Skip to main content

Beyond Bag-of-Concepts: Vectors of Locally Aggregated Concepts

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11907))

Abstract

Bag-of-Concepts, a model that counts the frequency of clustered word embeddings (i.e., concepts) in a document, has demonstrated the feasibility of leveraging clustered word embeddings to create features for document representation. However, information is lost as the word embeddings themselves are not used in the resulting feature vector. This paper presents a novel text representation method, Vectors of Locally Aggregated Concepts (VLAC). Like Bag-of-Concepts, it clusters word embeddings for its feature generation. However, instead of counting the frequency of clustered word embeddings, VLAC takes each cluster’s sum of residuals with respect to its centroid and concatenates those to create a feature vector. The resulting feature vectors contain more discriminative information than Bag-of-Concepts due to the additional inclusion of these first order statistics. The proposed method is tested on four different data sets for single-label classification and compared with several baselines, including TF-IDF and Bag-of-Concepts. Results indicate that when combining features of VLAC with TF-IDF significant improvements in performance were found regardless of which word embeddings were used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Retrieved from https://code.google.com/archive/p/word2vec/.

  2. 2.

    Retrieved from https://nlp.stanford.edu/projects/glove/.

  3. 3.

    Retrieved from http://nilc.icmc.usp.br/embeddings.

  4. 4.

    Code and results of this study can be found at https://github.com/MaartenGr/VLAC.

References

  1. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

    Google Scholar 

  2. Arandjelovic, R., Zisserman, A.: All about VLAD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)

    Google Scholar 

  3. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: International Conference for Learning Representations (2017)

    Google Scholar 

  4. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: Proceedings of the 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)

    Google Scholar 

  5. Cardoso-Cachopo, A.: Improving methods for single-label text categorization. Ph.D thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2007)

    Google Scholar 

  6. Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Advances in Neural Information Processing Systems, pp. 3079–3087 (2015)

    Google Scholar 

  7. Delhumeau, J., Gosselin, P.H., Jégou, H., Pérez, P.: Revisiting the VLAD image representation. In: Proceedings of the 21st International Conference on Multimedia, pp. 653–656. ACM (2013)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Jegou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Computer Vision and Pattern Recognition, pp. 3304–3311. IEEE (2010)

    Google Scholar 

  10. Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)

    Article  Google Scholar 

  11. Joachims, T.: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In: International Conference on Machine Learning, pp. 143–151 (1996)

    Google Scholar 

  12. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  13. Kelleher, J.D., Mac Namee, B., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press, Cambridge (2015)

    MATH  Google Scholar 

  14. Kim, H.K., Kim, H., Cho, S.: Bag-of-concepts: comprehending document representation through clustering words in distributed representation. Neurocomputing 266, 336–352 (2017)

    Article  Google Scholar 

  15. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150 (2011)

    Google Scholar 

  16. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  18. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_38

    Chapter  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  21. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  22. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  23. Picard, D., Gosselin, P.H.: Improving image similarity with vectors of locally aggregated tensors. In: International Conference on Image Processing, pp. 669–672. IEEE (2011)

    Google Scholar 

  24. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 133–142 (2003)

    Google Scholar 

  25. Ramyachitra, D., Manikandan, P.: Imbalanced dataset classification and solutions: a review. Int. J. Comput. Bus. Res. 5(4), 1–29 (2014)

    Google Scholar 

  26. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984. ACM (2006)

    Google Scholar 

  27. Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, pp. 197–206. ACM (2007)

    Google Scholar 

  28. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. and Cybern. 1(1–4), 43–52 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Grootendorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grootendorst, M., Vanschoren, J. (2020). Beyond Bag-of-Concepts: Vectors of Locally Aggregated Concepts. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics