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Abstract. Given a labeled dataset that contains a rare (or minority)
class of of-interest instances, as well as a large class of instances that
are not of interest, how can we learn to recognize future of-interest in-
stances over a continuous stream? We introduce RaRecognize, which
(i) estimates a general decision boundary between the rare and the ma-
jority class, (ii) learns to recognize individual rare subclasses that exist
within the training data, as well as (iii) flags instances from previously
unseen rare subclasses as newly emerging. The learner in (i) is general
in the sense that by construction it is dissimilar to the specialized learn-
ers in (ii), thus distinguishes minority from the majority without overly
tuning to what is seen in the training data. Thanks to this generality,
RaRecognize ignores all future instances that it labels as majority and
recognizes the recurrent as well as emerging rare subclasses only. This
saves effort at test time as well as ensures that the model size grows
moderately over time as it only maintains specialized minority learners.
Through extensive experiments, we show that RaRecognize outper-
forms state-of-the art baselines on three real-world datasets that contain
corporate-risk and disaster documents as rare classes.

1 Introduction

Given a labeled dataset containing (1) a rare (or minority) class of of-interest
documents, and (2) a large set of not-of-interest documents, how can we learn a
model that can effectively identify future of-interest documents over a continuous
stream? Different from the traditional classification setup, the stream might
contain of-interest (as well as not-of-interest) documents from novel subclasses
that were not seen in the training data. Therefore, the model is required to
continually recognize both the recurring as well as the emerging instances from
the underlying rare class distribution.

Let us motivate this setting with a couple of real-world examples. Suppose
we are given a large collection of social media documents (e.g. Twitter posts).
A subset of the collection is labeled as risky, indicating posts that constitute
(financial, reputational, etc.) risk to a corporation. The rest (majority) of the
collection is not-risky. The goal is then to learn a model that can continually iden-
tify future posts that are risky over the social-media stream. Here, the rare class
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contains risky documents of a few known types, such as bankruptcy, corruption,
and spying. However, it is unrealistic to assume that it contains examples from
all possible risk types—given the large spectrum, labeling effort, and potentially
evolving nature of risk.

Consider another case where the training set consists of news articles. A
subset of the articles belongs to the rare class of disasters, indicating news about
natural or man-made disasters. The rest are not-disaster articles. Similar to the
first case, the rare class might contain articles about floods, earthquakes, etc.
however it is hard to imagine it would contain instances from all possible types of
disasters. The goal is to learn to continually recognize future articles on disasters.

In both examples above, the model needs to learn from and generalize beyond
the labeled data so as to recognize future rare-class instances, both from recurring
(i.e., seen in the training data) as well as from novel subclasses; for instance
sexual assault, cyber attack, etc. in risk domain and explosions, landslides, etc.
in disasters domain. In machine learning terms, this is a very challenging setup
in which the learner needs to generalize not only to unseen instances but also
to unseen distributions. In other words, this setting involves test data that has
a related yet different distribution than the data the model was trained on.

The stream classification problem under emerging novel classes has been
studied by both machine learning and data mining communities. The area is re-
ferred to under various names including open-world classification [12,13], life-long
learning [1], and continual learning [11]. In principle, these build a “never-ending
learner” that can (1) assign those recurring instances from known old classes to
their respective class, (2) recognize emerging classes, and (3) grow/extend the
current learner to incorporate the new class(es). The existing methods differ in
terms of accuracy-efficiency trade-offs and various assumptions that they make.
(See Section 5 for detailed related work.) A common challenge that all of them
face is what is known as catastrophic forgetting, mainly due to model growth. In
a nutshell, the issue is the challenge of maintaining performance on old classes
as the model is constantly grown to accommodate the new ones.

incoming instances

f0
General Classifier

not-of-interest

rare/of-interest fKf2f1

R1 R2 RK

emerging

Specialized Classifiers

time

a) top-level classification b) sub-level classification
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rejected

Fig. 1: An illustration of the recognition flow in our proposed model.

Our work is different from all prior work in one key aspect: our goal is not
to recognize any and every newly emerging class—but only those (sub)classes
related to the rare class of-interest. That is, our primary goal is to recognize
rare-class instances. Not-of-interest instances, as long as they are filtered out
accurately, are ignored—no matter they are recurrent or novel, as depicted in
Fig. 1. This way, we carefully avoid the aforementioned issue that current models
face. Our model grows slowly, only when novel rare subclasses are recognized.
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Thanks to a moderate model size (by definition, rare subclasses are far fewer),
our model is not only less prone to catastrophic forgetting but also (a) is faster
at test time, and (b) requires much less memory.

We summarize the main contributions of this work as follows.

– Problem and Formulation: We address the problem of recognizing in-
stances from a rare, of-interest class over a stream continually. The setting
differs from traditional (binary) classification in that the data distribution
(for both rare and majority class) might change over time, where novel sub-
classes emerge. We formulate a new model called RaRecognize that simul-
taneously learns (i) a separate specialized classifier (SC) that recognizes an
individual rare subclass, as well as (ii) a general classifier (GC) that sep-
arates rare instances from the majority. While being discriminative, GC is
constructed to be dissimilar to the individual SCs such that it can generalize
without overly tuning to seen rare subclasses in the training data.

– Efficient Algorithm: Our proposed solution exhibits two key properties:
runtime and memory efficiency; both essential for the stream setting. Given
a new instance that GC labels as belonging to the majority class, we simply
do nothing—no matter it is recurrent or emerging. By not processing the
majority of the incoming instances, we achieve fast response time. Moreover
RaRecognize remains compact, i.e. memory-efficient, as it requires space
linear in the number of rare subclasses which only grows slowly.

– Applications: Recognizing recurrent as well as novel instances that belong
to a certain class of-interest is a broad problem that finds numerous applica-
tions, e.g. in monitoring and surveillance. For example, such instances could
be production-line items with the goal to continually recognize faulty ones
where novel fault types might emerge over time. They could also be public
documents, such as social media posts, where the goal is to recognize public
posts of-interest such as bullying, shaming, disasters, threat, etc.

Reproducibility: We share the source code for RaRecognize and our public-
domain datasets at https://github.com/hungnt55/RaRecognize.

2 Problem Setup and Preliminary Data Analysis

Problem Setup and Overview. We start by introducing the problem state-
ment more formally with proper notation. As input, a labeled training dataset
D = R ∪ N ∈ Rn×d containing n d-dimensional instances is provided. The set
R = {(x1, y1), (x2, y2), . . . , (xn0 , yn0)} consists of |R| = n0 instances belong-
ing to the of-interest rare class where yi = +1 for i = 1, . . . , n0 and the set
N = {(xn0+1, yn0+1), . . . , (xn, yn)} consists of |N | = (n − n0) instances from
the not-of-interest class where yi = −1 for i = (n0 + 1), . . . , n. Without loss of
generality, we will refer to the data instances as documents and to the rare class
as the risk class in the rest of this section to present our ideas more concretely.

Given D, the goal is to recognize future risk documents, either recurring or
newly emerging, over a stream (or set) of new documents xn+1,xn+2, . . . (here,

https://github.com/hungnt55/RaRecognize
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each document has a vector representation denoted by x such as bag-of-words,
embedding, etc.). The new documents may associate with recurring risk, i.e.,
belong to known/seen risk subclasses 1, . . . ,K in R. They may also be emerging,
i.e., from previously unknown/unseen new risk subclasses (K + 1), (K + 2), . . .;
which differentiates our setup from the traditional classification problem.

Therefore, we start by decomposing R into known risk subclasses, R =⋃K
k=1Rk, where Rk contains the documents that belong to the kth risk sub-

class. Given {{R1, . . . ,RK},N} our approach involves simultaneously training
the following two types of classifiers:
1. A general classifier (GC) f0 to separate R and N that can generalize to

unseen subclasses of R,
2. A specialized classifier (SC) fk, k = 1 . . .K, to separate Rk and R\Rk.

At test time, we first employ f0. Our goal is not to recognize every emerging
novel class, but only the novel risk subclasses (in addition to recurring ones),
thus our first step is to recognize risk. If f0 labels an incoming document x as
−1 (i.e., not-risk), we discard it. Otherwise, the incoming document is flagged
as risky. For only those labeled as +1, we employ fk’s to further identify the
type of risk. Among the fk’s that accept x as belonging to the kth risk subclass,
we assign it to the subclass that is argmaxk fk(x). If all fk’s reject, then x is
considered to be associated with a new type of emerging risk. (See Fig. 1.)
The classifier models. Our risk detector is f0 which we learn using the entire
labeled dataset D. As such, it is trained on a few known risk subclasses in R but
is desired to be general enough to recognize other types of future risk.

To achieve this generality, our main idea is to avoid building f0 on factors
that are too specific to any known risk subclass (such that f0 is not overly fit
to existing or known risk types) but rather, to identify broad factors about risk
that are common to all risk subclasses (such that f0 can employ this broader
view to spot risk at large).

In fact, factors specific to the known risk subclasses are to be captured by
the corresponding fk’s. Then, f0 is to identify discriminative signals of risk that
are sufficiently different from those used by all fk’s. Moreover, each fk should
differ from other fk′ ’s, k′ 6= k, to ensure that they are as specialized as possi-
ble to their respective risk types. Such dependence among the models is exactly
why we train all these (K + 1) classifiers simultaneously, to enforce the afore-
mentioned constraints conjointly. We present our specific model formulation and
optimization in Section 3.
Preliminary Data Analysis. Before model formulation, we perform an ex-
ploratory analysis on one of our real-world datasets containing documents labeled
as risky and not-risky. The goal of the analysis is to see if our hypothesized ideas
get realized in the data.

In particular, we aim to find out if there exists (1) factors that are spe-
cific to each risk subclass, as well as (2) factors beyond those specific ones that
are still discriminative of risk. For simplicity and interpretability, we use the
bag-of-words representation of the data in this section, thus factors correspond
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to individual words. However, our proposed model can handle other document
vector representations in general.

To this end, we formulate a constrained optimization problem to find word
sets that cover or characterize different document sets. Here, we define a word
to cover a document if the word appears in it at least once. Given the set of
unique words V, |V| = d, we look for a set of words Vk ⊂ V that covers all the
documents in Rk but as few as those in R\Rk for all k = 1 . . .K (i.e., specific
words for each risk subclass), and another set of words V0 ⊂ V that covers all
risk documents in R but as few as those in N . We restrict the word sets to be
non-overlapping, i.e., Vk ∩Vk′ = ∅ ∀k, k′ ∈ {0, . . . ,K}, such that each word can
only characterize either one ofR1, . . . ,RK orR at large. Under these conditions,
if we could find a set V0 that shares no words with any Vk’s while still being
able to cover the risky documents but only a few (if at all) not-risky ones, then
we can conclude that broad risk terms exist and a general f0 can be trained.

Our setup is a constrained mixed-integer linear program (MILP) as follows:

min
Φ
|v0|+

K∑
k=1

|vk|+ o+ α+ β

s.t. zk +Rk · vk ≥ 1 ∀k = 1 . . .K . risk subclass coverage with exoneration

z0 +

K∑
k=1

Rk · v0 ≥ 1 . risk coverage with exoneration

|z0|+
K∑

k=1

|zk| ≤ o . # unexplained documents less than o

v0 +

K∑
k=1

vk ≤ 1 . each word used for at most 1 set∑
i∈N

Ni · v0 ≤ α . cap on cross-coverage of not-risk

K∑
k=1

∑
i∈Rk

∑
k′ 6=k

Rk,i · vk′ ≤ β . cap on cross-coverage among risk subclasses

The program is parameterized by Φ = {{vk}Kk=0, {zk}Kk=0, o, α, β}. Rk ∈
Rnk×d denotes the data matrix encoding the word occurrences for nk documents
in risk subclass k = 1 . . .K, andN ∈ R(n−n0)×d is the corresponding data matrix
for the not-risk documents. v0 ∈ Rd and vk ∈ Rd’s depict (binary) variables to be
estimated that capture the word assignments to the sets V0 and Vk’s respectively.
(e.g., jth entry of v0 is set to 1 if word j is assigned to V0 and to 0 otherwise.)

The first set of constraints are coverage constraints for risk subclasses: each
document in Rk should contain at least one of the words in their assigned set.
Enforcing this constraint for all the documents is too strict, hence we introduce
additional (binary) variables zk ∈ Rnk ’s that “exonerate” some documents. When
ith entry of zk is set to 1, then document i in Rk is allowed to have no matching
words, as zk = 1 ensures the constraint holds even without any match. The
second constraint is similar, and enforces coverage for the combined set of risk



6 Hung Nguyen Xuejian Wang Leman Akoglu

Fig. 2: Within- and cross-coverage rates of Vk’s and V0 (resp.) for Rk’s and R.

(V1) Cyber attack (V2) Sexual assault (V3) Money laundering (V0) General risk

Fig. 3: Wordclouds representing 3 example risk subclasses and the overall risk
class. Notice that the former are quite specific, and the latter are broader.

documents, also with exoneration. Of course, we aim to cover as many documents
as possible and thus upper-bound the total number of exonerated documents
by o, where |z| denotes the total number of 1s in vector z. Next is the no-
overlaps constraint, enforcing each word is assigned to only one set. The final
two constraints are cross-coverage constraints; the former ensures that the words
assigned to V0 have less than α number of matches in not-risk documents and
the latter ensures that the words assigned to each risk subclass have less than β
number of matches outside the respective document set in total.

Ideally all of o, α, and β are zero; that is, all documents are covered without
any exoneration and no cross-coverage exists. However, that yields no feasible
solution. Instead, we define them as scalar upper-bound variables added to our
minimization objective toward setting them to as small values as possible. Fi-
nally, our objective aims to find the smallest-size possible word sets. This ensures
that the most important words are selected which also facilitates interpretability.

We provide an exploratory analysis on a dataset containing corporate risk
documents as the of-interest class. It contains 15 risk subclasses as outlined
by Fig. 2. (See Sec. 4.1 for details.) First the quantitative measures: as shown
in the figure, the MILP finds word sets Vk’s with at least 82.5% up to 98.2%
coverage for 11/15 of the subclasses with an overall coverage of 96.7% (rest are
the exonerated ones). Moreover, cross-coverage is either zero or very low for all
the subclasses. These suggest that accurate SCs can be learned. Importantly,
there exist words V0 that are distinct from all Vk’s and yet able to cover 98.6%
of the overall risk documents, promising that a broad GC can be learned.

To equip the reader with intuition, we present the selected words for 3 ex-
ample risk subclasses along with the general risk class words in Fig. 3 (word
size is proportional to the within vs. cross-coverage ratio). It is easy to see that
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very specific words are selected for subclasses; such as password, cyberattack,
malware for Cyber attack, and cosby, weinstein, fondle for Sexual assault. On
the other hand, in the general risk class, a set of broader corporate risk words
appear such as fraud, stock, breach and sentence.

These preliminary results show promise for the feasibility of our hypothe-
sized models and demonstrate the rationale behind our proposed RaRecognize,
which we formally introduce next.

3 Continual Rare-Class Recognition

In this section, we introduce the individual components of our model, present
the underlying reasoning for our formulation, show convexity and present the
optimization steps, and conclude with space and time-complexity analysis.

3.1 Model Formulation

As discussed in the previous section, our goal is to learn (1) specialized classifiers
fk’s and (2) a general classifier f0.

The specialized classifier fk, k = 1 . . .K, is to learn a decision boundary
that separates the kth rare subclass instances Rk from the remainder of rare
instances R\Rk. Let us write down the regularized loss function for each fk as

L(fk;wk, bk) =

n0∑
i=1

max
(
0,
[
1− yi(wT

k xi + bk)
])︸ ︷︷ ︸

`(xi,yi;wk,bk)

+
λk
2
‖wk‖2 (1)

where yi = +1 for xi ∈ Rk and yi = −1 otherwise. We adopt the hinge loss
and the ridge regularization as in Eq. (1), however, one could instead use other
loss functions, such as the logistic, exponential or cross-entropy losses, as well as
other norms for regularization.

The general classifier f0 is to separate rare class instances R from the ma-
jority instances N , without relying on factors specific to known rare subclasses.
One way to achieve this de-correlation is to enforce f0 to learn coefficients w0

that are different from all wk’s. The loss function can be written as

L(f0;w0, b0) =

n∑
i=1

`(xi, yi;w0, b0) +
λ0
2
‖w0‖2 +

µ

2

K∑
k=1

wT
0 wk , (2)

where yi = +1 for xi ∈ R = {R1∪. . .∪RK} and yi = −1 otherwise. As required,
the third term in Eq. (2) penalizes w0 being correlated with any wk, enforcing
it to be as orthogonal to wk’s as possible. However, it does not prevent w0 from
capturing different yet correlated features to those captured by wk’s. This issue
can arise when features exhibit multi-collinearity.

For example, in a document dataset the words earthquake, shockwave, and
aftershock could be collinear. In this case it is possible that fk estimates large
coefficients on a strict subset of these words (e.g., shockwave and aftershock)
as they are redundant. This leaves room for f0 to capitalize on the remaining
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words (e.g., earthquake), which is undesirable since we aim f0 to learn about
the rare class boundaries beyond the specifics of the known subclasses.

Therefore, we reformulate the model correlation penalty as follows.

µ

2

K∑
k=1

∑
p,q

(
w0,pwk,q xT

[p]x[q]

)2
=
µ

2

∥∥(XTX)� (w0w
T
k )
∥∥2
F
, (3)

where w0,p and wk,q denote the pth and qth entries of w0 and wk respectively,
X ∈ Rn×d denotes the input data matrix, x[p],x[q] respectively denote the pth
and qth columns of X, and � depicts the element-wise multiplication.

We call Eq. (3) the cross-correlation penalty. Similarly, we introduce self-
correlation penalty to each model k = 0, . . . ,K by adding to the respective loss
the term

∑
p,q

(
wk,pwk,q xT

[p]x[q]

)2. Self-correlation prevents each model from
estimating large coefficients on higly correlated (near-redundant) features, which
improves sparsity and interpretability, and as we show also ensures convexity.

Then, the overall loss function incorporating the cross- and self-correlation
penalty terms for all models f0, f1, . . . , fK is given as follows.

L =

n∑
i=1

`(xi, yi;w0, b0) +
λ0
2
‖w0‖2 +

K∑
k=1

[
n0∑
i=1

`(xi, yi;wk, bk) +
λk
2
‖wk‖2

]

+
µ

2

∑
p,q

{
1

2
(w2

0,pw
2
0,q) +

1

2

K∑
k=1

(w2
k,pw

2
k,q)︸ ︷︷ ︸

self-correlation

+w2
0,p(

K∑
k=1

w2
k,q)︸ ︷︷ ︸

cross-correlation

}(
xT
[p]x[q]

)2 (4)

3.2 Convexity and Optimization

We train all the models f0, f1, . . . , fK simultaneously by minimizing the total
overall loss L. A conjoint optimization is performed because the cross-correlation
penalty terms between w0 and wk’s induce dependence between the models.

For optimization we employ the accelerated subgradient descent algorithm
which is guaranteed to find the global optimum solution because, as we show
next, our loss function L is convex.

Theorem 1. The joint loss function L involving the cross- and self-correlation
penalty terms among w0,w1, . . . ,wK remains convex.

Proof. The non-negative sum of convex functions is also convex. The first line of
L as given above is known to be convex since `(·) (hinge loss) and L-p norms for
p ≥ 1 are both convex. The proof is then by showing that the overall correlation
penalty term in the second line of L is also convex by showing that its Hessian
matrix is positive semi-definite (PSD). See Supplementary A.1 for details. ut

Since our total loss is a convex function, we can use gradient-based optimiza-
tion to solve it to optimality. To this end, we provide the gradient updates for
both w0 and wk’s in closed form as follows.
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Partial derivative of L w.r.t. w0:

∂L
∂w0,p

=

n∑
i=1

∂
[
1− yi(wT

0 xi + b0)
]
+

∂w0,p
+λ0w0,p+µw0,p

d∑
q=1

( K∑
k=1

w2
k,q+w

2
0,q

)(
xT
[p]x[q]

)2
where

∂
[
1− yi(wT

0 xi + b0)
]
+

∂w0,p
=

{
0 if yi(wT

0 xi + b0) ≥ 1

−yixi,p otherwise.
(5)

The vector-update ∂L
∂w0

can be given in matrix-vector form using the above
gradients as
∂L
∂w0

=
[
XT (−y�I(1−y�(Xw0+b0) > 0)) + w0�

(
λ01+µ(X

TX)2(
∑
k

w2
k+w2

0)
)]

(6)
where I(·) is the indicator function, 1 is a length-n all-ones vector, and (A)2 =
A�A, i.e., element-wise product, for both matrix A as well as for vector a.

Partial derivative of L w.r.t. wk: The steps for each wk is similar, we
directly provide the vector-update below.
∂L
∂wk

=
[
RT (−y0�I(1−y0�(Rwk+bk) > 0)) + wk�

(
λk1+µ(X

TX)2(w2
k+w2

0)
)]

(7)
where R ∈ Rn0×d and y0 ∈ Rn0 consist of only the rare-class instances.

3.3 Time and Space-Complexity Analysis

Time Complexity. The (first) gradient term in Eq (6) that is related to the
hinge-loss is O(nd). The (second) term related to the correlation-based regular-
ization requires XTX which can be computed in O(nd2) apriori and reused over
the gradient iterations. The term (

∑
k w

2
k +w2

0) takes O(Kd), and its following
multiplication with (XTX)2 takes an additional O(d2). The remaning opera-
tions (summation with λ01 and element-wise product with w0) are only O(d).
As such, the overall computational complexity for subgradient descent for w0 is
O(nd2 + t[nd+Kd+ d2]), where t is the number of gradient itearations.

The time complexity for updating the wk’s can be derived similarly as Eq.
(7) consists of similar terms, which can be written as O(t[n0d+ d2]). Note that
we omit the O(nd2) this time as XTX needs to be computed only once and can
be shared across all update rules. Moreover, the number of iterations t is the
same as before since the parameter estimation is conjoint.
Space Complexity. We require O(d2) storage for keeping (XTX)2, O(Kd) for
all the parameter vectors w0, . . . ,wK , and O(nd) for storing X, for an overall
O(d2 +Kd+ nd) space complexity.
Remarks on massive and/or high-dimensional datasets: Note that both
time and space complexity of our RaRecognize is quadratic in d and linear in
n. We conclude with parting remarks on cases with large d and huge n.

First, high-dimensional data with large d: In this case, we propose two pos-
sible directions to make the problem tractable. Of course, the first one is dimen-
sionality reduction or representation learning. When the data lies on a relatively
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low-d manifold, one could instead use compound features. We apply our RaRec-
ognize to document datasets, where compound features are not only fewer but
also sufficiently expressive of the data. The second direction is to get rid of
feature correlations, for instance via factor analysis. This would drop the term(
xT
[p]x[q]

)2 from L (See (4)) and lead to updates that are only linear in d.
Next, massive data with huge n: We presented our optimization using batch

subgradient descent. When n is very, very large then storing the original data in
memory may not be feasible. We remark that one could directly employ mini-
batch or even stochastic gradient descent in such cases, dropping the space re-
quirement to O(d2 +Kd).

4 Evaluation

We design experiments to evaluate our proposed method with respect to the
following questions:

– RQ1) Top-level classification (via GC f0): How does RaRecognize
perform in differentiating rare-class instances from the majority compared
with the state-of-the-art?

– RQ2) Sub-level classification (via SCs fk’s): How does RaRecognize
perform in recognizing recurrent and emerging rare subclasses among the
compared methods?

– RQ3) Interpretability: Can we interpret RaRecognize as a model as to
what it has learned and what insights can we draw?

– RQ4) Efficiency: What is the scalability of RaRecognize? How does it
compare to the baselines w.r.t. the running time-vs-performance trade-off?

4.1 Experiment Setup
Table 1: Summary of datasets.

Name |R| |N | K Avg. |Rk|
Risk-Doc 2948 2777 15 196.5
Risk-Sen 1551 7755 8 193.9
NYT-Dstr 2127 10560 13 163.6

Dataset Description. In this
study, we use 3 different datasets
with characteristics summarized in
Table 1. The first two datasets are
obtained from our industry collabo-
rator (proprietary) and a third public
one which we put together.

Risk-Doc: This dataset contains online documents, e.g. news articles, so-
cial network posts, which are labeled risky or non-risky to the corporate entities
mentioned. If a document is risky, it is further assigned to one of the 15 risk sub-
classes: {Climate change, Cyber attack, Data leak, Drug abuse, Engine failure,
Fraud, Gun violation, Low stock, Military attack, Misleading statement, Money
laundering, Negative growth, Sexual assault, Spying, Trade war}.

Risk-Sen: This contains labeled sentences attracted from news articles and
categorized into 8 different subclasses: {Bankruptcy, Bribery corruption, Coun-
terfeiting, Cyber privacy, Environment, Fraud false claims, Labor, Money laun-
dering}. The majority class consists of non-risky sentences. Note that this dataset
comes from a set of articles different from Risk-Doc.
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NYT-Dstr: Extracted from the New York Times, this dataset is comprised
of articles on the topics of disasters, i.e. both natural and human-instigated.
These topics cover 13 disasters from {Drought, Earthquakes, Explosions, Floods,
Forest and bush fire, Hazardous and toxic substance, Landslides, Lighting, Snow-
storms, Tornado, Tropical storm, Volcanoes, Water pollution}. It also includes
a class of random non-disaster news articles from New York Times.

Document representations. In this study we apply our work to document
datasets, for which we need to define a feature representation. There are numer-
ous options. We report results with tfidf with top 1K words based on frequency,
as well as PCA- and ICA-projected data. Linear embedding techniques reduce
dimensionality while preserving interpretability. We omit results using non-linear
feature representations (e.g., doc2vec [6]) as they did not provide any significant
performance gain despite computational overhead.

Train/Test Splits. For each dataset, we randomly partition 2/3 of rare
subclasses as seen and 1/3 of them as unseen. For training, we use 80% of
the seen subclass instances at random and the rest 20% forms a seen subclass
test set, denoted by Rs. The set of unseen subclass instances, denoted by Ru,
goes into the test as well. Thus, the rare subclass test consists of 2 parts, i.e.
Rtest = Rs ∪ Ru. In addition, we also reserve a random 80% of the majority
class for training and the rest 20% for testing, denoted by Ntest. Further, to
obtain stable results, we repeat our experiment on 5 different random train/test
constructions and report averaged outcomes.

Performance Metrics. (1) For measuring top-level classification perfor-
mance, we use 3 common metrics [15,8]: Precision, Recall, F1 formally defined
in our context as:

Precision =
|Rtest ∩ R̂test|
|R̂test|

,Recall =
|Rtest ∩ R̂test|
|Rtest|

,F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

,

where R̂test is the set of examples predicted as rare subclass. To identify which
part of the test (seen or unseen subclasses) the model makes mistakes, we also
measure Precision (seen), Recall (seen) and Recall (unseen) defined as follows:

Precision(seen) =
|Rs ∩ R̂test|
|R̂test|

,Recall(seen) =
|Rs ∩ R̂test|
|Rs|

,Recall(unseen) =
|Ru ∩ R̂test|
|Ru|

.

(2) For sub-level classification test, to quantify the fraction of seen subclass test
instances correctly classified and unseen subclass test instances as emerging, we
use the following metric:

acc(rare) =

acc(emerging)︷ ︸︸ ︷
|Ru ∩ R̂u| +

∑K
k=1

acc(recurrent)︷ ︸︸ ︷
|Rks ∩ R̂ks|

|Rtest|
,

where Rks is the set of test examples in subclass k and R̂ks is the set of
examples assigned to that subclass. Here acc(rare) = 1 if both seen subclass
test instances are perfectly classified to their respective subclasses and unseen
subclass instances as emerging. For all of the above metrics, the higher is better.
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Compared Methods. We compare RaRecognize with 2 state-of-the-art
methods and 2 simple baselines:

– RaRecognize-1K, RaRecognize-PCA, RaRecognize-ICA: 3 versions of
RaRecognize when tfidf with 1K word dictionary, PCA and ICA represen-
tations are used. In RaRecognize-PCA, we drop the feature correlation
terms

(
xT
[p]x[q]

)2 since features are orthogonal. For the sub-level classifica-
tion, RaRecognize learns a rejection threshold for each specialized classifier
based on extreme value theory [14].

– L2AC [15]: the most recent method (2019) in open-world classification set-
ting that is based on deep neural networks. We use the recommended pa-
rameters k = 5, n = 9 (in their notation) from the paper.

– SENCForest [8]: another state-of-the-art ensemble method (2017) using
random decision trees for classification under emerging classes. We run SENC-
Forest with 100 trees and subsample size 100 as suggested in their paper.

– Baseline: a baseline of RaRecognize when both cross- and self-correlation
terms in Eq. (4) are removed, via setting µ = 0. Basically, Baseline is
independently trained f0, . . . , fK .

– Baseline-r: a variant of Baseline when classification threshold (0.5 by
default) is chosen so that the Recall matches that of RaRecognize.

Note that SENCForest and L2AC aim to detect any emerging class without
categorizing into rare or majority. For fair comparison, we only inlcude new rare
subclasses in our test data and consider their rejected instances as belonging to
those. In reality, however, emerging classes need to be categorized as rare or not,
which these existing methods did not address.

Table 2: Performance of methods on the three datasets.
Precision Recall F1

Methods Risk-Doc Risk-Sen NYT-Dstr Risk-Doc Risk-Sen NYT-Dstr Risk-Doc Risk-Sen NYT-Dstr
SENCForest 0.46±0.12 0.14±0.03 0.36±0.09 0.59±0.09 0.41±0.08 0.39±0.10 0.52±0.11 0.21±0.04 0.37±0.06
L2AC 0.79±0.08 0.47±0.06 0.31±0.07 0.57±0.29 0.85±0.05 0.76±0.07 0.63±0.24 0.60±0.04 0.44±0.07
Baseline 0.89±0.04 0.79±0.05 0.86±0.03 0.52±0.06 0.55±0.04 0.63±0.03 0.65±0.05 0.65±0.03 0.73±0.03
Baseline-r 0.76±0.10 0.56±0.07 0.71±0.07 0.58±0.13 0.57±0.14 0.79±0.04 0.65±0.10 0.55±0.06 0.75±0.04
RaRecognize-1K 0.89±0.02 0.83±0.09 0.84±0.03 0.58±0.13 0.57±0.14 0.79±0.04 0.70±0.09 0.66±0.08 0.81±0.02
RaRecognize-PCA 0.85±0.06 0.79±0.10 0.84±0.10 0.58±0.17 0.71±0.17 0.80±0.07 0.68±0.14 0.73±0.09 0.81±0.01
RaRecognize-ICA 0.74±0.07 0.72±0.11 0.84±0.12 0.73±0.24 0.85±0.18 0.82±0.08 0.71±0.09 0.78±0.07 0.81±0.04

4.2 Experiment Results

In the following, we sequentially answer the questions by analyzing our experi-
mental results and comparing between methods.

RQ1) Top-level Classification into Rare vs. Majority Class. We re-
port the Precision, Recall and F1 of all methods on three datasets in Table 2.
For SENCForest, L2AC, Baseline and Baseline-r, we report results for the
representation (tfidf top-1K, PCA, ICA) that yielded the highest F1 value.
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Fig. 4: Precision (seen), Recall (seen) and Recall (unseen) of methods on Risk-
Doc (RaRecognize-ICA achieves the best balance between Precision and Re-
call on both seen and unseen test instances).

From Table 2, we see that RaRecognize-1K, RaRecognize-PCA and
RaRecognize-ICA outperform other methods in terms of F1 score in all cases
and Precision, Recall in most cases. Compared to Baseline and Baseline-r, F1
score of RaRecognize-ICA is 6-13% higher than the best result among the two.
This demonstrates that cross- and self-correlations are crucial in RaRecognize.
Surprisingly, the gap to SENCForest and L2AC is even larger in terms of F1,
between 8-37% higher. This shows that previous methods on detecting any new
emerging classes do not work well when we only target rare subclasses.

Among the three versions of RaRecognize, RaRecognize-ICA gives the
highest F1. RaRecognize-ICA achieves the best balance between precision
and recall while RaRecognize-1K and RaRecognize-PCA seem to have very
high Precision but much lower Recall. That means that RaRecognize-1K and
RaRecognize-PCA are better than RaRecognize-ICA at discarding majority
samples and worse at recognizing rare subclasses.

In Fig. 4, we have the Precision (seen), Recall (seen) and Recall (unseen)mea-
sures of all the methods on Risk-Doc (Figures for other datasets are similar,
see Supp. A.2). This figure shows that RaRecognize-ICA also achieves a good
balance between seen and unseen subclass classification, i.e., it recognizes both
these subclasses equally well. On the other hand, most of other methods achieve
high Precision (seen) and Recall (seen) but much lower Recall (unseen), except
SENCForest which only has high Recall (unseen). This is because SENCFor-
est rejects most instances as unseen which however hurts Precision drastically.

RQ2) Sub-level Classification into Recurrent and Emerging Rare
Subclasses. We report the acc(rare) of all the methods in Table 3 (Breakdown
of errors in confusion tables are given in Supp. A.3).

Tables 2 and 3 reflect that all three versions of RaRecognize are always
better or comparable to the others in terms of acc(rare) and RaRecognize-
ICA achieves the highest value. RaRecognize-ICA achieves significantly higher
acc(rare) than all the baselines. SENCForest seems to perform the next best
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Table 3: acc(rare) of methods on the three datasets.
Methods Risk-Doc Risk-Sen NYT-Dstr
SENCForest 0.37±0.09 0.41±0.08 0.34±0.04
L2AC 0.22±0.17 0.20±0.20 0.08±0.12
Baseline 0.41±0.07 0.37±0.04 0.41±0.04
Baseline-r 0.43±0.16 0.38±0.03 0.42±0.04
RaRecognize-1K 0.45±0.08 0.38±0.12 0.46±0.12
RaRecognize-PCA 0.50±0.14 0.59±0.14 0.65±0.15
RaRecognize-ICA 0.63±0.14 0.62±0.09 0.64±0.15

due to the fact that it classifies most of the instances as emerging which results
in high classification performance on unseen subclasses.

(a) General disaster (b) Explosions (c) Floods (d) Snowstorms

Fig. 5: Word clouds for the weights of general and 3 specialized classifiers in
RaRecognize-1K on NYT-Dstr (See Supp. A.4 for other subclasses).

RQ3) Model Interpretation. In Fig. 5, we plot the wordclouds represent-
ing the general and 3 specialized classifiers for 3 disaster subclasses (sizes of
the words proportional to their weights learned by RaRecognize-1K). Exist-
ing methods, SENCForest and L2AC, are not interpretable due to respective
ensemble and deep neural network-based models they employ.

From Fig. 5, specialized disaster classifiers are clearly characterized by spe-
cific words closely related to the respective disasters, whereas the general clas-
sifier is heavily weighted by common words to every disaster. Specifically, Ex-
plosions classifier picks up attack, gas, terrorist, scene as most weighted
keywords, and Snowstorms classifier puts heavy weights on words ice, fell,
snow, weather. The general classifier is highlighted by the words caused, killed,
disaster which describe consequences of most disasters. Wordclouds on other
disaster subclasses, along with those for other datasets are in Supp. A.4.

Thanks to the interpretability that RaRecognize offers, we can look deeper
into the significance of individual words in classifying documents. Besides its
promising quantitative performance, these qualitative results confirm that our
method has learned what agrees with human intuition.

RQ4) Scalability and Time-Performance Trade-off. Besides our formal
complexity analysis, we demonstrate the scalability of RaRecognize empiri-
cally. Fig. 6 shows the running time of RaRecognize-PCA and RaRecognize-
ICA when varying the amount of training data. The running time increases lin-
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early with the data size. RaRecognize with PCA is faster than that with ICA
thanks to no feature correlations (i.e.

(
xT
[p]x[q]

)2 dropped).
In Fig. 7, we show the time-performance trade-off among all compared meth-

ods. We conclude that RaRecognize with three representations run relatively
fast, only slower than SENCForest, and returns the highest performance in
terms of F1. L2AC consumes a huge amount of time for training a neural net-
work, with subpar performance.

5 Related Work

Our work is closely related with two fields, namely open-world classification and
continual learning. Both belong to the category of lifelong machine learning [1].

Open-world classification. Traditional close-world classification assumes
that all test classes are known and seen in training data [4,16]. However, such
assumption could be violated in reality. Open-world classification, in contrast, as-
sumes unseen and novel classes could emerge during test time, and addresses the
classification problem by recognizing unseen classes. Previous works [12,13,15,9,8]
propose different approaches under this setting.

Specifically, DOC [12] leverages convolutional neural nets (CNNs) with mul-
tiple sigmoid functions to classify examples as seen or emerging. [13] follows the
same DOC module and performs hierarchical clustering to all rejected samples.
Later, L2AC [15] proposes to use a meta-classifier and a ranker to add or delete
a class without re-training. However, it requires a large amount of computation
in both training and testing due to the top-k search over all training data.

SENCForest [8] is a randomized ensemble method. It grows multiple random
forests and rejects examples when all random forests yield "new class". Under
the same setting, SENC-MaS [9] maintains matrix sketchings to decide whether
an example belongs to a seen class or emerging.

In the emerging rare subclass setting, the previous approaches aim at recog-
nizing any and every classes and are not able to ignore the not-of-interest classes
while recognizing emerging ones, thus consume much more memory and time.
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Continual learning. There are recent works investigating continual learning
or incremental learning [11,10]. They aim at solving the issue of catastrophic
forgetting [2] in connectionist networks. In this field, models are proposed to
continually learn new classes without losing performance on old seen classes.

Previous works [10,5,7,3] show promising results. However, the number of
documents in rare subclasses of-interest in our setting is usually not large enough
for neural networks to be sufficiently trained. Consequently, the neural network
approach does not perform well in rare-class classification and recognition.

6 Conclusion

We proposed RaRecognize for rare-class recognition over a continuous stream,
in which new subclasses may emerge. RaRecognize employs a general classifier
to filter out not-rare class instances (top-level) and a set of specialized classifiers
that recognize known rare subclasses or otherwise reject as emerging (sub-level).
Since majority of incoming instances are filtered out and new rare subclasses
are a few, RaRecognize processes incoming data fast and grows in size slowly.
Extensive experiments show that it outperforms two most recent state of the art
as well as two simple baselines significantly in both top- and sub-level tasks, while
achieving the best efficiency-performance balance and offering interpretability.
Future work will extend RaRecognize to an end-to-end system that clusters
emerging instances and trains all the relevant models incrementally.
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A Supplementary

A.1 Proof of Theorem 1.

Given that `(·) and L-p norms for p ≥ 1 are convex, and that sum of non-negative
convex functions remains convex, it suffices to show that the correlation term
(denoted by C) of the loss function L is convex.

C =
∑
p,q

{
µ

4
(w2

0,pw
2
0,q) +

µ

4

K∑
k′=1

(w2
k′,pw

2
k′,q) +

µ

2
w2

0,p(

K∑
k′=1

w2
k′,q)

}(
xT
[p]x[q]

)2 (8)

We prove convexity by showing that the Hessian matrix of C is positive semi-
definite (PSD). The Hessian in this case is a d(K+1)×d(K+1) matrix, denoted
H, containing all the second-order derivatives as illustrated in the following
drawing. The diagonal (d×d) matrices correspond to self-correlation derivatives

∂C
∂w0,z∂w0,t

and ∂C
∂wk′,z∂wk′,t

for k′ = 1 . . .K. The (d × d) off-diagonals contain

cross-correlation derivatives ∂C
∂w0,z∂wk′,t

for k′ = 1 . . .K.
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We will derive the above three types of terms in the following.
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(9)
which excludes the terms in Eq. (8) that do not depend on w0.

∂Z1

∂w0,z∂w0,t
=


2µ w0,zw0,t (x

T
[z]x[t])

2 if t 6= z

2µ w2
0,z (xT
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 (10)
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Let us denote W = w0w
T
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which excludes the terms in Eq. (8) that do not depend on wk.
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Then, for v(k)p = 1
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which excludes the terms in Eq. (8) that do not depend on both w0 and wk.
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Let us denote D0 = diag(v(0)1 , . . . , v
(0)
d ), Dk = diag(v(k)1 , . . . , v

(k)
d ), and G2 =

G � G. Then the Hessian matrix can be written as the sum of the following
matrices.
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The second diagonal matrix, denoted H2, is PSD as it contains non-negative
entries v(k)p = 1
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We can also show that the first matrix, denoted H1, is PSD by first decom-

posing it into a sum of outer products between vectors of the form
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. . .+



w0√
(K+1)

0
...
0

wK


[

w0√
(K+1)

0T . . . 0T wT
K

]
= G2 � (v1v

T
1 + . . .+ vKvT

K) = H1

(21)

It is easy to see that rTH1r ≥ 0 for any vector r, since (rTvk)(v
T
k r) = s2k ≥ 0

for all k terms that constitute the sum.
We have shown that both H1 and H2 are PSD and since the sum of two PSD

matrices is also PSD, then the Hessian matrix H is also PSD, which concludes
the proof for convexity. ut

A.2 Top-level classification: Precision (seen), Recall (seen), Recall
(unseen) for Risk-Sen and NYT-Dstr datasets.

Figure 8 and 9 provide additional results of Precision (seen), Recall (seen) and
Recall (unseen) on two datasets: Risk-Sen and NYT-Dstr.

A.3 Sub-level classification: Breakdown confusion tables to compute
acc(rare) for the three datasets.

Tables 4, 5 and 6 present confusion tables of acc(rare) on Risk-Doc, Risk-Sen
and NYT-Dstr datasets.



Continual Rare-Class Recognition with Emerging Novel Subclasses 21

 0

 0.2

 0.4

 0.6

 0.8

 1

SENCForest

L2AC
BASELINE

BASELINE-r

RARECOGNIZE-1K

RARECOGNIZE-PCA

RARECOGNIZE-ICA

Precision (seen) Recall (seen) Recall (unseen)

Fig. 8: Top-level classification: Precision (seen), Recall (seen) and Recall (unseen)
of methods on Risk-Sen dataset.
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Fig. 9: Top-level classification: Precision (seen), Recall (seen) and Recall (unseen)
of methods on NYT-Dstr dataset.

A.4 Interpretability: Wordclouds for RaRecognize in all three
datasets Risk-Doc, Risk-Sen and NYT-Dstr.

Fig. 10, 11 and 12 show complete word clouds for both general and specialized
classifiers for all three datasets considered in our paper.
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Table 4: Sub-level classification: Breakdown confusion tables to compute
acc(rare) in Risk-Doc (Bolded values reflect correct predictions).

Label Rks Ru Ntest

R̂ks 81.8 6.0 38.4
R̂k′s(k

′ 6= k) 8.6
R̂u 301.0 218.8 482.4
N̂ 0.8 205.6 26.4

(a) SENCForest

Rks Ru Ntest

40.8 111.6 125.8225.6
115.6 139.4 44.4
10.2 179.4 377.0

(b) L2AC

Rks Ru Ntest

294.0 64.2 46.614.0
75.0 44.2 125.4
9.2 322.0 375.2

(c) Baseline

Rks Ru Ntest

294.0 70.4 46.614.0
75.0 59.2 125.6
9.2 300.8 375.0

(d) Baseline-r

Rks Ru Ntest

293.0 28.0 35.213.2
54.0 77.2 21.0
32.0 325.2 491.0

(e) RaRecognize-1K

Rks Ru Ntest

330.4 22.8 25.014.8
0.4 81.0 48.2

46.6 326.4 474.0

(f) RaRecognize-PCA

Rks Ru Ntest

304.0 102.8 220.220.0
0.0 214.2 137.2

68.2 113.4 189.8

(g) RaRecognize-ICA
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Table 5: Sub-level classification: Breakdown confusion tables to compute
acc(rare) in Risk-Sen.

Rks Ru Ntest

R̂ks 58.0 185.6 769.6
R̂k′s(k

′ 6= k) 80.0
R̂u 99.6 199.4 776.4
N̂ 0.0 0.0 0.0

(a) SENCForest

Rks Ru Ntest

57.2 236.2 426.698.8
70.8 65.6 187.8
10.8 83.2 931.6

(b) L2AC

Rks Ru Ntest

156.0 68.8 92.011.0
30.2 73.0 207.6
40.4 243.2 1246.4

(c) Baseline

Rks Ru Ntest

156.0 74.2 92.011.0
30.2 81.4 207.6
40.4 229.4 1246.4

(d) Baseline-r

Rks Ru Ntest

158.0 83.6 36.010.6
22.2 78.0 46.6
46.8 223.4 1463.4

(e) RaRecognize-1K

Rks Ru Ntest

186.0 41.6 52.828.2
2.2 180.8 70.2

21.2 161.4 1423.0

(f) RaRecognize-PCA

Rks Ru Ntest

194.6 45.4 58.820.2
0.0 198.0 74.6

20.4 150.8 1459.2

(g) RaRecognize-ICA
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Table 6: Sub-level classification: Breakdown confusion tables to compute
acc(rare) in NYT-Dstr.

Rks Ru Ntest

R̂ks 0.2 1.0 0.0
R̂k′s(k

′ 6= k) 0
Ru 291.0 330.4 2112.4
N 0.2 340.0 0.6

(a) SENCForest

Rks Ru Ntest

3.0 420.8 1246.6175.6
47.0 77.2 337.6
65.8 163.4 528.8

(b) L2AC

Rks Ru Ntest

158.4 132.2 175.212.6
64.0 234.4 774.0
56.4 294.8 1163.8

(c) Baseline

Rks Ru Ntest

158.4 135.8 175.212.6
64.0 243.2 774.0
56.4 282.4 1163.8

(d) Baseline-r

Rks Ru Ntest

176.2 251.0 69.016.4
56.2 260.2 77.4
42.6 150.2 1966.6

(e) RaRecognize-1K

Rks Ru Ntest

221.4 57.2 85.444.2
0.0 400.0 129.0

25.8 204.2 1898.6

(f) RaRecognize-PCA

Rks Ru Ntest

213.2 62.4 296.252.6
0.0 393.6 0.4

25.6 205.4 1816.4

(g) RaRecognize-ICA
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(a) General disaster (b) Drought (c) Earthquakes

(d) Explosions (e) Floods (f) Forest Fire

(g) Toxic Substance (h) Landslides (i) Lightning

(j) Snowstorms (k) Tornado (l) Tropical Storms

(m) Volcanoes (n) Water Pollution

Fig. 10: Interpretability: Word clouds representing learned weights by general
and all specialized classifiers on NYT-Dstr dataset.
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(a) General risk (b) Climate change (c) Cyber-attack

(d) Data leaks (e) Drug abuse (f) Engine failure

(g) Financial fraud (h) Gun violation (i) Low stock rating

(j) Military attack (k) Misleading statement (l) Money laundering

(m) Negative earning (n) Sexual assault (o) Spying
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(p) Trade war

Fig. 11: Interpretability: Word clouds representing learned weights by general
and all specialized classifiers on Risk-Doc dataset.

(a) General risk (b) Bankruptcy (c) Corruption

(d) Counterfeiting (e) Cyber-privacy (f) Environment

(g) Fraud False Claims (h) Labor (i) Money laundering

Fig. 12: Interpretability: Word clouds representing learned weights by general
and all specialized classifiers on Risk-Sen dataset.
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