cartoon 0.131 64.9 ± 0.5 64.9 ± 0.6 - 64.2 ± 0.3 64.9 ± 0.3
sketch 0.023 61.4 ± 0.5 61.4 ± 0.5 - 59.6 ± 0.7 60.1 ± 0.7
Avg 67.4 67.2 - 67.2 68.0

WISDM 16 users 0.181 84.0 ± 0.4 83.8 ± 0.3 84.4 ± 0.4 83.7 ± 0.3 84.4 ± 0.3

IEMOCAP Ses01F 0.005 56.0 ± 0.7 60.1 ± 0.7 - 62.9 ± 0.5 60.4 ± 0.9
Ses01M 61.0 ± 0.3 63.5 ± 0.5 - 68.0 ± 0.5 66.1 ± 0.3
Ses02F 0.045 61.2 ± 0.5 60.4 ± 0.5 - 65.8 ± 0.5 64.2 ± 0.4
Ses02M 76.6 ± 0.4 47.2 ± 0.7 - 64.7 ± 1.7 74.3 ± 1.3
Ses03F 0.037 69.2 ± 0.9 71.9 ± 0.4 - 70.0 ± 0.6 70.1 ± 0.4
Ses03M 56.9 ± 0.4 57.3 ± 0.5 - 56.2 ± 0.4 56.8 ± 0.4
Ses04F 0.120 75.5 ± 0.5 75.5 ± 0.6 - 75.4 ± 0.6 75.7 ± 0.6
Ses04M 58.5 ± 0.5 57.4 ± 0.5 - 58.7 ± 0.5 59.2 ± 0.5
Ses05F 0.063 61.8 ± 0.4 62.4 ± 0.5 - 61.9 ± 0.3 63.4 ± 0.7
Ses05M 47.6 ± 0.3 46.9 ± 0.4 - 49.6 ± 0.4 49.9 ± 0.4
Avg 62.4 60.3 - 63.3 64.0

the problem. Further, the relative improvement of AFLAC to AFLAC-Abl is more
significant for the classes 0∼4 than for 5∼9 in BMNISTR-1 and BMNISTR-3,
suggesting that AFLAC tends to increase performance more significantly for
classes in which the domain-class dependency occurs. Moreover, the improvement
is more significant in BMNISTR-1 than in BMNISTR-2, suggesting that the
stronger the domain-class dependency is, the lower the performance of domain-
invariance-based methods becomes. This result is consistent with Theorem 2,
which shows that the trade-off is likely to occur when I(d; y) is large. Finally,
although the dependencies of BMNISTR-1 and BMNISTR-3 have different trends,
AFLAC improved the F-measures in both datasets.

Next we compared the mean accuracies (with standard errors) in both syn-
thetic (BMNISTR) and real-world (PACS, WISDM, and IEMOCAP) datasets
(Table 2). Note that the performance of our baseline CNN on PACS, WISDM, and
IEMOCAP is similar but partly different from that reported in previous studies
([22], [1], and [8], respectively) probably because the DG performance strongly
depends on validation methods and other implementation details as reported in
many recent studies [1,8,2,23]. Also, we trained CIDDG only on BMNISTR and
WISDM due to computational resource constraint. This table enables us to make
the following observations. (1) Domain-class dependency in real-world datasets
negatively affects the DG performance of IFL methods. The results obtained on
PACS (Avg) and WISDM showed that the vanilla CNN outperformed the IFL
methods (DAN and AFLAC-Abl). Additionally, the results on IEMOCAP shows
that AFLAC tended to outperform AFLAC-Abl when I(d; y) had large values
(in Ses04 and Ses05), which is again consistent with Theorem 2. These results
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(a) BMNISTR-1, M0 (b) WISDM (c) IEMOCAP, 02M (d) IEMOCAP, 05F

Fig. 3. Classification Accuracy with various γ. Each caption shows dataset name and
target domain. The round markers correspond to γ values chosen by validation. The
error bars correspond to standard errors.

support the importance of considering domain-class dependency in real-world
datasets. (2) AFLAC performed better than the baselines on all the datasets in
average, except for CIDDG on WISDM. Note that AFLAC is more parameter
efficient than CIDDG as we noted in Sec. 2.2. These results supports the efficacy
of the proposed model to overcome the trade-off problem.

Finally, we investigated the relationship between the strength of regularization
and performance. In DG, it is difficult to choose appropriate hyperparameters
because we cannot use target domain data at valiadtion step (since they are not
available during training); therefore, hyperparameter insensitivity is significant in
DG. Figure 3 shows the hyperparameter sensitivity of the classification accuracies
for DAN, CIDDG, AFLAC-Abl, and AFLAC. These figures suggest that DAN
and AFLAC-Abl sometimes outperformed AFLAC with appropriate γ values,
but there is no guarantee that such γ values will be chosen by validation whereas
AFLAC is robust toward hyperparameter choice. Specifically, as shown in Figures
3-(b, d), DAN and AFLAC-Abl outperformed AFLAC with γ = 1 and 10,
respectively. One possible explanation of those results is that accuracy for target
domain sometimes improves by giving priority to domain invariance at the cost
of the accuracies for source domains, but AFLAC improves domain invariance
only within a range that does not interfere with accuracy for source domains.
However, as shown in Figure 3, the performance of DAN and AFLAC-Abl are
sensitive to hyperparameter choice. For example, although they got high scores
with γ = 1 in Figure 3-(b), the scores dropped rappidly when γ increases to
10 or decreases to 0.01. Also, the scores of DAN and AFLAC-Abl in Figure
3-(c) dropped significantly with γ > 10, and such large γ was indeed chosen
by overfitting to validation domain. On the other hand, Figures 3-(a, b, c, d)
show that the accuracy gaps of AFLAC-Abl and AFLAC increase with strong
regularization (such as when γ = 10 or 100). These results suggest that AFLAC,
as it was designed, does not tend to reduce the classification accuracy with
strong regularizer, and such robustness of AFLAC might have yileded the best
performance shown in Table 2.

5 Conclusion

In this paper, we addressed domain generalization under domain-class dependency,
which was overlooked by most prior DG methods relying on IFL. We theoretically
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showed the importance of considering the dependency and the way to overcome
the problem by expanding the analysis of [33]. We then proposed a novel method
AFLAC, which maximizes domain invariance within a range that does not interfere
with classification accuracy on adversarial training. Empirical validations show
the superior performance of AFLAC to the baseline methods, supporting the
importance of the domain-class dependency in DG tasks and the efficacy of the
proposed method to overcome the issue.
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