Skip to main content

Characteristic Topological Features of Promoter Capture Hi-C Interaction Networks

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

Current Hi-C technologies for chromosome conformation capture allow to understand a broad spectrum of functional interactions between genome elements. Although significant progress has been made into analysis of Hi-C data to identify the biologically significant features, many questions still remain open. In this paper we describe analysis methods of Hi-C (specifically PCHi-C) interaction networks that are strictly focused on topological properties of these networks. The main questions we are trying to answer are: (1) can topological properties of interaction networks for different cell types alone be sufficient to distinguish between these types, and what the most important of such properties are; (2) what is a typical structure of interaction networks and can we assign a biological significance to network structural elements or features?

We have performed analysis on a dataset describing PCHi-C genome-wide interaction networks for 17 types of haematopoietic cells. From this analysis we propose a concrete set Base6 of network topological features (called metrics) that provide good discriminatory power between cell types. The identified features are clearly defined and simple topological properties – the presence and size of connected components and bi-connected components, cliques and cycles of length 2.

We have explored in more detail the component structure of the networks and show that such components tend to be well conserved within particular cell type subgroups and can be well associated with known biological processes. We also have assessed biological significance of network cliques using promoter level expression data and the obtained results indicate that for closely related cell types genes from the same clique tend to be co-expressed.

The research was supported by ERDF project 1.1.1.1/16/A/135.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ay, F., Bailey, T., Noble, W.: Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24(6), 999–1011 (2014). https://doi.org/10.1101/gr.160374.113

    Article  Google Scholar 

  2. Belton, J., McCord, R., et al.: Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3), 268–276 (2012)

    Article  Google Scholar 

  3. Cairns, J., Freire-Pritchett, P., et al.: CHiCAGO: robust detection of DNA looping interactions in capture Hi-C data. Genome Biol. 17, 127 (2016)

    Article  Google Scholar 

  4. Celms, E., et al.: Application of graph clustering and visualisation methods to analysis of biomolecular data. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds.) DB&IS 2018. CCIS, vol. 838, pp. 243–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97571-9_20

    Chapter  Google Scholar 

  5. Chen, E., Tan, C., et al.: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013)

    Article  Google Scholar 

  6. Das, A., Yang, C., et al.: High-resolution mapping and dynamics of the transcriptome, transcription factors, and transcription co-factor networks in classically and alternatively activated macrophages. Front. Immunol. 9, 22 (2018)

    Article  Google Scholar 

  7. Dekker, J., Rippe, K., et al.: Capturing chromosome conformation. Science 295(5558), 1306–1311 (2002)

    Article  Google Scholar 

  8. DeMaere, M., Darling, A.: Deconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C). PeerJ 4, e2676 (2016)

    Article  Google Scholar 

  9. Dryden, N., Broome, L., et al.: Unbiased analysis of potential targets of breast cancer susceptibility loci by capture Hi-C. Genome Res. 24, 1854–1868 (2014)

    Article  Google Scholar 

  10. Forcato, M., Nicoletti, C., et al.: Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017)

    Article  Google Scholar 

  11. Guimaraes, J., Zavolan, M.: Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 17, 236 (2016)

    Article  Google Scholar 

  12. Javierre, B., Burren, O., et al.: Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167(5), 1369–1384 (2016)

    Article  Google Scholar 

  13. Kuleshow, M., Jones, M., et al.: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016)

    Article  Google Scholar 

  14. Lace, L., et al.: Graph-based characterisations of cell types and functionally related modules in promoter capture Hi-C data. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 3: BIOINFORMATICS, pp. 78–89 (2019)

    Google Scholar 

  15. Lajoie, B., Dekker, J., Kaplan, N.: The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods 72, 65–75 (2015)

    Article  Google Scholar 

  16. Lavin, Y., Mortha, A., et al.: Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15(12), 731–744 (2016)

    Article  Google Scholar 

  17. Lieberman-Aiden, E., van Berkum, E., et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009)

    Article  Google Scholar 

  18. Lizio, M., Harshbarger, J., et al.: Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015). https://doi.org/10.1186/s13059-014-0560-6

    Article  Google Scholar 

  19. Mifsud, B., Tavares-Cadete, F., et al.: Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015)

    Article  Google Scholar 

  20. Quadrini, R., Emanuela, M.: Loop-loop interaction metrics on RNA secondary structures with pseudoknots. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - vol. 3: BIOINFORMATICS, (BIOSTEC 2018), pp. 29–37 (2018)

    Google Scholar 

  21. Ramirez, R., Al-Ali, N., et al.: Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. 4, 416–429 (2017)

    Article  Google Scholar 

  22. Robb, L.: Cytokine receptors and hematopoietic differentiation. Oncogene 26, 6715–6723 (2007)

    Article  Google Scholar 

  23. Sakamoto, Y., Ishiguro, M., Kitagawa, G.: Akaike Information Criterion Statistics. D. Reidel Publishing Company, Dordrecht (1986)

    MATH  Google Scholar 

  24. Schulz, T., Stoye, J., Doerr, D.: GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data. BMC Genom. 19(5), 308 (2018). https://doi.org/10.1186/s12864-018-4622-0

    Article  Google Scholar 

  25. Siahpirani, A., Ay, F., Roy, S.: A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions. Genome Biol. 17, 114 (2016). https://doi.org/10.1186/s13059-016-0962-8

    Article  Google Scholar 

  26. Takahashi, H., Sachiko, K., et al.: CAGE - cap analysis gene expression: a protocol for the detection of promoter and transcriptional networks. Methods Mol. Biol. 786, 181–200 (2012). https://doi.org/10.1007/978-1-61779-292-2_11

    Article  Google Scholar 

  27. Viksna, J., Gilbert, D., Torrance, G.: Domain discovery method for topological profile searches in protein structures. Genome Inf. 15, 72–81 (2004)

    Google Scholar 

  28. Wang, H., Duggal, G., et al.: Topological properties of chromosome conformation graphs reflect spatial proximities within chromatin. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, pp. 306–315 (2013)

    Google Scholar 

  29. Yaveroglu, O., Milenkovic, T., Przulj, N.: Proper evaluation of alignment-free network comparison methods. Bioinformatics 31(16), 2697–2704 (2015)

    Article  Google Scholar 

  30. Zhang, Y., An, L., et al.: Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nature Commun. 9(1), 750 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Viksna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lace, L. et al. (2020). Characteristic Topological Features of Promoter Capture Hi-C Interaction Networks. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics