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Abstract. The present-day accessibility of technology enables easy log-
ging of both sensor values and event logs over extended periods. In this
context, detecting abnormal segments in time series data has become an
important data mining task. Existing work on anomaly detection focuses
either on continuous time series or discrete event logs and not on the com-
bination. However, in many practical applications, the patterns extracted
from the event log can reveal contextual and operational conditions of
a device that must be taken into account when predicting anomalies in
the continuous time series. This paper proposes an anomaly detection
method that can handle mixed-type time series. The method leverages
frequent pattern mining techniques to construct an embedding of mixed-
type time series on which an isolation forest is trained. Experiments
on several real-world univariate and multivariate time series, as well as
a synthetic mixed-type time series, show that our anomaly detection
algorithm outperforms state-of-the-art anomaly detection techniques such
as MatrixProfile, Pav, Mifpod and Fpof.

Keywords: Anomaly detection, time series, distance measure, pattern-based
embedding, frequent pattern mining

1 Introduction

Anomaly detection in time-series is an important real-world problem, especially
as an increasing amount of data of human behaviour and a myriad of devices
is collected, with an increasing impact on our everyday lives. We live in an
“Internet of Things” world, where a network of devices, vehicles, home appliances
and other items embedded with software and electronics are connected and
exchanging data [9]. Although many organisations are collecting time series data,
automatically analysing them and extracting meaningful knowledge, such as an
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understandable model that automatically flags relevant anomalies, remains a
difficult problem, even after decades of research.

Exploring different benchmark datasets for time series anomaly detection, we
found that these datasets often consist of univariate time series, where anomalies
are local or global extrema or point anomalies [2]. In contrast, we focus on
collective and contextual anomalies: a collection of points in the time series is
anomalous depending on the surrounding context. For instance, most smartphones
log many continuous times series from various sensors, such as the accelerometer,
gyroscope, internal thermometer, and battery level. In addition, smartphones log
discrete events in different operating system logs, such as applications starting or
stopping, certain hardware components being turned on or off, or application-
specific events. Such events are crucial in determining whether the behaviour
observed in the continuous time series, e.g., a spike in power usage, is anomalous.
We argue that for many real-world applications one needs to extract information
from both types of sources to successfully detect anomalies.

In the active research area for anomaly detection in continuous time series,
much attention has been given to finding anomalies using continuous n-grams,
dynamic time warping distance, and similarity to the nearest neighbors [15,18],
but not to integrating event log data. On the other hand, pattern mining based
techniques for detecting anomalies have been developed for discrete event logs,
but not for continuous time series. In this paper, we propose how to circumvent
the apparent mismatch between discrete patterns and continuous time series
data. We introduce a pattern-based anomaly detection method that can detect
anomalies in mixed-type time series, i.e., time series consisting of both continuous
sensor values and discrete event logs.

Given a time series dataset, the method leverages the mature field of frequent
pattern mining research [19] to find frequent patterns in the data, serving as
a template for the frequently occurring normal behaviour. Then, the frequent
patterns are used to map the time series data to a feature-vector representation.
This newly found pattern-based embedding of the data combines the information
in both the continuous time series and the discrete event logs into a single feature
vector. Finally, a state-of-the-art anomaly detection algorithm is used to find the
anomalies in the embedded space.

The remainder of this paper is organised as follows. In Section 2, we introduce
the necessary preliminaries. In Section 3, we provide a detailed description of our
method for pattern mining, feature representation, and anomaly detection. In
Section 4, we present an experimental evaluation of our method and compare with
state-of-the-art methods. We present an overview of related work in Section 5
and conclude our work in Section 6.

2 Preliminaries

2.1 Time series data

A continuous time series is defined as a sequence of real-valued measurements
pxx1, t1y, . . . , xxn, tnyq, where xk P R and each measurement has a distinct times-
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tamp tk. Although this is not required, we will assume that the continuous time
series are sampled regularly, that is ti`1´ti is constant, and do not contain missing
values. A discrete event log is a sequence of discrete events pxe1, t1y, . . . , xen, tnyq
where ek P Σ, with Σ a finite domain of discrete event types. Unlike continuous
time series, we assume that multiple events can co-occur at the same timestamp,
i.e. ti ď ti`1, and that events can occur sparsely.

In this paper, we consider a mixed-type time series S. This is a collection of N
continuous time series and M event logs. Thus, S has M `N dimensions. Typical
time series representations are special cases of this: when N “ 1 and M “ 0 it is
a univariate time series; and when N ą 1 and M “ 0 it is a multivariate time
series. A single time series in S is denoted as Si and has only one dimension.

A time series window Sit,l is a contiguous subsequence of a time series Si

and contains all measurements for which txxi, tiy or xei, tiy|t ď ti ă t ` lu.
Additionally, we can define a window over all dimensions of S simultaneously
and thus use the same values for timestamp t and length l for all series in S,
regardless of whether they are continuous time series or discrete events. In this
work, we use fixed-sized sliding windows. This means choosing a fixed l given S
(e.g., 1 hour, 5 minutes, . . . ) and iteratively incrementing t with a fixed value.

2.2 Pattern mining

We provide the following definitions for frequent pattern mining [19], adapted to
the context of mixed-type time series.

The first type of pattern we consider is an itemset. For an itemset, no
temporal order between items is required. An itemset X consists of one or
more items xj P Ω, where Ω is a finite domain of discrete values, that is,
X “ tx1, . . . , xmu Ď 2|Ω|. An itemset X occurs in, or is covered by, a window
Sit,l if all items in X occur in that window in any order, that is,

X ă Sit,l ô @xj P X : Dxxj , tjy P S
i
t,l.

Given the set of all windows S of a time series, we define cover and support as

coverpX,Sq “ tSit,l|Sit,l P S ^X ă Sit,lu and supportpX,Sq “ |coverpX,Sq|.

The second type of pattern we consider is a sequential pattern. A sequential
pattern Xs consists of an ordered list of one or more items, denoted as Xs “

px1, . . . , xmq, where xj P Ω. A sequential pattern can contain repeating items,
and, unlike n-grams, an occurrence of a sequential pattern allows gaps between
items. We define that a sequential pattern Xs occurs in a window Sit,l using

Xs ă Sit,l ô Dxx1, t1y, . . . , xxp, tmy P S
i
t,l : @i, j P t1, . . . , pu : i ă j ñ ti ă tj .

The definitions of cover and support are equivalent to those of itemsets. Finally,
an itemset or a sequential pattern is frequent if its support is higher than a
user-defined threshold on minimal support (parameter min sup).
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Given a set of windows S and discretised continuous values, we can use
existing itemset or sequential pattern mining algorithms [19,8] to efficiently mine
all frequent patterns in both continuous and discrete time series. However, even
with the restriction that patterns must occur at least min sup times, it remains a
challenge to filter out redundant patterns. We will focus on algorithms that mine
only closed or maximal patterns. An itemset X is not closed, and thus redundant,
if and only if there exists an itemset Z, such that X Ă Z and supportpX,Sq “
supportpZ,Sq. Likewise, a sequential pattern Xs is not closed if there exists a
sequential pattern Zs, such that Xs Ă Zs and supportpXs,Sq “ supportpZs,Sq,
where Ă is used to denote the subsequence relation.

3 Pattern-based anomaly detection

3.1 Problem setting

The problem we are trying to solve can be defined as:

Given: A univariate, multivariate, or mixed-type time series S.
Do: Identify periods of abnormal behaviour in S.

In this section we outline our proposed pattern-based anomaly detection method
(Pbad) that computes for each time series window of S an anomaly score. The
method has four major steps. First, the time series is preprocessed. Second,
frequent itemsets and sequential patterns are mined from the individual time
series or event logs Si P S. Third, the distance-weighted similarity scores between
the frequent patterns and each time series window are computed to construct
a pattern-based embedding of time series S. Fourth, the embedding is used to
construct an anomaly detection classifier to detect the anomalous periods of S.
We use the IsolationForest classifier. These steps are illustrated in Figure 1.
In the following paragraphs, we outline each step in more detail.

3.2 Preprocessing

Preprocessing is the first step in Pbad shown in Algorithm 1, line 1-7. First, we
normalise each continuous time series Si in S to values between 0 and 1, because
multivariate time series can have widely different amplitudes.

Then, we segment each time series in S using fixed-size sliding windows of
length l. Frequent patterns are often limited in length, i.e., a length of 5 is already
quite high. Therefore, it can be useful for certain datasets to also reduce the
length of each window such that a frequent sequential pattern or itemset covers
a large proportion of each window. For example, we can reduce a continuous
window of length 100, using a moving average, by storing the average value for
every 5 consecutive values. The resulting window now has a length of 20 and
subsequently any matching sequential pattern or itemset of size 5 will cover a
large part of the window.

Frequent pattern mining only works on discretised data. For a continuous
time series, each window Sit,l “ px1, . . . , xlq must be discretised using a function h
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Fig. 1: Illustration of major steps in pattern-based anomaly detection method
in mixed-type time series. Note that the 1st and 3th window, and the 2nd and
4th windows match the same set of patterns extracted from both the time series
and the event log. The 5th window is anomalous because of the co-occurrence of
a peak with a green event. The isolation forest step in Pbad marks it as such
since its depth is only 2.

to yield a discrete representation hpSit,lq “ px1
1, . . . , xl

1q where xj
1 P Ω. Examples

of such functions include equal-width or equal-frequency binning, or aggregating
windows and computing a symbol using Symbolic Aggregate Approximation [13].

3.3 Extracting frequent patterns

After preprocessing, Pbad mines frequent itemsets and sequential patterns from
time series S. Given the assumption that anomalous behaviour occurs infrequently
in the time series, the frequent patterns would characterise the frequently observed,
normal behaviour. To extract the frequent patterns, we leverage the mature field
of frequent pattern mining. This has two main advantages. First, the existing
techniques can be extended to mine patterns in different types of time series data.
Second, the mined patterns are easily interpretable and can later be presented to
the user to give intuitions as to why the classifier labeled a segment as normal or
anomalous.

Extracting frequent itemsets and sequential patterns. After preprocess-
ing, we have created a set of windows for each series. These can trivially be
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Algorithm 1: Pbad(S, l, min sup, is maximal, max sim) Anomaly detec-
tion using late integration

Input :A time series S, window length l, support threshold min sup, is maximal
is either maximal or closed, threshold on max Jaccard similarity
max sim

Result: Anomaly scores for each window St,l

// 1. Preprocessing: create windows and discretise

1 S ÐH

2 foreach Si
P S do

3 if Si is continuous then
4 T i

Ð create windowspdiscretisepnormalisepSi
qq, lq

5 else
6 T i

Ð create windowspSi, lq

7 S Ð S Y T i

// 2. Mine maximal/closed frequent itemsets and sequential patterns

8 P ÐH

9 foreach T i
P S do

10 Pi
Ð mine frequent itemsetspT i,min sup, is maximalq

11 Pi
Ð Pi

Ymine frequent sequential patternspT i,min sup, is maximalq
// Remove redundant patterns using Jaccard

12 Pi
Ð sort Pi on descending support

13 for 1 ď i ă |Pi
| do

14 for i` 1 ď j ď |Pi
| do

15 if JpXi, Xjq ě max sim then
16 Pi

Ð Pi
zXj

17 P Ð P Y Pi

// 3. Compute pattern based embedding

18 FÐ matrix of 0.0 values with |P| columns and |S| rows for each window St,l

19 for 1 ď i ď |S| do
20 for 1 ď j ď |Pi

| do
21 idxÐ global index of Xi

j in P
22 for 1 ď t ď |S| do

// Weighted similarity between pattern Xi
j and window Si

t,l

in dimension i for time series

23 Fk,idx Ð 1.0´
ExactMinDistpXi

j ,S
i
t,lq

|Xi
j |

// 4. Compute anomalies using Isolation Forest

24 scoresÐ isolation forestpS,Fq
25 scoresÐ sort scores descending

transformed to a transaction (or sequence) database, required by existing frequent
pattern mining algorithms [19]. Said algorithms generate candidate patterns with
growing length. Since support decreases with the length of either the itemset
or sequential pattern, it is relatively straightforward for these algorithms to
only enumerate patterns that are frequent by pruning the candidate patterns
on min sup. We always mine both itemsets and sequential patterns, but filter
either on closed or maximal patterns depending on the status of the parameter
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is maximal (line 9-11). The implementation of both closed and maximal itemsets
and sequential pattern mining algorithms is available in the Spmf library [8].

Removing overlapping patterns. Frequent pattern mining algorithms can
generate too many redundant patterns. To further reduce the set of patterns,
we employ Jaccard similarity to remove itemsets and sequential patterns that
co-occur in a large percentage of windows. Formally, we use a parameter max sim,
and remove all patterns with a high enough Jaccard similarity:

JpX1, X2q “
|coverpX1q X coverpX2q|

supportpX1q ` supportpX2q ´ |coverpX1q X coverpX2q|

If JpX1, X2q ě max sim, we remove the pattern with the lowest support. We
created a straightforward routine that compares all pattern pairs (line 12-17).

Dealing with multivariate and mixed-type time series. For multivariate
and mixed-type time series, we consider two strategies for pattern extraction:
early and late integration. Under the early integration strategy, the items of
all preprocessed series in S are combined into a single event sequence. The
frequent patterns are then mined over this new event sequence, resulting in
patterns containing values from multiple dimensions. For example, the windows
S1
1,4 “ p1, 2, 3, 4q and S2

1,4 “ p10, 10, 11, 11q spanning the same period in two
time series S1 and S2, can be combined into a single event sequence E1,4 “

pt11, 102u, t21, 102u, t31, 112u, t41, 112uq. Frequent patterns can now be mined in
this single event sequence, yielding candidate patterns such as the sequential
pattern Xs “ p1

1, 21, 112, 112q, meaning that value 1 followed by 2 in series S1 is
followed by 2 occurrences of 11 in series S2.

In contrast, the late integration strategy mines patterns in each time series
of S separately and takes the union of the resulting set of patterns. Now, each
pattern is associated with exactly one time series. While it would be tempting to
conclude that early integration is better since it can uncover patterns containing
events from different dimensions as well as any order between these events, we
prefer late integration in our experiments for two reasons. First, in practice,
early integration leads to an exponential increase in the search space of possible
patterns, i.e., pattern explosion, since the pattern mining algorithms consider
every possible combination of values in each of the time series. Second, the
anomaly detection classifier in Pbad is constructed on the union of pattern-based
embeddings of each time series in S. As such, it learns the structure between
patterns from the separate time series.

3.4 Constructing the pattern-based embedding

Having obtained a set of patterns for the time series in S, Pbad maps S to
a pattern-based embedding in two steps. First, it computes a similarity score
between each window Sit,l and each pattern Xi mined from the corresponding

time series Si in S. If Si is continuous, Pbad computes a distance-weighted
similarity score. If Si is an event log, Pbad computes the exact match, i.e. 1 if
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Xi ă Sit,l and 0 otherwise. Second, it concatenates the similarity scores over all
dimensions, yielding the feature-vector representation of the window of S. Since
this process is repeated for each window in S, we end up with a pattern-based
embedding of the full time series (line 18-23). We argue that normal time series
windows are more frequent than the anomalous windows and as such normal
windows match the set of patterns better. As a result, they will be clustered
together in the embedded space whereas the less frequent anomalous windows
will have lower similarity scores and will be more scattered in the embedded
space.

Computing the distance-weighted similarity score. The intuition behind
a weighted similarity score can be illustrated with a simple example. For instance,
the sequential pattern X1 “ p0.1, 0.5q clearly matches time series window S1

1,3 “

p0.1, 0.55, 1.0q better than window S1
4,3 “ p0.8, 0.9, 1.0q. Thus, the similarity

between a sequential pattern Xi of length m and a time series window Sit,l of
length l depends on the minimal Euclidean distance between the pattern and
the window:

weighted distpXi, Sit,lq “ min
EĂSi

t,l

g

f

f

e

m
ÿ

j“1

pEj ´Xi
jq

2 (1)

where E is a subsequence of m elements from window Sit,l. The optimisation
yields the minimal distance by only observing the best matching elements in the
pattern and the window. Given the weighted distance between the sequential
pattern and a window, the similarity score is computed as follows:

simpXi, Sit,lq “ 1.0´ weighted distpXi, Sit,lq{|X
i|

If the distance between the pattern and the time series window is small, the
similarity increases. Since the patterns can have different lengths, the distance is
normalised for the length of the pattern. Going back to the simple example, the
similarity with window S1

1,3 is 1.0´
a

p0.1´ 0.1q2 ` p0.55´ 0.5q2{2 “ 0.975 while

the similarity with window S1
4,3 is only 1.0 ´

a

p0.8´ 0.1q2 ` p0.9´ 0.5q2{2 “
0.597.

Because a sequential pattern imposes a total order on its items, Equation 1
cannot be solved trivially. We design an exact algorithm for computing Equation 1
with the added ordering constraint. Our exact algorithm matches every element
in the pattern with exactly one unique element in the window such that the
sum of the distances between the matched elements is minimal. The approach is
based on the Smith-Waterman algorithm for local sequence alignment. However,
in contrast, our algorithm ensures that every element in the window and pattern
can only be matched once and enforces a match for every element in the pattern.
Furthermore, it imposes no gap penalty for skipping elements. Finally, it returns
an exact distance between the pattern and the window. Since it is a dynamic
programming algorithm, it is guaranteed to find the optimal alignment of the
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pattern and the segment that minimises the distance. For the sake of brevity, we
include the full ExactMinDist algorithm in Appendix A.1.4

Dealing with itemsets. Pbad also computes the similarity between itemsets
and windows. In contrast to a sequential pattern, an itemset does not impose an
order on its elements. We can simply sort the elements of the both the itemset
and window before using the ExactMinDist algorithm to obtain the correct
weighted distance and compute the similarity score.

Constructing the embedding under the early integration strategy. In
case of the early integration strategy, we must deal with patterns with mixed items
from different continuous time series and event logs when computing the similarity
score. For itemsets, we adapt Equation 1 and compute the minimal distance in
each dimension separately and then sum all distances over all dimensions. The
distance is computed either weighted, i.e., between an item and a continuous time
series value, or binary, i.e., between an item and a discrete event log value. For
sequential patterns, we consider the subsequence in each dimension separately
and sum all distances. However, in this case we have to satisfy the total order
constraint within each time series and between different time series. A brute-force
way to compute this, is to generate all possible subsequences (with gaps) over
each dimension that satisfy the local and global order constraints, induced by
each sequential pattern, and take the subsequence that has the smallest distance.
In practice, this is feasible since the length of the time series and patterns is
limited to small numbers.

Time complexity. The time complexity of constructing the pattern-based em-
bedding of S is Op|P|¨|S|¨oq where o “ Opl¨mq is required by the ExactMinDist
algorithm, |P| the number of frequent patterns found, and |S| the number of
windows in the time series. Under the late integration strategy, this complexity
increases linearly with the number of dimensions of S.

3.5 Constructing the anomaly classifier

The final step of Pbad is to construct the anomaly detection classifier (lines
24-25 in Algorithm 1). Given the pattern-based embedding of S, any state-of-
the-art anomaly detector can be used to compute an anomaly score for each
window of S. Pbad uses the IsolationForest classifier [16] since it has been
empirically shown to be the state-of-the-art in unsupervised anomaly detection [7].
An isolation forest is an ensemble of decision trees. Each tree finds anomalies
by recursively making random partitions of the instance space. Anomalies are
isolated quickly from the data, resulting in shorter path lengths in the tree, as
illustrated in Figure 1. Usually, the anomaly score is used to rank the segments
from most to least anomalous such that the user can easily inspect the most
anomalous parts of the data. To generate discrete alarms, one can threshold the
score to a specific percentile of the distribution of all scores.

4 http://adrem.uantwerpen.be/bibrem/pubs/pbad.pdf

http://adrem.uantwerpen.be/bibrem/pubs/pbad.pdf
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4 Experiments

In this section, we address the following research questions:

Q1: How does Pbad perform compared to the state-of-the-art pattern based
anomaly detection algorithms?

Q2: Can Pbad handle different types of time series data?

We evaluate Pbad on three types of time series: real-world univariate time series,
real-world multivariate time series, and synthetic mixed-type time series. Before
discussing the results, we lay out the experimental setup.

4.1 Experimental setup

We compare Pbad with following state-of-the-art pattern based anomaly detection
methods:

– Matrix profile (MP) is an anomaly detection technique based on all-pairs-
similarity-search for time series data [18]. The anomalies are the time series
discords.

– Pattern anomaly value (Pav) is a multi-scale anomaly detection algorithm
based on infrequent patterns, specifically bi-grams, for univariate time se-
ries [3].

– Minimal infrequent pattern based outlier factor (Mifpod) is an anomaly
detection method for event logs [11]. Their outlier factor is based on minimal
infrequent, or rare, itemsets.

– Frequent pattern based outlier factor (Fpof) computes an outlier factor based
on the number of frequent itemsets that exactly match the current transaction
for transactional databases [10]. We adapt Fpof and compute the outlier
factor based on closed itemsets and reduce itemsets further using Jaccard
similarity as in Pbad.

Experimental setup. The experimental setup corresponds to the standard setup
in time series anomaly detection [11]. Given a time series S with a number of
labelled timestamps: (i) divide the time series into fixed-sized, sliding windows;
(ii) each window that contains a labelled timestamp takes its label; (iii) construct
the anomaly detection model on the full time series data; (iv) use the model to
predict an anomaly score for each window in the time series; (v) evaluate the
predictions on the labelled windows by computing the area under the receiver
operating characteristic (AUROC) and average precision (AP).

Parametrisation of methods. Each method has the same preprocessing steps
which includes setting an appropriate window size and increment to create the
fixed-sized, sliding windows. Continuous variables are discretised using equal-
width binning.5 Pav has no parameters. MatrixProfile has a single parameter,

5 See Table 4 in Appendix A.2 for details on setting preprocessing parameters.
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the window size. The parameters of Fpof and Mifpod are chosen by an oracle
that knows the optimal settings for each dataset. For Pbad, as a rule of thumb,
we set minimal support relatively high, that is min sup “ 0.01. The Jaccard
threshold is set to 0.9. Intuitively, if two patterns cover almost the same windows,
e.g., 90 out of 100 windows, using both patterns is both unnecessary and less
efficient. For mining closed itemsets we use Charm, and for mining maximal
itemsets we use Charm-MFI. For mining closed and maximal sequential patterns
we use CM-ClaSP and MaxSP respectively. Charm and CM-ClaSP are based
on a vertical representation. MaxSP is inspired by PrefixSpan which only
generates candidates that have at least one occurrence in the database [19,8].
The sequential patterns should have a minimal length of 2, and by default we set
pattern pruning to closed. We use the IsolationForest classifier implemented
in Scikit-Learn with 500 trees in the ensemble. The implementation, datasets
and experimental scripts for Pbad are publicly available.6 We do not report
detailed runtime results, however, on the selected datasets Pbad requires less
than 30 minutes on a standard PC.

4.2 Anomaly detection in univariate time series

For the univariate test case, we use 9 real-world datasets. Three datasets are
from the Numenta time series anomaly detection benchmark [1]. Temp tracks the
ambient temperature in an office during 302 days where the goal is to detect
periods of abnormal temperature. Latency monitors CPU usage for 13 days in a
data center with the goal of detecting abnormal CPU usage. Finally, Taxi logs
the number of NYC taxi passengers for 215 days in order to detect periods of
abnormal traffic. The 6 remaining datasets are not publicly available. Each tracks
on average 2.5 years of water consumption in a different store of a large retail
company. The company wants to detect periods of abnormal water consumption
possibly caused by leaks or rare operational conditions. Domain experts have
labelled between 547 and 2 391 hours in each store.

Results and discussion. Table 1 shows the AUROC and AP obtained by each
method on each of the 9 univariate time series datasets as well as the ranking of
each method. Pbad outperforms the existing baselines for detecting anomalies
in univariate time series data in 5 of the 9 datasets.

In the experiments, MP sometimes performs close to random. Because MP
detects anomalous windows as those with the highest distance to its nearest
neighbour window in the time series, its performance degrades if the data contain
two or more similar anomalies. This is, for instance, the case for the water

consumption data where each type of leak corresponds to a specific time series
pattern. A more detailed discussion of the univariate datasets, parameter settings
and results is included in Appendix A.2.

We compared the impact of computing the distance-weighted similarity be-
tween a pattern and time series window, versus computing an exact match, on
the univariate datasets. In this case, using distance-weighted similarity, results in

6 Implementation of Pbad: https://bitbucket.org/len_feremans/pbad/.

https://bitbucket.org/len_feremans/pbad/
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AUROC AP

dataset MP Pav Mifpod Fpof Pbad MP Pav Mifpod Fpof Pbad

Temp 0.240 0.590 0.997 0.999 0.998 0.014 0.040 0.917 0.957 0.917
Taxi 0.861 0.281 0.846 0.877 0.879 0.214 0.057 0.300 0.403 0.453
Latency 0.599 0.608 0.467 0.493 0.553 0.515 0.361 0.255 0.296 0.382
Water 1 0.656 0.482 0.514 0.825 0.884 0.499 0.301 0.328 0.812 0.821
Water 2 0.600 0.520 0.513 0.857 0.945 0.353 0.127 0.094 0.688 0.862
Water 3 0.536 0.457 0.544 0.671 0.605 0.126 0.121 0.079 0.350 0.233
Water 4 0.675 0.579 0.548 0.613 0.721 0.774 0.687 0.700 0.817 0.808
Water 5 0.444 0.581 0.455 0.790 0.960 0.199 0.243 0.111 0.671 0.906
Water 6 0.682 0.609 0.500 0.874 0.752 0.578 0.431 0.228 0.692 0.551

Average 0.588 0.523 0.598 0.778 0.811 0.364 0.263 0.335 0.632 0.659
Ranking 3.333 3.889 4.167 2 1.611 3.111 4.111 4.278 1.778 1.722

Table 1: The table shows the AUROC and AP obtained by each method on 9
univariate time series. Pbad outperforms the baselines in 5 of the 9 datasets.

a higher AUROC and AP on 8 of the 9 datasets. Using the combination of both
frequent itemsets and frequent sequential patterns instead of only itemsets or
only sequential patterns results in higher AUROC on 6 of the 9 datasets.

4.3 Anomaly detection in multivariate time series

For the multivariate test case, we use an indoor exercise monitoring dataset [5].
The data contain recordings of 10 people each executing 60 repetitions of three
types of exercises: squats (Sq), lunges (Lu), and side-lunges (Si). The px, y, zq
positions of 25 sensors attached to each person were tracked during execution,
resulting in a multivariate time series S of dimension 75.

AUROC AP

Dataset MP PAV MIFPOD FPOF PBAD MP PAV MIFPOD FPOF PBAD

Lu+Si/Sq 0.472 0.571 0.819 0.966 0.983 0.283 0.255 0.430 0.862 0.888
Lu/Sq 0.604 0.671 0.775 0.966 0.940 0.082 0.110 0.131 0.662 0.737
Si/Lu 0.471 0.425 0.804 0.864 0.907 0.128 0.115 0.444 0.572 0.573
Sq/Si 0.484 0.504 0.482 0.903 0.914 0.094 0.092 0.087 0.391 0.707

Average 0.508 0.542 0.720 0.925 0.936 0.147 0.143 0.273 0.622 0.726
Ranking 4.5 4 3.5 1.75 1.25 4 4.5 3.5 2 1

Table 2: The table shows the AUROC and AP obtained by each method on 4
multivariate time series. Each dataset contains tracking of movement during
indoor exercises where the normal exercise is listed first, and the anomalous
exercise second. For instance, Lu/Sq contains 90 repetitions of the lunge exercise
and 8 repetitions of the squat exercise.

We construct 4 multivariate time series datasets containing anomalies by
randomly combining around 90 repetitions of one exercise type with 8-12 rep-
etitions of a different type. Then, the goal is to accurately detect the minority
exercise. Before applying the algorithms, we use the methodology outlined in [5]
to preprocess the raw data and further reduce the number of dimensions of S
to 3. Note that the baseline algorithms are not naturally equipped to deal with
multivariate time series. The straightforward solution is to compute an anomaly
score for each time series separately and add the scores.
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Fig. 2: The figure shows 5 days of synthetic power grid data. The top plot shows
continuous power output of the grid. The middle plot shows the discrete events,
B and E indicate begin and end respectively, while W, S, D, G, M, and U refer to
wind, solar, diesel, gas, maintenance, and shutdown respectively. The bottom plot
shows the anomaly score of Pbad. The first anomaly corresponds to a discrete
event (BU) that did not generate the expected power response.

Results and discussion. Table 2 shows the AUROC and AP obtained by each
method on the 4 multivariate time series datasets as well as the ranking of each
method. Pbad and Fpof outperform the other methods, with Pbad improving
the AUROC and AP over Fpof with 1.3˘ 2.7% and 23.8˘ 33.2% respectively.

4.4 Anomaly detection in mixed-type time series

Due to the lack of publicly-available, labelled mixed-type time series datasets,
we construct a realistic synthetic data generator. The generator simulates the
electricity production in a microgrid consisting of 4 energy resources: a small
wind turbine, a solar panel, a diesel generator, and a microturbine. Each resource
has a distinct behaviour. The operator controlling the grid can take 12 discrete
actions: turning on and off each of the energy resources, shutting down and
starting up the grid, and starting and stopping grid maintenance. Then, a full
year of data is generated in three steps. First, a control strategy determines
every 5 minutes which actions to take and logs them. It is also possible to take
no action. Second, the actions determine the power output of the grid at each
time step, forming the continuous time series. Finally, 90 control failures are
introduced in the system. These are actions not having the desired effect, e.g.,
starting the wind turbine does not lead to an increase in electricity production,
actions without effect, and effects that are not logged. Using the generator, we
generate 45 variations of mixed-type time series, each with different anomalies,
and report averaged results. The full details of the generator can be found in
Appendix A.3.

Results and discussion. We only ran Pbad on the mixed-type data to detect
the control failures. MP and PAV cannot handle event logs, while Mifpod and
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Fpof do not naturally handle mixed-type time series. However, we run Pbad
three times: only on the continuous component of the synthetic data (AUROC
= 0.81˘ 0.13), only on the event logs (AUROC = 0.63˘ 0.07), and on the full
mixed-type series (AUROC = 0.85˘ 0.08). This indicates that Pbad successfully
leverages the information in the combined series to detect the anomalous data
points. Figure 2 shows 7 days of the power generated by the microgrid and
the corresponding event log. The anomaly score generated by Pbad is plotted
underneath the data, illustrating that it can accurately detect the anomalies in
this case.

5 Related Work

In this section we place our work into the wider context of time series anomaly
detection. Existing pattern-based anomaly detection methods each differ in how
they define patterns, support, anomaly scores, and what type of input they
are applicable to. The original Fpof method [10] mines frequent itemsets for
detecting anomalous transactions in a transaction database, using the traditional
definition of support. Their outlier factor is defined as the number of itemsets
that match the current transaction versus the total number of frequent itemsets.
The more recent Mifpod method [11] mines minimal infrequent, or rare, itemsets
for detecting outliers in data streams. Rare itemsets are not frequent, i.e., they
do not satisfy the minimal support threshold, but have only subsets that are
frequent. They define support as usual, but based on the most recent period, and
not necessarily the entire event log. Finally, they compute the outlier factor as
the number of rare itemsets that match the current transaction versus the total
number of rare itemsets, similar to Fpof, but weighted by the sum of deviation
in support of matching rare itemsets. Finally, the Pav method [3] uses linear
patterns, i.e., two consecutive continuous values in a univariate time series. The
final outlier factor is computed as the relative support of this single pattern in
sliding windows of size 2. In contrast to these methods, Pbad considers extensions
specific to multivariate and mixed-type time series: it uses a distance-weighted
similarity to bridge the gap between a discrete pattern and a continuous signal,
employs a late integration scheme to avoid pattern explosion, removes redundant
patterns using a threshold on Jaccard similarity, and derives an anomaly score
using the IsolationForest classifier and the pattern-based embedding of the
time series.

The MatrixProfile technique [18] is the state-of-the-art anomaly detection
technique for continuous time series. This technique computes for each time series
segment an anomaly score by computing the Euclidean distance to its nearest
neighbour segment. In contrast, Pbad can also handle the combination of event
logs and continuous time series. A host of time series representation methods and
similarity measures have been developed [6] for time series classification. Time
series shapelets are subsequences from a continuous time series and are used
in combination with the dynamic time warping distance to classify time series
segments [17]. Sequential patterns used by Pbad are different from shapelets,
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because we use non-continuous subsequences with missing elements, or gaps.
Itemsets are even more different, because the order of values is discarded. Another
key difference is that the enumeration process for shapelets is usually reduced
by only considering subsequences of a specific length [12], while we make use
of the anti-monotonic property of support to enumerate patterns of varying
length without constraints. Finally, itemsets and sequential patterns can also be
extracted from discrete event logs.

Another approach, related to classification, is to employ a minimal redundancy,
maximal relevance strategy to select discriminative patterns [4]. Currently, we
employ an unsupervised technique, but for future work we could adopt a strategy
for selecting patterns that are the most discriminative towards anomalies. Finally,
deep learning techniques are becoming a popular choice for time series anomaly
detection [14]. For instance, autoencoders could be used to learn an embedding
of a mixed-type time series. A key difference with Pbad is that, unlike deep
learning techniques, frequent patterns are easily interpretable.

6 Conclusions and future work

Research on anomaly detection in time series so far has prioritised either con-
tinuous time series or event logs, but not the combination of both, so-called
mixed-type time series. In this paper, we present Pbad, a pattern-based anomaly
detection method for mixed-type time series. The method leverages frequent
pattern mining techniques to transform the time series into a pattern-based
embedding that serves as input for anomaly detection using an isolation forest.
An experimental study on univariate and multivariate time series found Pbad
to outperform state-of-the-art time series anomaly detection techniques, such
as MatrixProfile, Pav, Mifpod and Fpof. Furthermore, unlike existing
techniques, Pbad is able to handle mixed-type time series.

For future research, we see our method as a promising general framework for
time series anomaly detection, where certain variations might be more effective
in different applications. These include variations on mining a non-redundant
and relevant pattern set, on distance measures to match pattern occurrences,
and on anomaly detection classification techniques. A useful addition would
be an efficient algorithm for computing the similarity between a pattern and
window under the early integration strategy. Because the patterns characterise
the behaviour of the time series, they can serve as the basis for an anomaly
detection classifier that makes explainable predictions. Another possible direction
is to adapt the algorithm to work efficiently within a streaming context.
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A Supplementary material

A.1 Efficient algorithm for computing the distance between a
pattern and a continuous window

Algorithm 2 outlines the exact distance computation between a pattern X with
length m and time series window S with length l. Remark that we use the shorter
notation S to denote a window between two timestamps for the ith time series,
previously denoted as Sit,l. First, if the pattern is an itemset, the pattern and
window are sorted (line 1-2). Next, a scoring matrix with l ` 1 rows and m` 1
columns is initialized with the first column zeros and the rest of the values 8
(line 5-6). Intuitively, each row and each column, except the first row and column,
correspond to one element in the window and the pattern respectively. Then, each
cell in the matrix is updated by setting its value to the minimum of: (1) the sum
of the distance between the elements of the pattern and window corresponding
to that cell and the value in the cell diagonally up to the left, and (2) the value
in the cell above (line 7-9). Finally, the distance that minimizes Equation 1 is
stored in the last cell of the matrix.

Algorithm 2: ExactMinDist pX,Sq

Input :Pattern X (itemset or sequential pattern), time series window S
Result: Computed distance d

1 if X is an itemset then
2 X Ð sortpXq; S Ð sortpSq
3 mÐ lengthpXq; lÐ lengthpSq
4 w “ l ´m` 1
// 1. Construct the scoring matrix H using 0-based indexing:

5 HÐ matrix of 8 values with l ` 1 rows and m` 1 columns
// 2. Fill the first column of the matrix with 0:

6 Hj0 “ 0 for 0 ď j ă l ` 1
// 3. Update the values in the matrix:

7 for 0 ď i ă m do
8 for i ď j ă i` w do

9 Hj`1,i`1 “ min

#

Hj,i ` pSj ´Xiq
2

Hj,i`1

// 4. The distance is in the last row and column of the matrix:

10 d “
a

Hj`1,i`1

The algorithm has a time complexity of Opl ¨mq. However, we can further
reduce the number of computations by only filling in the feasible regions of the
matrix. This is possible because there is an ordering to the matched elements.
For example, if the pattern has length 5 and the window has length 7, the first
element of the pattern can only be matched with one of the first three elements
of the window. This is expressed by w in Algorithm 2.
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A.2 Additional experimental details

The benchmarks used in this paper consist of 13 different real-world univariate
and multivariate datasets. The characteristics of each are outlined in Table 3.

Time series dataset |S| Labelled
time period

Labelled
normals

Labelled
anomalies

∆t Total length
of the series

Ambient Temperature 7,267 395 h 347 h 48 h 1 h 302 days
Request Latency 4,017 66 h 14 h 52 h 5 min 13 days
New York Taxi 10,320 356 h 236 h 120 h 30 min 215 days
Water use store 1 292,632 1,217 h 829 h 388 h 5 min 1,016 days
Water use store 2 281,485 2,391 h 2,178 h 213 h 5 min 977 days
Water use store 3 169,253 1,595 h 1,488 h 107 h 5 min 587 days
Water use store 4 292,608 1,821 h 615 h 1,206 h 5 min 1,016 days
Water use store 5 364,032 574 h 504 h 70 h 5 min 1,264 days
Water use store 6 364,032 1,047 h 815 h 232 h 5 min 1,264 days
Lu+Si/Sq 11,152 371.7 sec 315.6 sec 56.1 sec 0.034 sec 371.7 sec
Lu/Sq 17,318 577.2 sec 539.7 sec 37.5 sec 0.034 sec 577.2 sec
Si/Sq 11,114 370.5 sec 325.6 sec 44.9 sec 0.034 sec 370.5 sec
Sq/Si 11,613 387.1 sec 349.8 sec 37.3 sec 0.034 sec 387.1 sec
Synthetic 105,120 8,760 h 8,629 h 131 h 5 min 365 days

Table 3: Characteristics of all the datasets used in the experiments. The labels
and total length of the series are indicated in time units: days, hours, minutes,
and seconds.

Before mining the patterns and computing an anomaly score, Pbad and
the baselines preprocess the time series by dividing them into fixed-size sliding
windows. Table 4 shows the values for the window length and increment for each
dataset that were used throughout the experiments. If the increment is equal to
the window length, the windows do not overlap. The table also shows the number
of bins used for discretising each dataset if this is required by the pattern mining
algorithms.

Dataset Window length Window increment Nr. bins

Ambient temperature 12 h 6 h 99
Request latency 1 h 30 min 31
New York taxi 6 h 3 h 79
Water use store 1-6 1 h 1 h 10-50
Multivariate indoor exercise 3 sec 0.5 sec 30
Mixed-type synthetic data 1 h 1 h 30

Table 4: The window length and window increment used to divide each time
series in fixed-size sliding windows, chosen in function of the sample rate ∆t of
the underlying dataset. Due to their nature, the water data measurements are
already logged as discrete values, similarly for Temp, Latency, and Taxi.

The application of Pbad and the baselines to detect abnormal temperatures
in the Temp dataset is illustrated in Figure 3. The anomaly scores outputted by
Pbad and Fpof peak on the days an actual anomaly was recorded, indicating that
these methods successfully detect the abnormal periods. Mifpod also accurately
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Fig. 3: The figure plots 125 days of the ambient temperature time series includ-
ing 48 hours labelled as anomalous. For each method, the scaled anomaly scores
are plotted, a higher score indicating a more anomalous time series window. Both
Pbad and Fpof accurately identify the labeled anomalous windows.
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Fig. 4: The figure shows 12 hours of power output for each of the four energy
resources, modeled using the variables in Table 5.

finds the anomalies. Pav has highly fluctuating anomaly scores with the scores
for the actual anomalies somewhere in the middle of the pack. The AUROC of
Pav on this is 0.584 (see Table 1), indicating that its predictions are almost
random.

A.3 The mixed-type synthetic data generator

The synthetic data generator simulates the power output of a small electricity
grid of distributed energy resources. The grid contains four distinct generators:
a wind turbine, a solar panel, a diesel generator, and a gas microturbine. Grid
operation is done through 12 distinct actions: turning on and off each of the
resources, starting and stopping grid maintenance, shutting down and starting
up the grid. The data are generated as follows: (i) a control strategy determines
which actions to take at each time step; (ii) the current actions at each time step
determine the power output of the grid; (iii) three distinct types of failures are
added to the data.

Distributed energy resources. The grid consists of four distinct energy resources.
Each of the resources is characterized by five variables: start-up time, shutdown
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time, average power output, amplitude of the fluctuation in power output, and
speed of the fluctuations. Next, the power output over a period of time is modeled
using a sine wave, and the start-up and shutdown are modeled using an expo-
nential squashing function. In addition, the grid can also shutdown or undergo
maintenance, leading to six distinct grid behaviors. Table 5 lists all the possible
grid behaviors and the variables characterizing each behavior. Figure 4 plots the
power output of each of the four energy resources during a period of 12 hours.
The power output is modeled with a sine wave to simulate intermittency effects
for the renewable resources as well as fluctuations in the energy demand. The
start-up and shutdown behavior is modeled by multiplying the sine wave with
an exponential squashing function. The variables of the sine wave and squashing
function are listed in Table 5.

Wind turbine Solar panel Diesel
generator

Gas turbine Grid
maintenance

Shutdown

Power output 5 10 15 20 2 0
Fluctuation 2 2 1 0.5 0.5 0
Period 1 h 3 h 6 h 12 h 1 h 0 h
Start-up time 10 min 30 min 1 h 2 h 10 min 1 min
Shutdown time 10 min 10 min 10 min 10 min 10 min 10 min

Table 5: The four energy resources and two additional grid behaviors. Each
behavior is characterized by five variables.

Control strategy. The generator employs a simple control strategy. Each time
step an action is selected from the list of possible actions: start/stop wind tur-
bine, start/stop solar panel, start/stop diesel generator, start/stop gas turbine,
start/stop grid maintenance, shutdown grid, no action. Each action has a proba-
bility to be selected (e.g., no action has a probability of 85%). The list of possible
actions is updated depending on previous actions. For instance, the wind turbine
cannot be started if it is already running. Finally, if an energy resource is started
it runs for at least a number of hours randomly selected from the list: 1 hour, 2
hours, 6 hours, 12 hours, and a day. The actions are logged in the event log.

Power output of the grid. The power output of the grid depends on the actions
taken by the control strategy. The power output at each time step is the sum
of the outputs of each of the energy resources that are starting up or running
at that time step. The behaviors grid maintenance and grid shutdown override
the current power output. For instance, if the grid shuts down, there is no power
output. The power output is a continuous time series.

Grid anomalies. Three types of failures are added to the mixed-type time series.
First, actions that do not lead to a change in power output. Second, changes
in the power output that do not correspond to a specific action. Third, actions
that lead to an incorrect change in power output. Each failure has a time span of
either 1 or 2 hours and none of the failures overlap. In total, 30 failures of each
type are added. Combining the event log and the continuous power data results
in a fully annotated mixed-type time series.
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