Skip to main content

Fast and Parallelizable Ranking with Outliers from Pairwise Comparisons

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

  • 2015 Accesses

Abstract

In this paper, we initiate the study of the problem of ordering objects from their pairwise comparison results when allowed to discard up to a certain number of objects as outliers. More specifically, we seek to find an ordering under the popular Kendall tau distance measure, i.e., minimizing the number of pairwise comparison results that are inconsistent with the ordering, with some outliers removed. The presence of outliers challenges the assumption that a global consistent ordering exists and obscures the measure. This problem does not admit a polynomial time algorithm unless NP \( \subseteq \) BPP, and therefore, we develop approximation algorithms with provable guarantees for all inputs. Our algorithms have running time and memory usage that are almost linear in the input size. Further, they are readily adaptable to run on massively parallel platforms such as MapReduce or Spark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A directed graph \(G = (V, E)\) is called a tournament if it is complete and directed. In other words, for any pair \(u \ne v \in V\), either \((u, v) \in E\) or \((v, u) \in E\).

  2. 2.

    More precisely, he considered a slightly more general version where each vertex may have a different cost when removed as an outlier.

  3. 3.

    We show that our algorithm is (180, 180)-approximate, which can be improved arbitrarily close to (60, 60) if one is willing to accept a lower success probability. In contrast, Aboud’s algorithm can be adapted to be (18, 18)-approximate for FASTO; however as mentioned above, it uses considerably more memory and run time than ours.

References

  1. Aboud, A.: Correlation clustering with penalties and approximating the reordering buffer management problem. Master’s thesis. The Technion Israel Institute of Technology (2008)

    Google Scholar 

  2. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2), 284–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altman, A., Tennenholtz, M.: Ranking systems: the pagerank axioms. In: ACM EC (2005)

    Google Scholar 

  5. Ammar, A., Shah, D.: Ranking: Compare, don’t score. In: IEEE Allerton (2011)

    Google Scholar 

  6. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geometric graph problems. In: ACM STOC, pp. 574–583 (2014)

    Google Scholar 

  7. Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. Math Program. 92(1), 1–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39(3/4), 324–345 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: ACM-SIAM SODA (2001)

    Google Scholar 

  10. Chen, K.: A constant factor approximation algorithm for k-median clustering with outliers. In: ACM-SIAM SODA (2008)

    Google Scholar 

  11. Coppersmith, D., Fleischer, L.K., Rurda, A.: Ordering by weighted number of wins gives a good ranking for weighted tournaments. ACM Trans. Algorithms 6(3), 55 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duchi, J.C., Mackey, L.W., Jordan, M.I.: On the consistency of ranking algorithms. In: ICML, pp. 327–334 (2010)

    Google Scholar 

  13. Even, G., (Seffi) Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guha, S., Li, Y., Zhang, Q.: Distributed partial clustering. In: ACM SPAA (2017)

    Google Scholar 

  16. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods for k-means with outliers. PVLDB 10(7), 757–768 (2017)

    Google Scholar 

  17. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)

    Google Scholar 

  18. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: ACM STOC (2007)

    Google Scholar 

  19. Lu, T., Boutilier, C.: Learning mallows models with pairwise preferences. In: ICML (2011)

    Google Scholar 

  20. Luce, R.D.: Individual Choice Behavior a Theoretical Analysis. Wiley, Hoboken (1959)

    MATH  Google Scholar 

  21. Malkomes, G., Kusner, M.J., Chen, W., Weinberger, K.Q., Moseley, B.: Fast distributed k-center clustering with outliers on massive data. In: NIPS (2015)

    Google Scholar 

  22. Muller, E., Sánchez, P.I., Mulle, Y., Bohm, K.: Ranking outlier nodes in subspaces of attributed graphs. In: IEEE ICDEW (2013)

    Google Scholar 

  23. Negahban, S., Oh, S., Shah, D.: Rank centrality: ranking from pairwise comparisons. Oper. Res. 65(1), 266–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rajkumar, A., Agarwal, S.: A statistical convergence perspective of algorithms for rank aggregation from pairwise data. In: ICML (2014)

    Google Scholar 

  25. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77918-6_21

    Chapter  MATH  Google Scholar 

  26. Wauthier, F., Jordan, M., Jojic, N.: Efficient ranking from pairwise comparisons. In: ICML (2013)

    Google Scholar 

  27. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grants CCF-1409130 and CCF-1617653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungjin Im .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Im, S., Montazer Qaem, M. (2020). Fast and Parallelizable Ranking with Outliers from Pairwise Comparisons. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics