Skip to main content

Multimodal Brain Tumor Segmentation with Normal Appearance Autoencoder

  • Conference paper
  • First Online:
Book cover Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

We propose a hybrid segmentation pipeline based on the autoencoders’ capability of anomaly detection. To this end, we, first, introduce a new augmentation technique to generate synthetic paired images. Gaining advantage from the paired images, we propose a Normal Appearance Autoencoder (NAA) that is able to remove tumors and thus reconstruct realistic-looking, tumor-free images. After estimating the regions where the abnormalities potentially exist, a segmentation network is guided toward the candidate region. We tested the proposed pipeline on the BraTS 2019 database. The preliminary results indicate that the proposed model improved the segmentation accuracy of brain tumor subregions compared to the U-Net model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ipp.cbica.upenn.edu.

References

  1. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/J.MEDIA.2016.05.004

    Article  Google Scholar 

  2. Sottoriva, A., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl. Acad. Sci. U.S.A. 110, 4009–4014 (2013). https://doi.org/10.1073/pnas.1219747110

    Article  Google Scholar 

  3. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018). https://doi.org/10.1016/J.MEDIA.2017.10.002

    Article  Google Scholar 

  4. Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_19

    Chapter  Google Scholar 

  5. Li, H., Fan, Y.: Label propagation with robust initialization for brain tumor segmentation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1715–1718. IEEE (2012)

    Google Scholar 

  6. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  7. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  8. Wang, C., Smedby, Ö.: Automatic brain tumor segmentation using 2.5D U-Nets. In: MICCAI Workshop on Multimodal Brain Tumor Segmentation (BRATS) Challenge, Québec, pp. 292–296 (2017)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013)

    Google Scholar 

  10. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015). https://doi.org/10.1109/tmi.2014.2377694

    Article  Google Scholar 

  11. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data. 4 (2017). https://doi.org/10.1038/sdata.2017.117. Article no. 170117

  12. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. (2018)

    Google Scholar 

  13. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/k9/tcia.2017.klxwjj1q

  14. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/k9/tcia.2017.gjq7r0ef

  15. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010). https://doi.org/10.1109/tmi.2010.2046908

    Article  Google Scholar 

  16. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  17. Pérez, P., Gangnet, M., Blake, A., Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH 2003 Papers on - SIGGRAPH 2003, p. 313. ACM Press, New York (2003)

    Google Scholar 

  18. Astaraki, M., Toma-Dasu, I., Smedby, Ö., Wang, C.: Normal appearance autoencoder for lung cancer detection and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 249–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_28

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders (2018)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the Swedish Childhood Cancer Foundation (grant no. MT2016-0016), the Swedish innovation agency Vinnova (grant no. 2017-01247) and the Swedish Research Council (VR) (grant no. 2018-04375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Astaraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Astaraki, M., Wang, C., Carrizo, G., Toma-Dasu, I., Smedby, Ö. (2020). Multimodal Brain Tumor Segmentation with Normal Appearance Autoencoder. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics