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Abstract
Deep learning is very effective at jointly learning feature representa-

tions and classification models, especially when dealing with high dimen-
sional input patterns. Probabilistic logic reasoning, on the other hand,
is capable to take consistent and robust decisions in complex environ-
ments. The integration of deep learning and logic reasoning is still an
open-research problem and it is considered to be the key for the develop-
ment of real intelligent agents. This paper presents Deep Logic Models,
which are deep graphical models integrating deep learning and logic rea-
soning both for learning and inference. Deep Logic Models create an end-
to-end differentiable architecture, where deep learners are embedded into
a network implementing a continuous relaxation of the logic knowledge.
The learning process allows to jointly learn the weights of the deep learn-
ers and the meta-parameters controlling the high-level reasoning. The
experimental results show that the proposed methodology overtakes the
limitations of the other approaches that have been proposed to bridge
deep learning and reasoning.

1 Introduction
Artificial Intelligence (AI) approaches can be generally divided into symbolic
and sub-symbolic approaches. Sub-symbolic approaches like artificial neural
networks have attracted most attention of the AI community in the last few
years. Indeed, sub-symbolic approaches have got a large competitive advantage
from the availability of a large amount of labeled data in some applications.
In these contexts, sub-symbolic approaches and, in particular, deep learning
ones are effective in processing low-level perception inputs [3, 18]. For instance,
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deep learning architectures have been achieved state-of-the-art results in a wide
range of tasks, e.g. speech recognition, computer vision, natural language pro-
cessing, where deep learning can effectively develop feature representations and
classification models at the same time.

On the other hand, symbolic reasoning [7, 16, 23], which is typically based
on logical and probabilistic inference, allows to perform high-level reasoning
(possibly under uncertainty) without having to deal with thousands of learn-
ing hyper-parameters. Even if recent work has tried to gain insight on how a
deep model works [21], sub-symbolic approaches are still mostly seen as black-
boxes, whereas symbolic approaches are generally more easier to interpret, as
the symbol manipulation or chain of reasoning can be unfolded to provide an
understandable explanation to a human operator.

In spite of the incredible success of deep learning, many researchers have
recently started to question the ability of deep learning to bring us real AI,
because the amount and quality of training data would explode in order to
jointly learn the high-level reasoning that is needed to perform complex tasks [2].
For example, forcing some structure to the output of a deep learner has been
shown to bring benefits in image segmentation tasks, even when simple output
correlations were added to the enforced contextual information [6].

Blending symbolic and sub-symbolic approaches is one of the most challeng-
ing open problem in AI and, recently, a lot of works, often referred as neuro-
symbolic approaches [10], have been proposed by several authors [6, 14, 22, 27].

In this paper, we present Deep Logic Models (DLMs), a unified framework to
integrate logical reasoning and deep learning. DLMs bridge an input layer pro-
cessing the sensorial input patterns, like images, video, text, from a higher level
which enforces some structure to the model output. Unlike in Semantic-based
Regularization [8] or Logic Tensor Networks [9], the sensorial and reasoning lay-
ers can be jointly trained, so that the high-level weights imposing the output
structure are jointly learned together with the neural network weights, process-
ing the low-level input. The bonding is very general as any (set of) deep learners
can be integrated and any output structure can be expressed. This paper will
mainly focus on expressing the high-level structure using logic formalism like
first–order logic (FOL). In particular, a consistent and fully differentiable relax-
ation of FOL is used to map the knowledge into a set of potentials that can be
used in training and inference.

The outline of the paper is the following. Section 2 presents the model
and the integration of logic and learning. Section 3 compares and connects
the presented work with previous work in the literature and Section 4 shows
the experimental evaluation of the proposed ideas on various datasets. Finally,
Section 5 draws some conclusions and highlights some planned future work.

2 Model
We indicate as θ the model parameters, and X the collection of input sensorial
data. Deep Logic Models (DLMs) assume that the prediction of the system
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Figure 1: The DLM graphical model assumes that the output variables y depend
on the output of first stage f , processing the input X. This corresponds to the
breakdown into a lower sensorial layer and a high level semantic one.

is constrained by the available prior knowledge. Therefore, unlike standard
Neural networks which compute the output via a simple forward pass, the out-
put computation in DLM can be decomposed into two stages: a low-level stage
processing the input patterns, and a subsequent semantic stage, expressing con-
straints over the output and performing higher level reasoning. We indicate by
y = {y1, . . . , yn} and by f = {f1, . . . , fn} the two multivariate random vari-
ables corresponding to the output of the model and to the output of the first
stage respectively, where n > 0 denotes the dimension of the model outcomes.
Assuming that the input data is processed using neural networks, the model
parameters can be split into two independent components θ = {w,λ}, where
w is the vector of weights of the networks fnn and λ is the vector of weights of
the second stage, controlling the semantic layer and the constraint enforcement.
Figure 1 shows the graphical dependencies among the stochastic variables that
are involved in our model. The first layer processes the inputs returning the
values f using a model with parameters w. The higher layer takes as input f
and applies reasoning using a set of constraints, whose parameters are indicated
as λ, then it returns the set of output variables y.

The Bayes rule allows to link the probability of the parameters to the pos-
terior and prior distributions:

p(θ|y, X) ∝ p(y|θ, X)p(θ) .

Assuming the breakdown into a sensorial and a semantic level, the prior may
be decomposed as p(θ) = p(λ)p(w), while the posterior can be computed by
marginalizing over the assignments for f :

p(y|θ, X) =

∫
f

p(y|f ,λ) · p(f |w, X)df . (1)

A typical choice is to link p(f |w, X) to the outputs of the neural architectures:

p(f |w, X) =
1

Z(f)
exp

(
− (f − fnn)2

2σ2

)
,
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where the actual (deterministic) output of the networks fnn over the inputs is
indicated as fnn. Please note that there is a one-to-one correspondence among
each element of y,f and fnn, such that |y| = |f | = |fnn|.

However, the integral in Equation (1) is too expensive to compute and, as
commonly done in the deep learning community, only the actual output of the
network is considered, namely:

p(f |w, X) ≈ δ(f − fnn) ,

resulting in the following approximation of the posterior:

p(y|θ, X) ≈ p(y|fnn,λ) .

A Deep Logic Model assumes that p(y|fnn,λ) is modeled via an undirected
probabilistic graphical model in the exponential family, such that:

p(y|fnn,λ) ,
1

Z(y)
exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
, (2)

where the Φc are potential functions expressing some constraints on the output
variables, λ = {λ1, λ2, . . . , λC} are parameters controlling the confidence for the
single constraints where a higher value corresponds to a stronger enforcement
of the corresponding constraint, Φr is a potential favoring solutions where the
output closely follows the predictions provided by the neural networks (for in-
stance Φr(y,fnn) = − 1

2 ||y − fnn||
2) and Z(y) is a normalization factor (i.e.

the partition function):

Z(y) =

∫
y

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
dy.

2.1 MAP Inference
MAP inference assumes that the model parameters are known and it aims at
finding the assignment maximizing p(y|fnn,λ). MAP inference does not require
to compute the partition function Z which acts as a constant when the weights
are fixed. Therefore:

yM = argmax
y

log p(y|fnn,λ) = argmax
y

[
Φr(y,fnn) +

∑
c

λcΦc(y)

]
.

The above maximization problem can be optimized via gradient descent by
computing:

∇y log p(y|fnn,λ) = ∇yΦr(y,fnn) +
∑
c

λc∇yΦc(y)

4



2.2 Learning
Training can be carried out by maximizing the likelihood of the training data:

argmax
θ

log p(θ|yt, X) = log p(yt|θ, X) + log p(w) + log p(λ) .

In particular, assuming that p(yt|θ, X) follows the model defined in equation
(2) and the parameter priors follow Gaussian distributions, we get:

log p(θ|yt, X)=−α
2
||w||2 − β

2
||λ||2 − Φr(yt,fnn) +

∑
c

λcΦc(yt)− logZ(y)

where α, β are meta-parameters determined by the variance of the selected Gaus-
sian distributions. Also in this case the likelihood may be maximized by gradient
descent using the following derivatives with respect to the model parameters:

∂ log p(θ|yt,X)
∂λc

= −βλc + Φc(yt)− Ep [Φc]

∂ log p(θ|yt,X)
∂wi

= −αwi + ∂Φr(yt,fnn)
∂wi

− Ep
[
∂Φr

∂wi

]
Unfortunately, the direct computation of the expected values in the above
derivatives is not feasible. A possible approximation [12, 13] relies on replacing
the expected values with the corresponding value at the MAP solution, assum-
ing that most of the probability mass of the distribution is centered around it.
This can be done directly on the above expressions for the derivatives or in the
log likelihood:

log p(yt|fnn, X) ≈ Φr(yt,fnn)− Φr(yM ,fnn) +
∑
c

λc (Φc(yt)− Φc(yM ))

From the above approximation, it emerges that the likelihood tends to be
maximized when the MAP solution is close to the training data, namely if
Φr(yt,fnn) ' Φr(yM ,fnn) and Φc(yt) ' Φc(yM ) ∀c. Furthermore, the proba-
bility distribution is more centered around the MAP solution when Φr(yM ,fnn)
is close to its maximum value. We assume that Φr is negative and have zero as
upper bound: Φr(y,fnn) ≤ 0 ∀y,fnn, like it holds for example for the already
mentioned negative quadratic potential Φr(y,fnn) = − 1

2 ||y−fnn||
2. Therefore,

the constraint Φr(yt,fnn) ' Φr(yM ,fnn) is transformed into the two separate
constraints Φr(yt,fnn) ' 0 and Φr(yM ,fnn) ' 0.

This means that, given the current MAP solution, it is possible to increase
the log likelihood by computing the gradient and weight updates using the
following cost function:

log p(w) + log p(λ) + Φr(yt,fnn) + Φr(yM ,fnn) +
∑
c

λc [Φc(yt)− Φc(yM )]

In this paper, a quadratic form for the priors and the potentials is selected, but
other choices are possible. For example, Φr(·) could instead be implemented as
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Data: Input data X, output targets yt, function models with weights w
Result: Trained model parameters θ = {λ,w}
Initialize i = 0, λ = 0, random w;
while not converged ∧ i < max_iterations do

Compute function outputs fnn on X using current function weights
w;
Compute MAP solution yM = argmaxy log p(y|fnn,λ);
Compute gradient ∇θCθ(yt,yM , X);
Update θ via gradient descent: θi+1 = θi − λlr · ∇θCθ(yt,yM , X);
Set i=i+1;

end
Algorithm 1: Iterative algorithm to train the function weights w and the
constraint weights λ.

a negative cross entropy loss. Therefore, replacing the selected forms for the po-
tentials and changing the sign to transform a maximization into a minimization
problem, yields the following cost function, given the current MAP solution:

Cθ(yt,yM , X) =
α

2
||w||2 +

β

2
||λ||2 +

1

2
||yt − fnn||2 +

1

2
||yM − fnn||2 +

+
∑
c

λc [Φc(yt)− Φc(yM )] . (3)

Minimizing the cost function Cθ(yt,yM , X) is just a local approximation of
the full likelihood maximization for the current MAP solution. Therefore, the
training process alternates the computation of the MAP solution, the computa-
tion of the gradient for Cθ(yt,yM , X) and one weight update step. Algorithm 1
summarizes this iterative training algorithm. Please note that, for any con-
straint c, the parameter λc admits also a negative value. This is in case the c-th
constraint turns out to be too satisfied by the actual MAP solution with respect
to the satisfaction degree on the training data.

2.3 Mapping Constraints into a Continuous Logic
The DLM model is absolutely general in terms of the constraints that can be
expressed on the outputs. However, this paper mainly focuses on constraints
expressed in the output space y by means of first–order logic formulas. There-
fore, this section focuses on defining a methodology to integrate prior knowledge
expressed via FOL into a continuous optimization process.

In this framework we only deal with closed FOL formulas, namely formu-
las where any variable occurring in predicates is quantified. In the following,
given an m-ary predicate p and a tuple (a1, . . . , am) ∈ Dom(p), we say that
p(a1, . . . , am) ∈ [0, 1] is a grounding of p. Given a grounding of the variables
occurring in a FOL formula (namely a grounding for all the predicates involved
in the formula), the truth degree of the formula for that grounding is computed
using the t-norm fuzzy logic theory as proposed in [24]. The overall degree of
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operation
t-norm Product Minimum Łukasiewicz

a ∧ b a · b min(a, b) max(0, a+ b− 1)
a ∨ b a+ b− a · b max(a, b) min(1, a+ b)
¬a 1− a 1− a 1− a

a⇒ b min(1, ba ) a ≤ b?1 : b min(1, 1− a+ b)

Table 1: The Operations performed by the single units of an expression tree
depending on the inputs a, b and the used t-norm.

satisfaction of a FOL formula is obtained by grounding all the variables in such
formula and aggregating the values with different operators depending on the
occurring quantifiers. The details of this process are explained in the following
of the section.

Grounded Expressions. Any fully grounded FOL rule corresponds to an
expression in propositional logic and we start showing how a propositional logic
expression may be converted into a differentiable form. In particular, one expres-
sion tree is built for each considered grounded FOL rule, where any occurrence
of the basic logic connectives (¬,∧,∨,⇒) is replaced by a unit computing its cor-
responding fuzzy logic operation according to a certain logic semantics. In this
regard, some recent work shows how to get convex (or even linear) functional
constraints exploiting the convex Łukasiewicz fragment [11]. The expression
tree can take as input the output values of the grounded predicates and then re-
cursively compute the output values of all the nodes in the expression tree. The
value obtained on the root node is the result of the evaluation of the expression
given the input grounded predicates.

Table 1 shows the algebraic operations corresponding to the logic operators
for different selections of the t-norms. Please note that the logic operators
are always monotonic with respect of any single variable, but they are not
always differentiable (nor even continuous). However, the sub-space where the
operators are non-differentiable has null-Lebesgue measure, therefore they do
not pose any practical issue, when used as part of a gradient descent optimization
schema as detailed in the following.

We assume that the input data X can be divided into a set of sub-domains
X = {X1, X2, . . .}, such that each variable vi of a FOL formula ranges over the
data of one input domain, namely vi ∈ Xdi , where di is the index of the domain
for the variable vi.

For example, let us consider the rule ∀v1∀v2 ¬A(v1, v2)∧B(v1). For any as-
signment to v1 and v2, the expression tree returns the output value [1−A(v1, v2)]·
B(v1), assuming to exploit the product t-norm to convert the connectives.

Quantifiers. The truth degree of a formula containing an expression with a
universally quantified variable vi is computed as the average of the t-norm truth
degree of the expression, when grounding vi over its domain. The truth degree
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of the existential quantifier is the maximum of the t-norm expression grounded
over the domain of the quantified variable. When multiple quantified variables
are present, the conversion is performed from the outer to the inner variable.
When only universal quantifiers are present the aggregation is equivalent to the
overall average over each grounding.

In the previous example, this yields the following expression:

Φ(X,A,B) =
1

|Xd1 | · |Xd2 |
∑

v1∈Xd1

∑
v2∈Xd2

[1−A(v1, v2)] ·B(v1) . (4)

2.4 Potentials expressing the logic knowledge
It is now possible to explain how to build the potentials from the prior knowl-
edge. In any learning task, each unknown grounded predicate corresponds to
one variable in the vector y. In the above example, the number of groundings is
|Xd1 |×|Xd2 | (i.e. the size of the cartesian product of the domains of A) and |Xd1 |
(i.e. the size of the domain of B). Therefore, assuming that both predicates A,B
are unknown, |y| = |f | = |Xd1 |×|Xd2 |+ |Xd1 |. The vector fnn is built similarly
by replacing a generic predicate with its neural implementation and then emplac-
ing the function values for the groundings in the vector. Again for the considered
example: fnn = {fA(v11, v21), . . . , fA(v1|Xd1

|, v2|Xd2
|), fB(v11), . . . , fB(v1|d2|)},

where vij is the j-th grounding for the i-th variable and fA, fB are the learned
neural approximations of A and B, respectively. Finally, the differentiable po-
tential for the example formula is obtained by replacing in Equation (4) each
grounded predicate with the corresponding stochastic variable in y.

Figure 2 shows the undirected graphical model corresponding to the DLM
for the running example rule used in this section, assuming that v1 can assume
values over the constants {Mary, John} and v2 over {Munich, London}. Each
stochastic node yi approximates one grounded predicate, while the fi nodes are
the actual output of a neural network getting as input the pattern represen-
tations of the corresponding grounding. The vertical connections between two
yi and fi nodes correspond to the cliques over the groundings for which the
Φr potential can be decomposed. The links between the yi nodes corresponds
to the cliques over the groundings of the rule for which the corresponding Φc
potential can be decomposed. The structure of these latter cliques follows a
template determined by the rule, that is repeated for the single groundings.
The graphical model is similar to the ones built by Probabilistic Soft Logic [1]
or Markov Logic Networks [26], but enriched with the nodes corresponding to
the output of the neural networks.

3 Related Works
DLMs have also their roots in Probabilistic Soft Logic (PSL) [1], a probabilistic
logic using an undirected graphical model to represent a grounded FOL knowl-
edge base, and employing a similar differentiable and convex approximation of
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y1 ≈ A(Mary,Munich)

f1 = fA(xMary, xMunich) w

y2 ≈ A(Mary, London)

f2 = fA(xMary, xLondon) w

y3 ≈ A(John,Munich)

f3 = fA(xJohn, xMunich) w

y4 ≈ A(John, London)

f4 = fA(xJohn, xLondon) w

y5 ≈ B(Mary)

f5 = fB(xMary)w

y6 ≈ B(John)

f6 = fB(xJohn)w

Figure 2: The undirected graphical model built by a DLM for the rule
∀v1∀v2 ¬A(v1, v2) ∧ B(v1) where v1 can assume values over the constants
{Mary, John} and v2 over {Munich, London}. Each stochastic node yi ap-
proximates one grounded predicate, while the fi nodes are the actual output of
a network getting the pattern representations of a grounding.

FOL. PSL, similar to a DLM, allows to learn the weight of each formula in the
KB by maximizing the log likelihood of the training data. However in PSL, rule
weights are restricted to only positive values denoting how far the rule is from
being satisfied. On the other hand, in DLMs the rule weights denote the needed
constraint reactions to match the degree satisfaction of the training data. In
addition, unlike DLMs, PSL focuses on logic reasoning without any integration
with deep learners, beside a simple stacking with no joint training.

The integration of learning from data and symbolic reasoning [10] has re-
cently attracted a lot of attention. Hu at al. [15], Semantic-based regularization
(SBR) [8] for kernel machines and Logic Tensor Networks (LTN) [9] for neural
networks share the same basic idea of integrating logic reasoning and learning
using a similar continuous relaxation of logic to the one presented in this paper.
However, this class of approaches considers the reasoning layer as frozen, with-
out allowing to jointly train its parameters. This is a big limitation, as these
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methods work better only with hard constraints, while they are less suitable in
presence of reasoning under uncertainty.

The integration of deep learning with Conditional Random Fields (CRFs) [20]
is also an alternative approach to enforce some structure on the network output.
This approach has been proved to be quite successful on sequence labeling for
natural language processing tasks. This methodology can be seen as a special
case of the more general methodology presented in this paper, when the poten-
tial functions are used to represent the correlations among consecutive outputs
of a recurrent deep network.

DeepProbLog [22] extends the popular ProbLog [7] probabilistic program-
ming framework with the integration of deep learners. DeepProbLog requires
the output from the neural networks to be probabilities and an independence
assumption among atoms in the logic is required to make inference tractable.
This is a strong restriction, since the sub-symbolic layer often consists of several
neural layers sharing weights.

A Neural Theorem Prover (NTP) [27, 28] is an end-to-end differentiable
prover based on the Prolog’s backward chaining algorithm. An NTP constructs
an end-to-end differentiable architecture capable of proving queries to a KB
using sub-symbolic vector representations. NTPs have been proven to be ef-
fective in tasks like entity linking and knowledge base completion. However,
an NTP encodes relations as vectors using a frozen pre-selected function (like
cosine similarity). This can be ineffective in modeling relations with a complex
and multifaceted nature (for example a relation friend(A,B) can be triggered
by different relationships of the representations in the embedding space). On
the other hand, DLMs allow a relation to be encoded by any selected function
(e.g. any deep neural networks), which is co-trained during learning. Therefore,
DLMs are capable of a more powerful and flexible exploitation of the represen-
tation space. On the other end, DLMs require to fully ground a KB (like SBR,
LTN, PSL and most of other methods discussed here), while NTPs expands
only the groundings on the explored frontier, which can be more efficient in
some cases.

Deep Structured Models [6, 19] use a similar graphical model to bridge the
sensorial and semantic levels. However, they have mainly focused on imposing
correlations on the output layer, without any focus on logic reasoning. Fur-
thermore, DLMs transform the training process into an iterative constrained
optimization problem, which is very different from the approximation of the
partition function used in Deep Structured Models.

DLMs also open up the possibility to iteratively integrate rule induction
mechanisms like the ones proposed by the Inductive Logic Programming com-
munity [17, 25].
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Figure 3: A sample of the data used in the PAIRS experiment, where each
column is a pair of digits.

4 Experimental Results

4.1 The PAIRS artificial dataset
Consider the following artificial task. We are provided with 1000 pairs of hand-
written digits images sampled from the MNIST dataset. The pairs are not
constructed randomly but they are compilied according to the following struc-
ture:

1. pairs with mixed even-odd digits are not allowed;

2. the first image of a pair represents a digit randomly selected from a uniform
distribution;

3. if the first image is an even (resp. odd) digit, the second image of a
pair represents one of the five even (resp. odd) digits with probabilities
p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5, with p1 the probability of being an image of
the same digit, p2 the probability of being an image of the next even/odd
digit, and so on.

For example, if the first image of a pair is selected to be a two, the second image
will be a two with probability p1, it will be a four with probability p2, a six
with probability p3 and so on, in a circular fashion. An example is shown in
Figure 3. A correct classification happens when both digit in a pair are correctly
predicted.

To model a task using DLMs there are some common design choices regard-
ing these two features that one needs to take. We use the current example
to show them. The first choice is to individuate the constants of the problem
and their sensorial representation in the perceptual space. Depending on the
problem, the constants can live in a single or multiple separate domains. In the
pairs example, the images are constants and each one is represented as a vector
of pixel brightnesses like commonly done in deep learning.

The second choice is the selection of the predicates that should predict some
characteristic over the constants and their implementation. In the pairs experi-
ment, the predicates are the membership functions for single digits (e.g. one(x),
two(x), etc.). A single neural network with 1 hidden layer, 10 hidden neurons
and 10 outputs, each one mapped to a predicate, was used in this toy experi-
ment. The choice of a small neural network is due to the fact that the goal is
not to get the best possible results, but to show how the prior knowledge can
help a classifier to improve its decision. In more complex experiments, different
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Model NN SBR DLM-NN DLM
Accuracy 0.62 0.64 0.65 0.76

Table 2: Comparison of the accuracy metric on the PAIRS dataset using differ-
ent models.

networks can be used for different sets of predicates, or each use a separate
network for each predicate.

Finally, the prior knowledge is selected. In the pairs dataset, where the
constants are grouped in pairs, it is natural to express the correlations among
two images in a pair via the prior knowledge. Therefore, the knowledge consists
of 100 rules in the form ∀(x, y) D1(x)→ D2(y), where (x, y) is a generic pair of
images and (D1, D2) range over all the possible pairs of digit classes.

We performed the experiments with p1 = 0.9, p2 = 0.07, p3 = p4 = p5 = 0.01.
All the images are rotated with a random degree between 0 and 90 anti-clockwise
to increase the complexity of the task. There is a strong regularity in having
two images representing the same digit in a pair, even some rare deviations from
this rule are possible. Moreover, there are some inadmissible pairs, i.e. those
containing mixed even-odd digits. The train and test sets are built by sampling
90% and 10% image pairs.

The results provided using a DLM have been compared against the following
baselines:

• the neural network (NN) with no knowledge of the structure of the prob-
lem;

• the Semantic Based Regularization [8] (SBR) framework, which also em-
ploys logical rules to improve the learner. However, the rule weights are
treated as fixed parameters, which are not jointly trained during learning.
Since searching in the space of these parameters via cross-validation is not
feasible, a strong prior was provided to make SBR prefers pairs with the
same image using 10 rules of the form ∀(x, y) D(x)→ D(y), for each digit
class D. These rules hold true in most cases and improve the baseline
performance of the network.

Table 4.1 shows how the neural network output of a DLM (DLM-NN) already
beats both the same neural model trained without prior knowledge and SBR.
This happens because the neural network in DLM is indirectly adjusted to
respect the prior knowledge in the overall optimization problem. When reading
the DLM output from the MAP solution (DLM), the results are significantly
improved.

4.2 Link Prediction in Knowledge Graphs
Neural-symbolic approaches have been proved to be very powerful to perform
approximated logical reasoning [29]. A common approach is to assign to each
logical constant and relation a learned vectorial representation [4]. Approximate
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reasoning is then carried out in this embedded space. Link Prediction in Knowl-
edge Graphs is a generic reasoning task where it is requested to establish the
links of the graph between semantic entities acting as constants. Rocktaschel et
al. [28] shows state-of-the-art performances on some link prediction benchmarks
by combining Prolog backward chain with a soft unification scheme.

This section shows how to model a link prediction task on the Countries
dataset using a Deep Logic Models, and compare this proposed solution to the
other state-of-the-art approaches.

Dataset. The Countries dataset [5] consists of 244 countries (e.g. germany),
5 regions (e.g. europe), 23 sub-regions (e.g. western europe, northern america,
etc.), which act as the constants of the KB. Two types of binary relations among
the constant are present in the dataset: locatedIn(c1, c2), expressing that c1
is part of c2 and neighborOf(c1, c2), expressing that c1 neighbors with c2. The
knowledge base consists of 1158 facts about the countries, regions and sub-
regions, expressed in the form of Prolog facts (e.g. locatedIn(italy,europe)).
The training, validation and test sets are composed by 204, 20 and 20 countries,
respectively, such that each country in the validation and test sets has at least
one neighbor in the training set. Three different tasks have been proposed for
this dataset with an increasing level of difficulty. For all tasks, the goal is to
predict the relation locatedIn(c, r) for every test country c and all five regions r,
but the access to training atoms in the KB varies, as explained in the following:

• Task S1: all ground atoms locatedIn(c, r) where c is a test country and
r is a region are removed from the KB. Since information about the sub-
region of test countries is still contained in the KB, this task can be solved
exactly by learning the transitivity of the locatedIn relation.

• Task S2: like S1 but all grounded atoms locatedIn(c, s), where c is a test
country and s is a sub-region, are removed. The location of test countries
needs to be inferred from the location of its neighbors. This task is more
difficult than S1, as neighboring countries might not be in the same region.

• Task S3: like S2, but all ground atoms locatedIn(c, r), where r is a
region and c is a training country with either a test or validation country
as a neighbor, are removed. This task requires multiple reasoning steps
to determine an unknown link, and it strongly exploits the sub-symbolic
reasoning capability of the model to be effectively solved.

Model. Each country, region and sub-region corresponds to a constant. Since
the constants are just symbols, each one is assigned to an embedding, which
is learned together with the other parameters of the model. The predicates
are the binary relations locatedIn and neighborOf, which connect constants
in the KB. Each relation is learned via a separate neural network with a 50
neuron hidden layer taking as input the concatenation of the embeddings of
the constants. In particular, similarly to [4], the constants are encoded into a
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Task ComplEx NTP NTPλ DLM
S1 99.37 90.83 100.00 100.00
S2 87.95 87.40 93.04 97.79
S3 48.44 56.68 77.26 91.93

Table 3: Comparison of the accuracy provided by different methods on link
prediction on the Countries dataset. Bold numbers are the best performers for
each task.

one-hot vector, which is processed by the first layer of the network, outputting
an embedding composed by 50 real number values. As commonly done in link
prediction tasks, the learning process is performed in a transductive mode. In
particular, the input X consists of all possible constants for the task, while
the train examples yt will cover only a subset of all the possible grounded
predicates, leaving to the joint train and inference process the generalization of
the prediction to the other unknown grounded relations. Indeed, the output of
the train process in this case is both the set of model parameters and the MAP
solution predicting the unknown grounded relations that hold true.

Multi-step dependencies among the constants are very important to predict
the existence of a link in this task. For example in task S1, the prediction of a
link among a country and a region can be established via the path passing by a
sub-region, once the model learns a rule stating the transitivity of the locatedIn
relation (i.e. locatedIn(x, y) ∧ locatedIn(y, z) → locatedIn(x, z)). Exploit-
ing instead the rule neighborOf(x, y)∧locatedIn(y, z)→ locatedIn(x, z), the
model should be capable of approximately solving task S2.

All 8 rules ∀x ∀y ∀z A(x, y) ∧ B(y,z)→ C(y, z), where A, B and C are either
neighborOf or locatedIn are added to the knowledge base for this experiment.
These rules represent all the 2-steps paths reasoning that can be encoded, and
the strength of each rule needs to be estimated as part of the learning process for
each task. The training process will iteratively minimize Equation 3 by jointly
determining the embeddings and the network weights such that network outputs
and the MAP solution will correctly predict the training data, while respecting
the constraints on the MAP solution at the same level as on the train data.

Results. Table 4.2 compares DLM against the state-of-the-art methods used
by Rocktaschel et al. [28], namely ComplEx, NTP and NTPλ. Task S1 is
the only one that can be solved exactly when the transitive property of the
locatedIn relation has been learned to always hold true. Indeed, most methods
are able to perfectly solve this task, except for the plain NTP model. DLM is
capable perfectly solving this task by joining the logical reasoning capabilities
with the discriminative power of neural networks. DLMs perform better than
the competitors on tasks S2 and S3, thanks to additional flexibility obtained by
jointly training the relation functions using neural networks, unlike the simple
vectorial operations like the cosine similarity employed by the competitors.
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5 Conclusions and future work
This paper presents Deep Logic Models that integrate (deep) learning and logic
reasoning into a single fully differentiable architecture. The logic can be ex-
pressed with unrestricted FOL formalism, where each FOL rule is converted
into a differentiable potential function, which can be integrated into the learn-
ing process. The main advantage of the presented framework is the ability to
fully integrate learning from low-level representations and semantic high-level
reasoning over the network outputs. Allowing to jointly learn the weights of
the deep learners and the parameters controlling the reasoning enables a pos-
itive feedback loop, which is shown to improve the accuracy of both layers.
Future work will try to bridge the gap between fully grounded methodologies
like current Deep Logic Models and Theorem Provers which expand only the
groundings needed to expand the frontier of the search space.
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