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Abstract. PIE is a Prolog-embedded environment for automated rea-
soning on the basis of first-order logic. Its main focus is on formulas,
as constituents of complex formalizations that are structured through
formula macros, and as outputs of reasoning tasks such as second-order
quantifier elimination and Craig interpolation. It supports a workflow
based on documents that intersperse macro definitions, invocations of
reasoners, and LATEX-formatted natural language text. Starting from var-
ious examples, the paper discusses features and application possibilities
of PIE along with current limitations and issues for future research.

1 Introduction

First-order logic is used widely and in many roles in philosophy, mathematics,
and artificial intelligence as well as other branches of computer science. Many
practically successful reasoning approaches can be viewed as derived from reason-
ing in first-order logic, for example, SAT solving, logic programming, database
query processing and reasoning in description logics. The overall aim of the PIE
environment is to support the practical mechanized reasoning in first-order logic.
Approaching this aim consequently leads from first-order theorem proving in the
strict sense to tasks that compute first-order formulas, in particular second-order
quantifier elimination and Craig interpolation, whose integrated support char-
acterizes PIE . The system is written and embedded in SWI-Prolog [58] and
provides, essentially as a library of Prolog predicates, a number of functionali-
ties:

– Support for a Prolog-readable syntax of first-order logic formulas.
– Formula pretty-printing in Prolog syntax and in LATEX.
– A versatile formula macro processor.
– Support for processing documents that intersperse formula macro definitions,

reasoner invocations and LATEX-formatted natural language text.
– Interfaces to external first-order and propositional reasoners.
– A built-in Prolog-based first-order theorem prover.
– Implemented reasoning techniques that compute formulas:
• Second-order quantifier elimination on the basis of first-order logic.
• Computation of first-order Craig interpolants.
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• Formula conversions for use in preprocessing, inprocessing and output
presentation.

The system is available as free software from its homepage

http://cs.christophwernhard.com/pie.

The distribution includes several example documents whose source files as well
as rendered LATEX presentations can also be accessed directly from the system
Web page. Inspecting Gödel’s Ontological Proof is there an advanced applica-
tion, where the interplay of elimination and modal axioms is applied in several
contexts. The system was first presented at the 2016 workshop Practical Aspects
of Automated Reasoning [55]. Here we show various application possibilities, fea-
tures and also issues for further research that become apparent with the system
by starting from a number of examples. The paper is itself written as a PIE
document and thus includes fragments generated by PIE and the included or
integrated reasoners.

The rest of this paper is structured as follows: After introducing in Sect. 2
the document-oriented workflow supported by PIE , we show in Sect. 3 how it
applies to the invocation of second-order quantifier elimination in the system.
Section 4 provides an application example of elimination, a certain form of ab-
duction, which is shown together with basic features of the PIE macro system.
We proceed in Sect. 5 to outline how systems for theorem proving in the strict
sense are embedded into PIE . In Sect. 6 the computation of circumscription is
discussed as another example of second-order quantifier elimination with PIE ,
along with further features of the macro system and the general issue of finding
good presentations of computed formulas that are essentially just characterized
semantically. Section 7 sketches a further application of second-order quantifier
elimination: a potential way of logic programming with second-order formulas
as used for theoretical considerations in descriptive complexity. Further features
of PIE are summarized in Sect. 9, and Sect. 10 concludes the paper.

Related work is discussed in the respective contexts. The bibliography is
somewhat extensive, reflecting that the system relates to methods as well as
implementation and application aspects in a number of areas, including first-
order theorem proving, Craig interpolation, second-order quantifier elimination
and knowledge representation.

2 PIE Documents

The main way to interact with PIE is by developing or modifying a PIE doc-
ument, a file that intersperses definitions of formula macros, specifications of
reasoning tasks, and LATEX-formatted natural language text in the fashion of lit-
erate programming [28]. Such a document can be loaded into the Prolog environ-
ment like a source code file. Reasoner invocations, where the defined macros are
available, can then be submitted as inputs on the Prolog console. The document
can also be processed, which results in a generated LATEX document: Macro def-
initions are pretty-printed in LATEX, specified reasoner invocations are executed
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and a pretty-printed LATEX result presentation is inserted, and LATEX fragments
are inserted directly. The generated LATEX document can then be displayed in
PDF format.

Aside of indentation, the LATEX pretty-printer can apply certain symbol con-
versions to subscripted or primed symbols. Also a compact syntax where paren-
theses to separate arguments from functors and commas between arguments are
omitted is available as an option for both Prolog and LATEX forms.

PIE source documents can be re-loaded into the Prolog environment such
that mechanized formalizations can be developed in a workflow similar to pro-
gramming in AI languages like Prolog and Lisp.

First-order reasoners are often heavily dependent on configuration settings.
A PIE document specifies all information needed to reproduce the results of
reasoner invocations in a convenient way. Effective configuration parameters are
combined from system defaults, defaults declared in the document and options
supplied with particular specifications of reasoner invocations.

3 Second-Order Quantifier Elimination in PIE

Second-order quantifier elimination is the task of computing for a given formula
with second-order quantifiers, that is, quantifiers upon predicate or function
symbols, an equivalent first-order formula. PIE so far just supports second-
order quantification upon predicate symbols, or predicate quantification. Here is
an example of PIE ’s LATEX representation of the invocation of a reasoner that
performs second-order quantifier elimination:

Input: ∃p (∀x (q(x )→ p(x )) ∧ ∀x (p(x )→ r(x ))).
Result of elimination:

∀x (q(x )→ r(x )).

The source code in the PIE document that effects this output is:
:- ppl_printtime(ppl_elim(ex2(p, (all(x, (q(x) -> p(x))),

all(x, (p(x) -> r(x))))))).

The directive ppl_printtime effects that its argument is evaluated at “print time”,
that is, at processing, when the LATEX presentation is generated.1 The argument
is an invocation of the elimination reasoner with the predicate ppl_elim. It has
a formula as argument, possibly with predicate quantifiers. If called at “print
time” it prints inputs and outputs formatted in LATEX as shown above for the
example. It can also be invoked in the context of plain Prolog processing, where
it just effects that the output is pretty printed in Prolog syntax. The following
interaction would, for example, be possible in the Prolog console:
?- ppl_elim(ex2(p, (all(x, (q(x) -> p(x))), all(x, (p(x) -> r(x)))))).
all(x, (q(x)->r(x)))
true.
1 The prefix ppl_ of this and related predicates should suggest pretty-print in LATEX

format.
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Printing the output is performed there as a side effect. SWI-Prolog afterwards
prints true. to indicate that the invocation of ppl_elim was successful. To ac-
cess the output formula from a program, PIE provides two alternate means:
With an option list [printing=false, r=Result] as second argument, ppl_elim
does not effect that the elimination result is printed, but instead bound to the
Prolog variable Result for further processing. The second way to access the
result formula of the last reasoner invocation is with the supplied predicate
last_ppl_result(Result ). This predicate may itself be used in macro definitions.

Let us take a brief look at the syntax of the argument formula of ppl_elim
in the example. It represents a second-order formula as a Prolog ground term.
Conjunction is represented as in Prolog by ,/2 and implication by ->/2, with
standard operator settings from Prolog. The universal first-order quantifier is
expressed by all/2 and the existential second-order quantifier by ex2/2.

PIE performs second-order quantifier elimination by an included Prolog im-
plementation of the DLS algorithm [14], a method based on formula rewriting
until second-order subformulas have a certain shape that allows elimination in
one step by rewriting with Ackermann’s lemma, an equivalence due to [1]. Im-
plementing DLS brings about many subtle and interesting issues [23,10,54], for
example, incorporation of non-deterministic alternative courses, dealing with
un-Skolemization, simplification of formulas in non-clausal form and ensuring
success of the method for certain input classes. The current implementation
in PIE is far from optimum solutions of these issues, but can nevertheless be
used in nontrivial applications and might contribute to improvements by making
experiments possible.

Of course, second-order quantifier elimination on the basis of first-order logic
does not succeed in general. Nevertheless, along with variants termed forget-
ting, uniform interpolation or projection, it has many applications, including
deciding fragments of first-order logic [36,3], computation of frame correspon-
dence properties from modal axioms [19,14,43], computation of circumscription
[14], embedding nonmonotonic semantics in a classical setting [51,50], abduction
with respect to classical and to nonmonotonic semantics [32,15,52], forgetting
in knowledge bases [33,49,29,34,13], and approaches to modularization of knowl-
edge bases derived from the notion of conservative extension [21,22,35]. Further
applications of second-order quantifier elimination are described in the mono-
graph [20].

For second-order quantifier elimination and similar operations there are sev-
eral implementations based on modal and description logics, but very few on
first-order logic: A Web service2 invokes an implementation [17] of the SCAN
algorithm [19]. DLSForgetter [2] is a recent system that implements the DLS
algorithm [14]. An earlier implementation [23] of DLS seems to be no longer
available.

2 Available at http://www.mettel-prover.org/scan/.

4

http://www.mettel-prover.org/scan/


4 Abduction with Second-Order Quantifier Elimination –
Basic Use of PIE Macros

In the simplest case, a PIE formula macro serves as a formula label that may be
used in subformula position in other formulas and is expanded into its definiens.
Here is an example of such a PIE macro definition in the LATEX presentation:

kb1

Defined as

(sprinkler_was_on→ wet(grass)) ∧
(rained_last_night→ wet(grass)) ∧
(wet(grass)→ wet(shoes)).

The corresponding source is:
def(kb1) ::
(sprinkler_was_on -> wet(grass)),
(rained_last_night -> wet(grass)),
(wet(grass) -> wet(shoes)).

The source statement has the form def(MacroName ) :: ExpansionFormula., where
:: is an infix operator with lower precedence than the operators used as connec-
tives for logical formulas. Formula kb1 is now defined as a small knowledge base
that expresses a variant of a scenario often used to illustrate abduction. Actually,
we use it now to show how a certain form of computing abductive explanations
can be considered as second-order quantifier elimination. It is based on the no-
tion of weakest sufficient condition [32,15,51], which is basically a second-order
formula that expresses the weakest formula in a given vocabulary that needs
to be conjoined to given axioms to make a given theorem candidate an actual
theorem. This second-order formula as such is not very informative as it contains
the axioms and the theorem as constituents, with disallowed symbols bound by
quantifiers and possibly renamed but still present. However, the result of ap-
plying elimination to that second-order formula provides the weakest sufficient
condition in the proper sense, or, considered with respect to abduction, the
weakest explanation.

PIE allows to specify macros with parameters that are represented by Prolog
variables. We utilize this to specify schematically the weakest explanation (or
weakest sufficient condition) of observation Obs on the complement of Na as
assumables (Na should suggest non-assumables) within knowledge base Kb:

explanation(Kb,Na,Obs)

Defined as

∀Na (Kb → Obs).

The corresponding source code is:
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def(explanation(Kb, Na, Ob)) ::
all2(Na, (Kb -> Ob)).

all2/2 represents the universal second-order quantifier in PIE ’s input formula
syntax. The first argument of all2 specifies the quantified predicates, either as
a single Prolog atom or as list of atoms. In the example, there is the macro
parameter Na that needs to be instantiated correspondingly when the macro
is expanded. The expression explanation(kb1 , [wet],wet(shoes)) expands into the
following “non-informative” version of the weakest sufficient condition:

∀p ((sprinkler_was_on→ p(grass)) ∧
(rained_last_night→ p(grass)) ∧
(p(grass)→ p(shoes)) →
p(shoes)).

Second-order quantifier elimination applied to this formula yields the proper
weakest explanation for the observation wet(shoes) in which the predicate wet
itself does not occur, with respect to the background knowledge base kb1:

Input: explanation(kb1 , [wet],wet(shoes)).
Result of elimination:

rained_last_night ∨ sprinkler_was_on.

It was obtained by the following directive in the source document:

:- ppl_printtime(ppl_elim(explanation(kb1,[wet],wet(shoes)))).

In [52] this approach to abduction has been generalized to non-monotonic se-
mantics of logic programming, including the three-valued partial stable models
semantics.

5 Invoking Theorem Provers from PIE

The abductive explanation computed in the previous section can be validated
with a theorem prover. The presentation of the prover invocation and the result
is in PIE as follows:

This formula is valid: kb1∧(rained_last_night∨sprinkler_was_on)→ wet(shoes).

The corresponding source directive is
:- ppl_printtime(ppl_valid((kb1, (rained_last_night ; sprinkler_was_on)

-> wet(shoes)))).

The semicolon ;/2 represents disjunction, as in Prolog. The reasoner invocation
predicate ppl_valid by default first calls the model searcher Mace4 with a short
timeout, and, if it can not find a “counter”-model of the negated formula, calls
the prover Prover9, again with a short timeout.3 Correspondingly, ppl_valid

3 Prover9 and Mace4 were developed between 2005 and 2010 by William McCune.
Their homepage is https://www.cs.unm.edu/~mccune/prover9/.
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prints a representation of one of three result values: valid, not valid or failed to
validate and in LATEX “print time” mode also the input formula, as shown above.

Like ppl_elim, also ppl_valid can be called with a list of options as second
argument. This allows to obtain Prolog term representations of Prover9 ’s resolu-
tion proof or Mace4 ’s model, to skip the call to Mace4, modify the configuration
of Mace4 and Prover9, or to specify another theorem prover to be called.

Other provers can be incorporated through a generic interface to the TPTP
[47] syntax for proving problems, supported by most current first-order provers.
In addition, DIMACS and QDIMACS, the common formats of SAT and QBF
solvers, respectively, are supported by PIE . Large propositional formulas are
handled there efficiently with an internal representation implemented with de-
structive term operations. Most of the support of propositional formulas is in-
herited from the precursor system ToyElim [53].

PIE also includes a Prolog-based first-order prover, CM, whose calculus can
be understood as model elimination, clausal tableau construction [31], or the
connection method [6], similar to provers of the leanCoP family [40,26,27]. Its im-
plementation follows the compilation-based Prolog Technology Theorem Prover
(PTTP) paradigm [46]. It computes proofs that are represented by Prolog terms
and can be used to compute Craig interpolants (Sect. 8). Details and evaluation
results are available at http://cs.christophwernhard.com/pie/cmprover.

6 Computing Circumscription as Second-Order
Quantifier Elimination – PIE Macros with Prolog
Bodies, Result Simplifications

The circumscription of a predicate P in a formula F is a formula whose mod-
els are the models I of F that are minimal with respect to P . That is, there
is no model I ′ of F that is like I except that the extension of P in I ′ is a
strict subset of the extension of P in I. Predicate circumscription can be ex-
pressed by a second-order schema such that the computation of circumscription
is second-order quantifier elimination [14]. The second-order circumscription of
predicate P in formula F can thus be defined as a PIE macro as follows:

circ(P, F )

Defined as

F ∧ ¬∃P ′ (F ′ ∧ T1 ∧ ¬T2),

where

F ′ := F [P 7→ P ′],
A := arity of P in F,
T1 := transfer clauses [P/A-n]→ [P ′],
T2 := transfer clauses [P ′]→ [P/A-n].
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This definition utilizes that PIE macro definitions may contain a Prolog body
that permits expansions involving arbitrary computations. Utility predicates
with pretty-printing templates for use in these bodies are provided for common
tasks. The source of the above definition reads:
def(circ(P, F)) ::
F, ~ex2(P_p, (F_p, T1, ~T2)) ::-

mac_rename_free_predicate(F, P, pn, F_p, P_p),
mac_get_arity(P, F, A),
mac_transfer_clauses([P/A-n], p, [P_p], T1),
mac_transfer_clauses([P/A-n], n, [P_p], T2).

The Prolog body is introduced with the ::- operator, which is defined with a
precedence between :: and the operators used to represent logical formulas. The
unary operator ˜ represents negation in formulas.4 The suffix _p used for some
variable names is translated to the prime superscript in the LATEX rendering.
We only indicate here the effects of the auxiliary predicates in the Prolog body
with an example: The formula circ(p, p(a)) expands into:

p(a) ∧
¬∃q (q(a) ∧ ∀x (q(x )→ p(x )) ∧ ¬∀x (p(x )→ q(x ))).

Second-order quantifier elimination can be applied to compute the circumscrip-
tion for the example:

Input: circ(p, p(a)).
Result of elimination:

p(a) ∧ ∀x (p(x )→ x = a).

As a more complex example, we consider circumscribing wet in kb1 :

Input: circ(wet, kb1 ).
Result of elimination:

(rained_last_night→ wet(grass)) ∧
(sprinkler_was_on→ wet(grass)) ∧
(wet(grass)→ wet(shoes)) ∧
∀x (wet(x )→ rained_last_night ∨ sprinkler_was_on) ∧
∀x (wet(x ) ∧ wet(grass)→ x = grass ∨ x = shoes).

The first three implications of this output form the expansion of kb1 . The last
two implications are added by the circumscription. This particular form was
actually obtained by applying a certain simplification to the formula returned
directly by the elimination method:

:- ppl_printtime(ppl_elim(circ(wet,kb1), [simp_result=[c6]])).

The option [simp_result=[c6]] supplied to ppl_elim effects that the elimination
result is postprocessed by equivalence preserving conversions with the aim to
4 The standard Prolog negation operator \+ is not suited to represent classical negation
as it symbolizes 6`, non-provability.
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make it more readable. The conversion named c6 chosen for this example con-
verts to conjunctive normal form, applies various clausal simplifications and then
converts back to a quantified first-order formula, involving un-Skolemization if
required. That the last conjunct of the result can be replaced by the more suc-
cinct ∀x (wet(x ) → x = grass ∨ x = shoes) is, however, not detected by the
current implementation.

Finding good presentations of formulas, in particular in presence of opera-
tions that yield formulas with essentially semantic characterizations, is a chal-
lenging topic in general.

7 Expressing Graph Colorability by a Second-Order
Formula – PIE Macros with Parameters in Functor
Position

One of the fundamental results of descriptive complexity is the equivalence of
NP and expressibility by an existential second-order formula (with respect to
finite models), that is, a first order formula prefixed with existential predicate
quantifiers. This view allows, for example, to specify 2-colorability5 with respect
to a relation E that specifies a graph as follows:

col2 (E)

Defined as

∃r∃g (∀x (r(x ) ∨ g(x )) ∧
∀x∀y (E(x , y)→ ¬(r(x ) ∧ r(y)) ∧ ¬(g(x ) ∧ g(y)))).

The source of this definition is:

def(col2(E)) ::
ex2([r,g],

( all(x, (r(x) ; g(x))),
all([x,y], (E(x,y) -> (~((r(x), r(y))), ~((g(x), g(y)))))))).

The macro parameter E appears as a Prolog variable in predicate position.6 The
macro can then be used with instantiating E to a predicate symbol, or to a λ-
expression that describes a particular graph (we will see examples in a moment).

Specifying algorithms as (existential) second-order formulas seems very ele-
gant, but so far not established as a practical approach to logic programming.
PIE in its current implementation lets become apparent related desiderata: In-
stantiation with a predicate symbol should be usable as basis for abstract rea-
soning. Instantiation with a λ-expression (or conjoining a definition of a graph),
5 3-colorability, which is NP-complete, can be specified analogously. We consider here
2-colorability for brevity of the involved formulas.

6 SWI-Prolog can be configured to permit variable names as functors, which are read
in as atoms with capitalized names. The macro processor of PIE compares them to
actual variable names in the macro definition.
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should permit successful elimination. If adequate, the problem should then au-
tomatically be converted to a form that can be processed by a SAT solver.

So far, in the current implementation of PIE , such steps just work in part,
e.g., by decomposing the overall task manually into intermediate steps with dif-
ferent manually controlled formula simplifications, as illustrated by the following
example. The following macro defines the inner, first-order, component of the
above specification of 2-colorability:

fo_col2 (E)

Defined as
∀x (r(x ) ∨ g(x )) ∧
∀x∀y (E(x , y)→ ¬(r(x ) ∧ r(y)) ∧ ¬(g(x ) ∧ g(y))).

PIE allows to instantiate E in fo_col2 (E) with a predicate constant e and
eliminate one of the color predicates:7

Input: ∃g fo_col2 (e).
Result of elimination:

∀x∀y (e(x , y)→ ¬(r(y) ∧ r(x )) ∧ (r(y) ∨ r(x ))).

2-colorability for a given graph represented by a λ-expression can be evaluated
by PIE currently just in two steps with different elimination configurations, as
performed by the following Prolog predicate:
elim_col2(E) :-

ppl_elim(ex2([g], fo_col2(E)),
[elim_options=[pre=[c6]], printing=false, r=F1]),

ppl_elim(ex2([r], F1),
[elim_options=[pre=[d6]], printing=false, r=F2]),

ppl_form(E),
ppl_form(F2).

Options printing=false suppress the emission of printed representations of the
two invocations of the elimination reasoner. Only the input λ-expression and
the final result are pretty-printed with calls to ppl_form. Options pre=[c6] and
pre=[d6] effect that preprocessing based on conversion to CNF and DNF, re-
spectively, is applied for elimination. Invoking

:- ppl_printtime(elim_col2(lambda([u,v],((u=1,v=2); (u=2,v=3))))).

yields the following output:

λ(u, v).(u = 1 ∧ v = 2) ∨ (u = 2 ∧ v = 3).

1 6= 2 ∧ 2 6= 3.

It expresses that the graph described by the λ-expression is 2-colorable if and
only if node 1 is not the same as node 2 and node 2 is not the same as node 3.
7 One color predicate can also be eliminated from an analogous specification of 3-co-
lorability.
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8 Craig Interpolation

By Craig’s interpolation theorem [11,12], for given first-order formulas F and G
such that F entails G (or, equivalently, F → G is valid) a first-order formula H
can be constructed such that F entails H, H entails G and H contains only
symbols (predicates, functions, constants, free variables) that occur in both F
and G. PIE supports the computation of Craig interpolants H, for given valid
implications F → G. Here is a propositional example:

Input: p ∧ q→ p ∨ r.
Result of interpolation:

p.

The corresponding directive in the source document is:

:- ppl_printtime(ppl_ipol((p, q -> (p ; r)))).

The predicate ppl_ipol invokes the interpolation reasoner. It takes an implication
F → G as argument and, analogously to ppl_elim (Sect. 3), prints an interpolant
of F and G.8 Here is another example of Craig interpolation, where universal
and existential quantification need to be combined:9

Input: ∀x p(a, x ) ∧ q→ ∃x p(x , b) ∨ r.
Result of interpolation:

∃x ∀y p(x , y).

Craig interpolation has many applications in logics and philosophy, as already
shown in [12]. Main applications in computer science are in verification [39] and
query reformulation, based on its relationship to definability and construction of
definientia in terms of a given vocabulary [48,5,4]. For these applications, actually
interpolants that are further constrained, in dependency of further restrictions
on the input formulas, are relevant. We do not consider these here, but show
how basic definability via Craig interpolation can be expressed in PIE .

A formulaG is called definable in a formula F in terms of a set of predicates S
if and only if there exists a formula H whose predicates are all in S such that
F |= G ↔ H. The formula H is then called a definiens of G. Consider, for
example, the following formula:

8 In certain configurations it can also print several different interpolants.
9 This is an example which involves an inference step with a constant that occurs only
on the left side (a) and a constant that occurs only on the right side (b), which can
not be handled by certain resolution-based interpolation systems. See [7,30]. In this
particular example, the order of the quantifications in the result is not relevant.
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kb2

Defined as

∀x (p(x )→ q(x ) ∧ s(x )) ∧
∀x (s(x )→ r(x )) ∧
∀x (q(x ) ∧ r(x )→ p(x )).

We can invoke a first-order prover from PIE to verify that the formula p(a) is
definable in kb2 in terms of {q, r}:

This formula is valid: kb2 → (p(a)↔ q(a) ∧ r(a)).

Actually, since a does not occur in kb2, we can equivalently verify the following
implication, whose right side is a universally quantified first-order definition:

This formula is valid: kb2 → ∀a (p(a)↔ q(a) ∧ r(a)).

We can now utilize the features of PIE to formally characterize definability and
synthesize definientia:

definiens(G,F, P )

Defined as

∃P (F ∧G)→ ∀P (F → G).

The interpolants of the left and right side of definiens(G,F, P ) are exactly the
definientia of G in F in terms of all predicates not in P . The implication is valid if
and only if definability holds. The second-order quantifications in the implication
are existential on the left and universal on the right side.10 Considering that
an implication can be understood as disjunction of the negated left side and
the right side, if F and G are first-order, then definiens(G,F, P ) is a formula
whose second-order quantifiers are all universal. Such a second-order formula is
valid if and only if the first-order formula obtained by renaming the quantified
predicates with fresh symbols and dropping the second-order quantifiers is valid.
This translation is handled automatically by PIE such that we can now we verify
definability of p(a) by invoking a first-order prover from PIE :

This formula is valid: definiens(p(a), kb2 , [p, s]).

And, we can apply Craig interpolation to compute a definiens:

Input: definiens(p(a), kb2 , [p, s]).
Result of interpolation:

q(a) ∧ r(a).

10 We actually encountered right side of the implication before in Sect. 4 as the weakest
sufficient condition in the macro definition of explanation.
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The implementation of the computation of Craig interpolants in PIE operates by
a novel adaption of Smullyan’s interpolation method [45,18] to clausal tableaux
[57]. Suitable clausal tableaux can be constructed by the Prolog-based prover
CM that is included in PIE . The system also supports the conversion of proof
terms returned by the hypertableau prover Hyper [41] to such tableaux and thus
to interpolants, but this is currently at an experimental stage.11

The interpolants H constructed by PIE strengthen the requirements for
Craig interpolants in that they are actually Craig-Lyndon interpolants, that
is, predicates occur in H only in polarities in which they occur in both F and G.
Symmetric interpolation [38, Sect. 5] is supported in PIE , implemented by com-
puting a conventional interpolant for each of the input formulas, corresponding
to the induction suggested with [12, Lemma 2].

It seems that most other implementations of Craig interpolation are on the
basis of propositional logic with theory extensions and specialized for applica-
tions in verification [4]. Craig interpolation for first-order logic is supported by
Princess [9,8] and by extensions of Vampire [25,24]. The incompleteness indi-
cated in footnote 9 applies to these Vampire extensions and was observed by
their authors. It also appears that the Vampire extensions do not preserve the
polarity constraints of Craig-Lyndon interpolants [4].

9 Further Features of PIE

In this section we briefly describe further features of PIE that were not illustrated
by the examples in the previous sections. First we consider the formula macro
system. It utilizes Prolog variables to mimic further features of the processing of
λ-expressions by automatically binding a Prolog variable that is free after com-
puting the user-specified part of the expansion to a freshly generated symbol.
With a macro declaration, properties of its lexical environment, in particular
configuration settings that affect the expansion, are recorded. Macros with pa-
rameters are processed by pattern matching to choose the effective declaration
for expansion, allowing structural recursion in macro declarations.

A Craig interpolant for formulas F and G is extracted in PIE from a Prolog
term that represents a closed clausal tableau, a proof of the validity of F →
G. PIE supports the visualization of such tableaux as graph, rendered by the
Graphviz tool. Here is an example:

Input: ∀x p(x ) ∧ ∀x (p(x )→ q(x ))→ q(c).
Result of interpolation:

∀x q(x ).

The respective directive for this interpolation task in the source is:

11 Hypertableaux, either obtained from a hypertableau prover or obtained from a
clausal tableau prover like CM by restructuring the tableau seem interesting as
basis for interpolant extraction in query reformulation, as they allow to ensure that
the interpolants are range restricted. Some related preliminary results are in [57].
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:- ppl_printtime(ppl_ipol((all(x, p(x)), all(x, (p(x) -> q(x))) -> q(c)),
[ip_dotgraph=printstyle(’/tmp/tmp01.png’),
ip_simp_sides=false])).

Fig. 1. A clausal tableau.

The ip_dotgraph option effects that an image repre-
senting the tableau is generated. The ip_simp_sides
option suppresses preprocessing of the interpolation
input, which, in the example, would in essence be al-
ready sufficient to compute the interpolant, yielding
a trivial tableau. The generated image can then be
included into the PIE document with standard LATEX
means, here, for example as Fig. 1. Siblings in the
tableau represent a ground clause used in the proof.
As the tableau is used for interpolant extraction, dec-
oration indicates whether the clause stems from the
left or the right side of the input formula. The dec-
oration of the closing marks indicate the side of the
connection partner. The Skolem constant sk1 is con-
verted to a quantified variable in a postprocessing op-
eration. For a description of the interpolant extraction
procedure, see [57].

Aside of the shown representation of quantified
first-order formulas by Prolog ground terms, the sys-
tem also supports a representation of clausal formu-
las as list of lists of terms (logic literals), with variables represented by Prolog
variables. The system functionality can be accessed by Prolog predicates, also
without using the document processing facilities.

Practically successful reasoners usually apply in some way conversions of
low complexity as far as possible: as preprocessing on inputs, potentially during
reasoning, which has been termed inprocessing, and to improve the syntactic
shape of output formulas as discussed in Sect. 6. Abstracting from these situa-
tions, we subsume these conversions under preprocessing operations. Also the low
complexity might be taken more or less literally and, for example, be achieved
simply by trying an operation within a threshold limit of resources. PIE includes
a number of preprocessing operations including normal form conversions, also
in variants that produce structure preserving normalizations, various simplifica-
tions of clausal formulas, and an implementation of McCune’s un-Skolemization
algorithm [37]. While some of these preserve equivalence, others preserve equiv-
alence just with respect to a set of predicates, for example, purity simplification
with respect to predicates that are not deleted or structure preserving clausifi-
cation with respect to predicates that are not added. This can be understood as
preserving the second-order equivalence

∃q1 . . . ∃qn F ≡ ∃q1 . . . ∃qnG,

where F and G are inputs and outputs of the conversion and q1, . . . , qn are
those predicates that are permitted to occur in F or G whose semantics needs
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not to be preserved. If q1, . . . , qn includes all permitted predicates, the above
equivalence expresses equi-satisfiability. Some of the simplifications implemented
in PIE allow to specify explicitly a set of predicates whose semantics is to be
preserved, which makes them applicable for Craig interpolation and second-order
quantifier elimination.

In addition to the implementation of the DLS algorithm, PIE includes fur-
ther experimental implementations of variants of second-order quantifier elimi-
nation. In particular, a variant of the method shown in [33] for elimination with
respect to ground atoms, which always succeeds on the basis of first-order logic.
A second-order quantifier is there, so-to-speak, just upon a particular ground in-
stance of a predicate. The Boolean solution problem or Boolean unification with
predicates is a computational task related to second-order quantifier elimination
[44,42,56]. So far, PIE includes experimental implementations for special cases:
Quantifier-free formulas with a technique from [16] and a version for finding so-
lutions with respect to ground atoms, in analogy to the elimination of ground
atoms.

10 Conclusion

PIE tries to supplement what is needed to use automated first-order proving
techniques for developing and analyzing formalizations. Its main focus is not
on proofs but on formulas, as constituents of complex formalizations that are
composed and structured through macros, and as computed outputs of second-
order quantifier elimination, Craig interpolation and formula conversions that
preserve semantics with respect to given predicates. All of these operations utilize
some natural relationships between first- and second-order logic.

The system mediates between high-level logical presentation and detailed
configuration of reasoning systems: Working practically with first-order provers
typically involves experimenting with a large and developing set of related prov-
ing problems, for example with alternate axiomatizations or different candidate
theorems, and is thus often accompanied with some meta-level technique to com-
pose and relate the actual proof tasks submitted to first-order reasoners. With
the macro system, the supported document-oriented workflow, LATEX pretty-
printing, and integration into the Prolog environment, PIE offers to organize
this in a systematic way through mechanisms that remain in the spirit of first-
order logic, which in mathematics is actually often used with schemas.

Aside of the current suitability for non-trivial applications, PIE shows up
a number of challenging and interesting open issues for research, for example
improving practical realizations of second-order quantifier elimination, strength-
enings of Craig interpolation that ensure application-relevant properties such as
range restriction, and conversion of computed formulas that are basically just
semantically characterized to comprehensible presentations. Progress in these
issues can be directly experienced and verified with the system.
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