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Abstract. In this paper we propose a semi-supervised variational au-
toencoder for classification of overall survival groups from tumor segmen-
tation masks. The model can use the output of any tumor segmentation
algorithm, removing all assumptions on the scanning platform and the
specific type of pulse sequences used, thereby increasing its generaliza-
tion properties. Due to its semi-supervised nature, the method can learn
to classify survival time by using a relatively small number of labeled
subjects. We validate our model on the publicly available dataset from
the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019.

Keywords: Survival time · deep generative models · semi-supervised
VAE.

1 Introduction

Brain tumor prognosis involves forecasting the future disease progression in a
patient, which is of high potential value for planning the most appropriate treat-
ment. Glioma is the most common primary brain tumor and patients suffering
from its most aggressive form, glioblastoma, have generally very poor progno-
sis. Glioblastoma patients have a median overall survival (OS) of less than 15
months, and a 5-year OS rate of only 10% even when they receive treatment [1].
Automatic prediction of overall survival of glioblastoma patients is an important
but unsolved problem, with no established method available in clinical practice.

The last few years have seen an increased interest in brain tumor survival time
prediction from magnetic resonance (MR) images, often using discriminative
methods that directly encode the relationship between image intensities and
prediction labels [2]. However, due to the flexibility of MR imaging, such methods
do not generalize well to images acquired at different centers and with different
scanners, limiting their potential applicability in clinical settings. Furthermore,
being supervised methods, they require “labeled” training data where for each
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training subject both imaging data and ultimate survival time are available.
Although public imaging databases with survival information have started to
be collected [3,4,5,6], the requirement of such labeled data fundamentally limits
the number of subjects available for training, severely restricting the prediction
performance attainable with current methods.

In this paper, we explore whether the aforementioned issues with supervised
intensity-based methods can be ameliorated by using a semi-supervised approach
instead, using only segmentation masks as input. In particular, we adapt a semi-
supervised variational autoencoder model [7] to predict overall survival from a
small amount of labeled training subjects, augmented with unlabeled subjects
in which only imaging data is available. The method only takes segmentation
masks as input, thereby removing all assumptions on the image modalities and
scanners used.

The Multimodal Brain Tumor Segmentation Challenge (BraTS) [3] has been
held every year since 2012, and focuses on the task of segmenting three different
brain tumors structures (“enhancing tumor”, “tumor core” and “whole tumor”)
and “background” from multimodal MR images. Since 2017, BraTS has also in-
cluded the task of OS prediction. In this paper we focus on the latter, classifying
the scans into three prognosis groups: long-survivors (>15 months), short-
survivors (<10 months), and mid-survivors (between 10 and 15 months), all
relative to the time of diagnosis.

2 Model

We begin by formally describing the problem we aim to solve. The available
training data consists of a set of Nl labeled pairs {(x1, y1), ..., (xNl

, yNl
)}, pos-

sibly augmented with a set of Nu unlabeled data points {xNl+1, ...,xNl+Nu
},

where xi ∈ {1, ...,Mx}D is the i-th subject’s image data in the form of a seg-
mentation map with D voxels, and the target variable yi ∈ {1, ...,My} denotes
the survival group the subject belongs to. In our case we have the segmentation
of Mx = 4 different tumor structures as input to the model, and My = 3 different
survival groups. For convenience, we will omit the index i when possible in the
remainder.

We assume that the data is generated by a random process, illustrated in
Figure 1, that involves some latent variables z ∈ RL, assumed to be indepen-
dent of y, where L � D. These latent variables encode high-level tumor shape
and location features shared across survival groups. Specifically, we assume a
generative model of the form

pθ(x, y,z) = pθ(x|y,z)p(z)p(y), (1)

where p(z) = N (z|0, I) is a zero-mean isotropic multivariate Gaussian, p(y) ∝ 1
is a flat categorical prior distribution over y, and pθ(x|y,z) is a conditional
distribution parameterized by θ.

Our task is to find the maximum likelihood parameters, i.e., the parameter
values θ that maximize the probability of the training data under the model.
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Fig. 1. Probabilistic graphical model of the generative process.

This is equivalent to maximizing

Nl∑
i=1

log pθ(xi, yi) +

Nl+Nu∑
i=Nl+1

log pθ(xi) (2)

with respect to θ, where

pθ(x, y) =

∫
z

pθ(x, y, z)dz (3)

and
pθ(x) =

∑
y

pθ(x, y). (4)

Once suitable parameter values are found, the survival group of a new subject
with image data x can be predicted by assessing pθ(y|x) = pθ(x, y)/pθ(x).

2.1 Semi-supervised variational autoencoder

Maximizing eq. (2) for θ directly is not feasible due to intractability of the
integral over the latent variables in eq. (3). We therefore use an Expectation-
Maximization (EM) [8] algorithm to exploit the fact that the optimization would
be easier if the latent variables were known. The algorithm iteratively constructs
and maximizes a lower bound to eq. (2) in a process that involves “filling in”
the missing latent variables using their posterior distribution. Since this poste-
rior distribution is intractable, we follow [7] and approximate pθ(z, y|x) using a
specific functional form qφ(z|x, y) with parameters φ:

qφ(z, y|x) = qφ(z|x, y)qφ(y|x),

where qφ(z|x, y) is a multivariate Gaussian distribution with diagonal covariance
matrix, and qφ(y|x) is a categorical distribution. This approximation can be used
to obtain a lower bound to eq. (2) as follows. The probability of each labeled data
point (first term in eq. (2)) can be rewritten as:

log pθ(x, y) = Eqφ(z|x,y)[log pθ(x, y)]

= Eqφ(z|x,y)

[
log
[pθ(x, y, z)

pθ(z|x, y)

]]
= Eqφ(z|x,y)

[
log
[pθ(x, y, z)

qφ(z|x, y)

qφ(z|x, y)

pθ(z|x, y)

]]
= Eqφ(z|x,y)

[
log
[pθ(x, y, z)

qφ(z|x, y)

]]
︸ ︷︷ ︸

=Lθ,φ(x,y)

+Eqφ(z|x,y)

[
log
[qφ(z|x, y)

pθ(z|x, y)

]]
︸ ︷︷ ︸

=DKL(qφ(z|x,y)||pθ(z|x,y))
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where DKL denotes the Kullback-Leibler (KL) divergence. Since the KL diver-
gence is always non-negative, we have that

log pθ(x, y) ≥ Lθ,φ(x, y). (5)

Using a similar derivation, the probability of each unlabeled data point can be
bounded as follows:

log pθ(x) ≥ Eqφ(y,z|x)

[
log

pθ(x, y, z)

qφ(z|y,x)
− log qφ(y|x)

]
=
∑
y

qφ(y|x)(Lθ,φ(x, y)) +H(qφ(y|x)) = Uθ,φ(x), (6)

where H(·) denotes the entropy of a probability distribution.
By combining (5) and (6), a lower bound to eq. (2) is finally obtained as:

Jθ,φ =

Nl∑
i=1

Lθ,φ(xi, yi) +

Nl+Nu∑
i=Nl+1

Uθ,φ(xi), (7)

which we optimize with respect to both the variational parameters φ and the
generative parameters θ. We use stochastic gradient ascent for the optimization,
approximating gradients of the expectations in (7) as described in [9]. Imple-
mentation details are discussed in Section 4.

From a information theory point of view, the latent unobserved variables
z can be interpreted as a code. Therefore, we can refer to the distributions
qφ(z|x, y) and pθ(x|y,z) as a probabilistic encoder and decoder, respectively [9].
The label predictive distribution qφ(y|x) has the form of a discriminative clas-
sifier, and can be used as an approximation to pθ(y|x) for classifying new cases
after training.

2.2 Model modifications

Here we describe a few model modifications for making the parameter learning
process faster and less prone to overfitting.

Classification objective Note that in the objective function (7), the label
predictive approximation qφ(y|x) only appears in the bound for unlabeled data.
To let qφ(y|x) also learn from labeled data, we follow [7] and add a weak classi-
fication loss, resulting in the modified objective

J αθ,φ = Jθ,φ + α

Nl∑
i=1

log qφ(yi|xi) (8)

where α controls the relative weight between generative and purely discrimina-
tive learning.
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Gumbel-Softmax One of the issues of training a semi-supervised VAE is that
the marginalization over qφ(y|x) in eq. (6) can be computationally expensive.
This marginalization can be avoided by using Gumbel-Softmax [10,11], a con-
tinuous distribution on the probability simplex that approximates a categorical
sample and can be smoothly annealed (through a temperature parameter) to
the categorical distribution. Gumbel-Softmax is reparameterizable so that the
gradient of the loss function can be propagated back through the sampling step
y ∼ qφ(y|x) for single-sample gradient estimation.

Regularization The lower bound for labeled data can be rewritten as

Lθ,φ(x, y) = Eqφ(z|x,y)

[
log

pθ(x, y,z)

qφ(z|x, y)

]
= Eqφ(z|x,y)

[
log pθ(x|z, y)

]
+ log p(y)−DKL(qφ(z|x, y)||p(z))

where log p(y) is a constant, the first term can be interpreted as expected nega-
tive reconstruction error, and the last term is the negative KL divergence from
the prior to the approximate posterior. Similarly, we can express the bound for
unlabeled data as follows:

Uθ,φ(x) = Eqφ(z,y|x)

[
log pθ(x|z, y)

]
−DKL(qφ(z, y|x)||p(z, y))

In both cases, the KL divergence acts as a regularization term that encour-
ages the approximate posterior to be close to the prior, thereby constraining
the amount of information encoded in the latent variables. The overall lower
bound (7) thus trades off reconstruction error with this regularization term.
When training a VAE, we can control such trade-off in order to favor more ac-
curate reconstructions or more constrained latent space, by simply multiplying
the KL term by a factor β > 0 as proposed in [12]. Similarly, we found it ben-
eficial in practice to scale the entropy of qφ(y|x) in eq. (6) by a factor γ > 1.
Intuitively, the entropy term acts as a regularizer in the classifier by encourag-
ing qφ(y|x) to have high entropy: the amplification of this term helps to further
reduce overfitting in the classifier.

3 Data and models

The BraTS 2019 challenge is composed of a training, a validation and a test
set. The training set is composed of 335 delineated tumor images, in which 210
images have survival labels. The validation set is composed of 125 non-delineated
images without survival labels, in which only 29 images with resection status of
GTR (i.e., Gross Total Resection) are part of the online evaluation platform
(CBICA’s Image Processing Portal). Finally, the test set will be made available
to the challenge participants during a limited time window, and the results will
be part of the BraTS 2019 workshop.
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In all our experiments we performed 3-fold cross-validation by randomly split-
ting the BraTS 2019 training set with survival labels into a “private” training
(75%) and validation set (25%) in each fold, in order to have an alternative to
the online evaluation platform. This help us having a more informative indica-
tion of the model performance, since the online evaluation platform includes just
29 cases (vs. 53 cases in our private validation sets). With this set-up, which we
call S0 in the remainder, we effectively trained the model on a training set of
Nl = 157 and Nu = 125 for each of the three cross-validation folds. These mod-
els were subsequently tested on their corresponding private validation sets of 53
subjects, as well as on the standard BraTS 2019 validation set of 29 subjects.

In order to evaluate just how much the proposed method is able to learn
from unlabeled data (i.e., subjects with tumor delineations but no survival time
information), we used three open-source methods [13,14,15] to automatically
segment both the entire BraTS 2019 training and validation sets in order to
have many more unlabeled training subjects available. We further augmented
these unlabeled data sets by flipping the images in the coronal plane. With this
new set-up, which we call S1, we then trained the model on an “augmented”
private training set of Nl = 157 and Nu = 2268 for each of the three cross-
validation folds. Ideally, dramatically increasing the set of unlabeled data points
this way should help the model learn to better encode tumor representations,
thereby increasing classification accuracy.

4 Implementation

We implemented the encoder qφ(z|x, y), the decoder pθ(x|z, y) and the classifier
qφ(y|x) all as deep convolutional networks using PyTorch [16]. The segmentation
volumes provided in the BraTS challenge have size 240×240×155, but since large
parts of the volume are always zero, we cropped the volumes to 146×188×128
without losing any tumor voxels. We further reduced the volume by a factor of
2 in all dimensions, resulting in a shape of 73×94×64, roughly a 95% overall
reduction in input image size. This leads to faster training and larger batches
fitting in memory, while losing minimal information.

We optimized the model end-to-end with Adam optimizer [17], using a batch
size of 32, learning rate 2 · 10−5, latent space size 32, α = 10−5 ·D ≈ 4.4 with D
the data dimensionality (number of voxels), β from 0 to 6 · 103 in 3 · 104 steps,
γ = 50, and exponentially annealing the Gumbel-Softmax sampling temperature
from 1.0 to 0.2 in 5 · 104 steps. Hyperparameters were found by grid search,
although not fine-tuned because of the computational cost. The total number of
parameters in the model is around 2.7× 106.

4.1 Network architecture

The three networks consist of 3D convolutional layers, with the exception of
a few fully connected layers in the classifier. There are nonlinearities (Scaled
Exponential Linear Units, [18]) and dropout [19] after each layer, except when
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Fig. 2. Networks architectures: encoder, decoder and classifier architectures.

noted. What follows is a high-level description of the network architecture, rep-
resented in diagrams in Figure 2 . For more details, the code is available at
https://github.com/sveinnpalsson/semivaebrats.

The inference network consists of a convolutional layer (B1 e) with large ker-
nel size and stride (7 and 4, respectively), followed by two residual blocks [20]
(B2 e and B3 e). The input to each block is processed in parallel in two branches,
one consisting of two convolutional layers, the other of average pooling fol-
lowed by a linear transformation (without nonlinearities). The results of the
two branches are added together. The output of the first layer is also fed into
the classifier network, which outputs the class scores (these will be used to com-
pute the classification loss for labeled data). A categorical sample from qφ(y|x)
is drawn using the Gumbel-Softmax reparameterization given the class scores,
and is embedded by a fully connected layer into a real vector space. Such em-
bedding is then concatenated to the output of the two encoder blocks, so that
the means and variances of the approximate posterior qφ(z|x, y), that are com-
puted by a final convolutional layer, are conditioned on the sampled label. The
classifier consists of two residual blocks similar to the ones in the encoder (B2 c
and B3 c), followed by two fully connected layers (B4 c).

The decoder network consists of two convolutional layers (B1 d and B2 d),
two residual blocks similar to those in the encoder (B3 d and B4 d), and a final
convolution followed by a sigmoid nonlinearity (B5 d). In the decoder, most con-
volutions are replaced by transposed convolutions (for upsampling), and pooling
in the residual connections is replaced by nearest neighbour interpolation. The
input to the decoder network is a latent vector z sampled from the approximate
posterior. The embedding of y, computed as in the final stage of the inference
network, is also concatenated to the input of each layer (except the ones in

https://github.com/sveinnpalsson/semivaebrats
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the middle of a block) to express the conditioning of the likelihood function on
the label. Here, the label is either the ground truth (for labeled examples) or a
sample from the inferred posterior (for unlabeled examples).

5 Results

5.1 Conditional generation

We visually tested whether the decoder pθ(x|y,z) is able to generate tumor-
like images after training, and whether it can disentangle the classes. For this
purpose we sampled z from N (z|0, I) and varied y between the three classes,
namely, short survivor, mid survivor and long survivor. Figure 3 shows the three
shapes generated accordingly by one of the models trained in set-up S0. From
the images we can see that the generated tumor for the short survivor class has
an irregular shape with jagged edges while the long survivor generated tumor
has a more compact shape with rounded edges.

Fig. 3. Generated tumor from pθ(x|y,z) where we sampled z from N (z|0, I) and we
varied y between short survivor, mid survivor and long survivor.

5.2 Quantitative evaluation

All the classification accuracies are reported with binomial confidence interval
with normal approximation [21], defined as

a± z∗
√
a(1− a)

n

where a is the classification accuracy, z∗ = 1.96 is the critical value with con-
fidence level at 95% and n is the number of subjects. In Table 1 we show the
classification accuracy of the proposed method on the “private” validation set
of 53 subjects for each of the three cross-validation folds, both for the set-up
with fewer (S0) and more (S1) unlabeled training subjects. The corresponding
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results based on the online evaluation platform (29 validation subjects) are sum-
marized in Table 2, where we submitted the majority vote for survival group
prediction across the three models trained in the cross-validation folds. The on-
line evaluation platform takes the estimated number of days as input and returns
the accuracy along with mean- and median squared error and Spearman’s rank
correlation coefficient. To make these predictions we input the average survival
from each class. Our scores on the challenge leaderboard for set-up S0 are as fol-
lows: 37.9% accuracy, 111214.828 mean squared error, 51076.0 median squared
error and a correlation of 0.36. When testing the models we found that they are
insensitive to the segmentation method used to produce the input.

Table 1. Classification accuracies [%] for both set-ups on the “private” validation set
for each of the three cross-validation folds.

Set-up Fold 1 Fold 2 Fold 3 Avg

S0 42.18± 13.30 35.90± 12.91 39.53± 13.16 39.20± 7.59
S1 47.55± 13.45 41.13± 13.40 42.91± 13.32 43.86± 7.71

Table 2. Classification accuracies [%] for both set-ups on the BraTS 2019 online
evaluation platform.

Set-up Majority voting

S0 37.90± 17.57
S1 31.00± 16.83

The results show that in none of the experiments our model achieved a sig-
nificant improvement over always predicting the largest class, which constitutes
around 40% of the labeled cases.

6 Discussion and conclusions

In this paper we evaluated the potential of a semi-supervised deep generative
model for classifying brain tumor patients into three overall survival groups,
based only on tumor segmentation masks. The main potential advantages of this
approach are (1) its in-built invariance to MR intensity variations when different
scanners and protocols are used, enabling wide applicability across clinics; and
(2) its ability to learn from unlabeled data, which is much more widely available
than fully-labeled data.

We compared two different set-ups: one where fewer unlabeled subjects were
available for training, and one where their number was (largely artificially) in-
creased using automatic segmentation and data augmentation. Although the
latter set-up increased classification performance in our “private” experiments,
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this increase did not reach statistically significant levels and was not replicated
on the small BraTS 2019 validation set. We demonstrated visually that the pro-
posed model effectively learned class-specific information, but overall failed to
achieve classification accuracies significantly higher than predicting always the
largest class.

The results described here are only part of a preliminary analysis. More real
unlabeled data, obtained from truly different subjects pooled across treatment
centers, and more clinical covariates of the patients, such as age and resection
status, may be necessary to reach better classification accuracies. Future work
may also involve stacking hierarchical generative models to further increase the
classification performance of the model [7].
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