Skip to main content

Triplanar Ensemble of 3D-to-2D CNNs with Label-Uncertainty for Brain Tumor Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Abstract

We introduce a modification of our previous 3D-to-2D fully convolutional architecture, DeepSCAN, replacing batch normalization with instance normalization, and adding a lightweight local attention mechanism. These networks are trained using a previously described loss function which mo els label noise and uncertainty. We present results on the validation dataset of the Multimodal Brain Tumor Segmentation Challenge 2019.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017)

    Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017)

    Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2018). ArXiv abs/1811.02629

    Google Scholar 

  5. Bauer, S., Wiest, R., Nolte, L.L., Reyes, M.: A survey of mri-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–129 (2013)

    Google Scholar 

  6. BenTaieb, A., Hamarneh, G.: Uncertainty driven multi-loss fully convolutional networks for histopathology. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 155–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_17

    Google Scholar 

  7. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Google Scholar 

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  9. Jungo, A., et al.: On the Effect of Inter-observer Variability for a Reliable Estimation of Uncertainty of Medical Image Segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 682–690. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_77

    Google Scholar 

  10. Jungo, A., Meier, R., Ermis, E., Herrmann, E., Reyes, M.: Uncertainty-driven sanity check: application to postoperative brain tumor cavity segmentation. In: Proceedings of MIDL (2018)

    Google Scholar 

  11. Kamnitsas, K., et al.: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Google Scholar 

  12. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: NIPS (2017)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017)

    Google Scholar 

  14. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  15. McClure, P., et al.: Knowing what you know in brain segmentation using deep neural networks (2018). http://arxiv.org/abs/1812.01719

  16. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Google Scholar 

  17. McKinley, R., Rebsamen, M., Meier, R., Reyes, M., Rummel, C., Wiest, R.: Few-shot brain segmentation from weakly labeled data with deep heteroscedastic multi-task networks (2019). arXiv e-print, https://arxiv.org/abs/1904.02436

  18. McKinley, R., et al.: Simultaneous lesion and neuroanatomy segmentation in multiple sclerosis using deep neural networks (2019). ArXiv abs/1901.07419

    Google Scholar 

  19. Menze, B.H., Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Google Scholar 

  20. Nair, T., et al.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Proceedings of MICCAI (2018)

    Google Scholar 

  21. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: IEEE ICNN 1994, vol. 1 (1994)

    Google Scholar 

  22. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Google Scholar 

  23. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C.: Inherent brain segmentation quality control from fully convnet monte carlo sampling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 664–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_75

    Google Scholar 

  24. Szegedy, C., et al.: Rethinking the Inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  25. Wang, G., et al.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Google Scholar 

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: Proceedings of International Conference on Learning Representations (ICLR 2017) (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss Personalized Health Network (SPHN, project number 2018DRI10). Calculations were performed on UBELIX (http://www.id.unibe.ch/hpc), the HPC cluster at the University of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard McKinley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McKinley, R., Rebsamen, M., Meier, R., Wiest, R. (2020). Triplanar Ensemble of 3D-to-2D CNNs with Label-Uncertainty for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics