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Abstract. The segmentation of brain tumors in multimodal MRIs is
one of the most challenging tasks in medical image analysis. The recent
state of the art algorithms solving this task are based on machine learn-
ing approaches and deep learning in particular. The amount of data used
for training such models and its variability is a keystone for building an
algorithm with high representation power.
In this paper, we study the relationship between the performance of the
model and the amount of data employed during the training process.
On the example of brain tumor segmentation challenge, we compare the
model trained with labeled data provided by challenge organizers, and
the same model trained in omni-supervised manner using additional un-
labeled data annotated with the ensemble of heterogeneous models.
As a result, a single model trained with additional data achieves perfor-
mance close to the ensemble of multiple models and outperforms indi-
vidual methods.

Keywords: BraTS · segmentation · knowledge distillation · deep learn-
ing

1 Introduction

Brain tumor segmentation is a reliable instrument for disease monitoring. More-
over, it is a central and informative tool for planning further treatment and
assessing the way the disease progresses. However, manual segmentation is a
tedious and time-consuming procedure that requires a lot of attention from the
grader.
To simplify clinicians workload, many automatic segmentation algorithms have
been proposed recently. The majority of them utilize machine learning tech-
niques and deep learning in particular. The downside of these approaches is the
amount of data required to successfully train a deep learning model. To capture
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all possible variations of biological shapes, it is desired to have them present in
the manually labeled dataset.
The dataset provided in the scope of Brain Tumor Segmentation Challenge
(BraTS 2019) [11,1,4] is the largest publicly available dataset [2,3] with MRI
scans of brain tumors. This year, it contains 259 High-Grade Gliomas (HGG)
and 76 Low-Grade Gliomas (LGG) in the training set. Each MRI scan describes
native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid
Attenuated Inversion Recovery (T2-FLAIR) volumes. These images were ob-
tained using different scanner and protocols from multiple institutions. Each
scan is registered to the same anatomical template, skull stripped and resampled
to the isotopic resolution. All the images were manually segmented by multiple
graders who followed the same annotation protocol. The GD-enhancing tumor,
the peritumoral edema, the necrotic and non-enhancing tumor core were anno-
tated on the scans.
The BraTS dataset is considered to be one of the largest publicly available med-
ical dataset with 3D data. Despite the dataset size, it is still considered small
compared to the natural images datasets, that may contain millions of samples.
Datasets of such scale cover broad number of training examples, allowing algo-
rithms to catch details that are not present in smaller size datasets. We think
that the limited amount of tumor shapes and locations is the main reason why
regularization techniques [12] work especially well in the provided scope. In this
study, we are trying to solve the problem of limited dataset size from a different
angle. We propose to utilize all available unlabeled data in the training process
using the knowledge distillation [7,14].
Originally the knowledge distillation was proposed by Hinton et. al. [7] for trans-
ferring the knowledge of an ensemble to the single neural network. Authors in-
troduced the new type of ensemble consisting of several big models and many
specialist models which learned to distinguish fine-grained classes that the ’big’
models were misclassifying. The soft labels could be utilized as a regularization
during the training of the final model. The effectiveness of the proposed approach
was demonstrated on MNIST dataset as well as on the speech recognition task.
The variation of knowledge distillation called data distillation was introduced
by Radosavovic et. al. [14], where authors investigated omni-supervised learn-
ing, a special case of semi-supervised learning with available labeled data as well
as unlabeled internet-scale data sources. Authors proposed to annotate unla-
beled data with a single model by averaging predictions produced by differently
transformed input data. The automatically annotated data was then used for
training of a student model on the combined dataset. The data distillation was
demonstrated on the example of human keypoint detection and general object
detection, where student models outperform models trained solely on labeled
data.
Inspired by previous papers, in this study we employ the knowledge distillation
method to train student model with labeled data from BraTS 2019 challenge,
automatically labeled data from BRaTS 2016 and unlabeled data from BraTS
2019 and 2018. To provide annotation for unlabeled datasets we train an ensem-
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ble of models.

2 Building an Ensemble

The key idea of our approach is to enhance the generalization power of the stu-
dent model by training it on the larger scale dataset. We achieve this by utilizing
the unlabeled data available in the scope of the BraTS challenge.
Starting from 2017, training dataset of the challenge includes manually anno-
tated data, as well as data from 2012 and 2013 challenges, that was also graded
manually. However, data from 2014-2016 challenges was segmented by the fusion
of best-performing methods from the challenges of previous years. Later, that
data was discarded. Even though the quality of annotation grew significantly,
the number of available samples is still incomparable to the scale of natural im-
ages datasets. In our opinion, the quantity of training samples is as important as
the quality of annotation. And at the current moment, the data we have doesn’t
represent all possible variations of tumor shapes and structures.
During the last year’s challenge, Isensee et. al. [9] demonstrated that the ac-
curacy of the model benefits from adding data from 2014-2016 challenges. We
believe that this is one of the reasons why the mentioned method was ranked high
during the 2018 competition. To further investigate the effectiveness of adding
additional data into the training, we propose to utilize data from 2014-2016 and
2018 challenges. More specifically, we employ BraTS 2016 dataset, that is seg-
mented automatically by the organizers. We also utilize this year’s validation
dataset, as well as 2018 testing dataset. Since the ground truth is unavailable,
we first train an ensemble of the models. In the ensemble, we include multi-
ple architectures [12,9,10] that demonstrated their performance during previous
challenges. Then we automatically annotate unlabeled data with this ensemble
trained solely on the BraTS 2019 training dataset; and we train a single model
on the extended dataset. We describe the baseline methods that form our en-
semble in the following section.

2.1 No New Net

The first method we employ in our ensemble is UNet [15] with 3D convolutions
[5] and minor modifications employed by Isensee et. al [9] for participation in
BraTS 2018 challenge, where this method was ranked second.
UNet is a fully convolutional decoder-encoder network with skip connections,
that allows to segment fine structures well. It is especially effective in segmenta-
tion of biomedical imaging data. With slight modification its capable of showing
state of the art results. For instance, Isensee et. al. replaced ReLU activations
with its leaky variant with negative slope equals to 10−2. At the same time,
trilinear upsampling was used in the decoder with prior filter number reduction.
Instance Normalization [16] was used instead of Batch Normalization [8] due to
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Fig. 1. The architecture of UNet that we use in our experiments. Dotted lines represent
skip-connections. Instead of max pooling we use strided convolutions.

inaccurate statistics estimation with small batch sizes. The network architecture
is illustrated on Fig. 1.
We train this network with a patch size of 128x128x128 voxels and batch size of
2 for 160k iterations of weight updates. The initial learning rate was set to 10−4

and then dropped by a factor of 10 at 120k iterations. As in the paper [9] we
employed a mixture of Soft Dice Loss and Binary Cross-Entropy for training.
Similarly, instead of predicting 4 target classes, we segment three overlapping
regions: Whole Tumor, Tumor Core and Enhancing Tumor.

Ldice(g, p) =
1

K
·

K∑

k=1

2
∑

pk · gk∑
p2k + g2k

Lbce(g, p) = −

1

N
·

K∑

k=1

∑
(gk · log(pk) + (1 − gk) · log(1− pk))

where N - is a number of voxels in the output, K - number of classes, gk and pk
is ground truth and predicted probabilities of class k respectively. The resulting
loss function is calculated as a sum of Soft Dice loss and BCE loss:

Lfinal(g, p) = Ldice(g, p) + Lbce(g, p)

2.2 UNet with residual connections

The second method we use in the ensemble is a UNet[15,5] with residual con-
nections [6]. This model coupled with the autoencoder branch that imposes
additional regularization on the encoder was employed by A. Myronenko [12],
who took the first place at previous year’s challenge.
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Fig. 2. UNet with residual blocks. Dotted arrows represent skip-connections.

Opposite to standard UNet, authors propose to use asymmetrically large en-
coder compared to the relatively thin decoder. ReLU activations are used as
nonlinearities in this model. As a normalization layer, Group Normalization [17]
is employed due to the small batch size used during training. Group Normal-
ization computations are independent of batch size, thus GN provides similar
performance on small and large batch sizes. In the encoder part, feature maps
are progressively downsampled by 2 and increased in number by the same fac-
tor. The number of residual blocks at each level equals to 1, 2, 2 and 4. In
the decoder, however, the number of residual blocks remains equal to 1 across
all levels. Authors propose to use additional Variational Auto-Encoder (VAE)
branch for regularization. We follow this choice for training the ensemble model,
but we decided against using it in the student model. The network architecture
is illustrated in Fig. 2.
We train this model with Adam optimizer using the same learning rate and
learning schedule as for the previous baseline method. The loss function we used
is the same as in the previous case. The patch size of 144x144x128 gave us better
results compared to the smaller ones.

2.3 Cascaded UNet

The third baseline method we use was previously introduced by the correspond-
ing authors for participating in BraTS 2018. There we used a cascade of UNets
[10], each one has multiple encoders that correspond to input modalities. In this
method, we employed ReLU as the activation function. The network was built
of basic pre-activation residual blocks that consist of two instance normalization
layers, two ReLU activation layers and two convolutions with a kernel size of 3.
We build a cascade of the models with the same topology that operate on the
different scales of the input volume. Thus, we achieve an extremely large recep-
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tive field that can capture the global context. The architecture of base network
in the cascade is illustrated in Fig. 3.
The model is trained with SGD with initial learning rate of 0.1, exponential

Fig. 3. Schematic representation of base network in the cascade. Each input modality
has separate encoder. The encoder outputs are then merged together with elementwise
maximum.

learning rate decay with rate 0.99 for every epoch, the momentum of 0.9 and
minibatch size equal to 4. All input samples were resampled to 128x128x128
resolution. The training was performed for 500 epochs.

3 Data preprocessing and augmentation

As a preprocessing step, we normalize each input volume (modality) to have
zero mean and unit variance for non-zero foreground voxels. This normalization
is done independently for each input image. For training Cascaded UNet we also
resample input images to the resolution of 128x128x128.
To enhance generalization capabilities of the networks we perform a large set of
data augmentations during training. First, we crop random regions of the images
in the way, that at least one non background pixel is present in the cropped frag-
ment. Then we randomly scale, rotate and mirror these images across X and Y
axes. We deciseded to keep the original orientation along Z axis. Finally, we ap-
ply intensity shift and contrast augmentations for each modality independently.
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4 Knowledge Distillation

We build the ensemble of above-named models by averaging the outputs. Next,
we annotate all unlabeled data we have with this ensemble and use a combined
set of manually and automatically labeled data as a training dataset. We pick
architecture described in Section 2.2 without VAE branch as a student model
and train it in the same way. Our experiments demonstrated that model with
VAE under performs compared to the model without it. Due to increased dataset
size we are no longer required to use regularization to get plausible results. For
the submission to the evaluation system we trained the student model on all the
data we have, with manual annotations and annotations from ensemble, except
the dataset we are evaluating on.
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Fig. 4. The boxplot of the evaluation results on validation dataset.

5 Results

The training was performed with PyTorch Framework [13] and single Nvidia
2080Ti. Evaluation was performed locally using stratified train-test split, as well
as using validation dataset and online evaluation platform. Due to sensitivity of
validation metric to borderline cases (ex. empty mask), Cascaded UNet demon-
strated high Dice score segmenting Enhancing Tumor by correctly predicting



8 D. Lachinov et al.

Table 1. Performance of the methods. Local validation scores are reported.

Method Dice ET Dice WT Dice TC

UNet 0.7836 0.9152 0.8743
Res UNet 0.7392 0.9204 0.8754
Casc UNet 0.9235 0.8925 0.8719

Distilled 0.7440 0.9218 0.8835

Table 2. Performance of the methods. The scores were evaluated on validation dataset.

Method Dice ET Dice WT Dice TC

UNet 0.7402 0.8974 0.8349
Res UNet 0.7424 0.9018 0.8278
Casc UNet 0.7307 0.8997 0.8335
Ensemble 0.7562 0.9072 0.8435

Distilled 0.7563 0.9045 0.8420

these few borderline cases in the validation split.
On the validation dataset the ensemble of the models got the highest score. At
the same time, the model trained with knowledge distillation scored almost the
same as ensemble. As can be seen on graph 4 and table 2, that represent results
on validation dataset, student (distilled) model has lower Dice score variance of
Enhancing tumor and Tumor core regions. On the local validation dataset (table
1) the performance of the student model is comparable to the performance of the
ensemble, except for ET class, where many empty masks are present. The final
submission results of the distilled model on the test dataset are present in the
table 3. Surprisingly, the score for Enhancing Tumor got slightly increased com-
pared to the validation results. That fact may indicate lower number of empty
ET regions in test set compared to validation set.
Performance of the student model across all the evaluation is comparable to the
performance of the ensemble. Initially, we expected it to even surpass ensemble
performance as it was demonstrated in [14] due to larger number of samples to
train on.
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