Skip to main content

The Agility of a Neuron: Phase Shift Between Sinusoidal Current Input and Firing Rate Curve

  • Conference paper
  • First Online:
Computational Advances in Bio and Medical Sciences (ICCABS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12029))

  • 2347 Accesses

Abstract

The response of a neuron when receiving a periodic input current signal is a periodic spike firing rate signal. The frequency of an input sinusoidal current and the surrounding environment such as background noises are two important factors that affect the firing rate output signal of a neuron model. This study focuses on the phase shift between input and output signals, and here we present a new concept: the agility of a neuron, to describe how fast a neuron can respond to a periodic input signal. By applying the score of agility, we are capable of characterizing the surrounding environment; once the frequency of periodic input signal is given, the actual angle of phase shift can then be determined, and therefore different neuron models can be normalized and compared to others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, D.J., Tsodyks, M.: Quantitative study of attractor neural network retrieving at low spike rates: I Substrate-spikes, rates and neuronal gain. Netw. Comput. Neural Syst. 2(3), 259–273 (1991)

    Article  MATH  Google Scholar 

  2. Amit, D.J., Tsodyks, M.: Effective neurons and attractor neural networks in cortical environment. Netw.: Computat. Neural Syst. 3(2), 121–137 (1992)

    Article  MATH  Google Scholar 

  3. Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.: Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett. 86(10), 2186 (2001)

    Article  Google Scholar 

  4. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006). https://doi.org/10.1007/s00422-006-0068-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Burkitt, A.N., Meffin, H., Grayden, D.B.: Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol. Cybern. 89(2), 119–125 (2003)

    Article  MATH  Google Scholar 

  6. Carandini, M., Mechler, F., Leonard, C.S., Movshon, J.A.: Spike train encoding by regular-spiking cells of the visual cortex. J. Neurophysiol. 76(5), 3425–3441 (1996)

    Article  Google Scholar 

  7. Chance, F.S.: Modeling cortical dynamics and the response of neurons in the primary visual cortex: Frances S. Chance. Ph.D. thesis, Brandeis University (2000)

    Google Scholar 

  8. Dayan, P., Abbott, L.F., Abbott, L.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Gerstner, W.: Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput. 12(1), 43–89 (2000)

    Article  MathSciNet  Google Scholar 

  10. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Knight, B.W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59(6), 734–766 (1972)

    Article  Google Scholar 

  12. McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A.: Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54(4), 782–806 (1985)

    Article  Google Scholar 

  13. Rinzel, J.: Models in neurobiology. In: Enns, R.H., Jones, B.L., Miura, R.M., Rangnekar, S.S. (eds.) Nonlinear Phenomena in Physics and Biology. NATO Advanced Study Institutes Series (Series B: Physics), vol. 75, pp. 345–367. Springer, Boston (1981). https://doi.org/10.1007/978-1-4684-4106-2_9

    Chapter  Google Scholar 

  14. Spekreijse, H., Oosting, H.: Linearizing: a method for analysing and synthesizing nonlinear systems. Biol. Cybern. 7(1), 22–31 (1970)

    Google Scholar 

  15. Tranquillo, J.V.: Quantitative Neurophysiology. Synth. Lect. Biomed. Eng. 3(1), 1–142 (2008)

    Google Scholar 

  16. Troyer, T.W., Miller, K.D.: Physiological gain leads to high isi variability in a simple model of a cortical regular spiking cell. Neural Comput. 9(5), 971–983 (1997)

    Article  Google Scholar 

  17. Van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Yu Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, CY., Lu, CC. (2020). The Agility of a Neuron: Phase Shift Between Sinusoidal Current Input and Firing Rate Curve. In: Măndoiu, I., Murali, T., Narasimhan, G., Rajasekaran, S., Skums, P., Zelikovsky, A. (eds) Computational Advances in Bio and Medical Sciences. ICCABS 2019. Lecture Notes in Computer Science(), vol 12029. Springer, Cham. https://doi.org/10.1007/978-3-030-46165-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46165-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46164-5

  • Online ISBN: 978-3-030-46165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics