Skip to main content

ECGpp: A Framework for Selecting the Pre-processing Parameters of ECG Signals Used for Blood Pressure Classification

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1211))

Abstract

There are many commercially available sensors for acquiring electrocardiogram (ECG) signals, and the predictive analyses are extremely welcome for real-time monitoring in public healthcare. One crucial task of such analysis is the selection of the pre-processing parameters for the ECG signals that carry the most valuable information. For this reason, we extended our previous work by proposing a framework, known as ECGpp, which can be used for selecting the best pre-processing parameters for ECG signals (like signal length and cut-off frequency) that will be involved in predictive analysis. The novelty of the framework is in the evaluation methodology that is used, where an ensemble of performance measures are used to rank and select the most promising parameters. Thirty different combinations of a signal length and a cut-off frequency were evaluated using a data set that contains data from five commercially available ECG sensors in the case of blood pressure classification. Evaluation results show that a signal length of 30 s carries the most valuable information, while it was demonstrated that lower cut-off frequencies, where the ECG components overlap with the baseline wander noise, can also provide promising results. Additionally, the results were tested according to the selection of the performance measures, and it was shown that they are robust to inclusion and exclusion of correlated measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. AHA: Understanding blood pressure readings (2016). http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp

  2. Ahmad, S., et al.: Electrocardiogram-assisted blood pressure estimation. IEEE Trans. Biomed. Eng. 59(3), 608–618 (2012)

    Article  Google Scholar 

  3. Ahonen, L., Cowley, B., Torniainen, J., Ukkonen, A., Vihavainen, A., Puolamäki, K.: Cognitive collaboration found in cardiac physiology: study in classroom environment. PLoS One 11(7), e0159178 (2016)

    Article  Google Scholar 

  4. Benesty, J., Chen, J., Huang, Y., Cohen, I. (Eds.): Pearson correlation coefficient. In: Benesty, J., Chen, J., Huang, Y., Cohen, I. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

  5. Biosignals, B.: Emotion faros (2016)

    Google Scholar 

  6. Brans, J.-P., Mareschal, B.: Promethee methodsos. In: Figueira, J., Greco, S., Ehrogot, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. ISORMS, vol. 78, pp. 163–186. Springer, New York (2005). https://doi.org/10.1007/0-387-23081-5_5

    Chapter  Google Scholar 

  7. Brans, J.P., Vincke, P.: Note—a preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). Manage. Sci. 31(6), 647–656 (1985)

    Article  MATH  Google Scholar 

  8. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  9. Canning, J., et al.: Noninvasive and continuous blood pressure measurement via superficial temporal artery tonometry. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3382–3385. IEEE (2016)

    Google Scholar 

  10. i Carós, J.M.S.: Continuous non-invasive blood pressure estimation. Ph.D. thesis, ETH (2011)

    Google Scholar 

  11. Chan, K., Hung, K., Zhang, Y.: Noninvasive and cuffless measurements of blood pressure for telemedicine. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, vol. 4, pp. 3592–3593. IEEE (2001)

    Google Scholar 

  12. Choi, Y., Zhang, Q., Ko, S.: Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform. Comput. Electr. Eng. 39(1), 103–111 (2013)

    Article  Google Scholar 

  13. Cosoli, G., Casacanditella, L., Pietroni, F., Calvaresi, A., Revel, G.M., Scalise, L.: A novel approach for features extraction in physiological signals. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 380–385. IEEE (2015)

    Google Scholar 

  14. Eftimov, T., Korošec, P., Koroušić Seljak, B.: Data-driven preference-based deep statistical ranking for comparing multi-objective optimization algorithms. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 138–150. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91641-5_12

    Chapter  Google Scholar 

  15. Eke, A., Herman, P., Kocsis, L., Kozak, L.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23(1), R1 (2002)

    Article  Google Scholar 

  16. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156. Citeseer (1996)

    Google Scholar 

  17. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  18. Goli, S., Jayanthi, T.: Cuff less continuous non-invasive blood pressure measurement using pulse transit time measurement. Int. J. Rec. Dev. Eng. Technol. 2(1), 87 (2014)

    Google Scholar 

  19. Hacks, C.: e-health sensor platform v2. 0 for arduino and raspberry pi (2015)

    Google Scholar 

  20. Hassan, M.K.B.A., Mashor, M.Y., Mohd Nasir, N.F., Mohamed, S.: Measuring of systolic blood pressure based on heart rate. In: Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S., Ting, H.N. (eds.) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. IFMBE Proceedings, vol. 21, pp. 595–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69139-6_149

  21. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  22. Ilango, S., Sridhar, P.: A non-invasive blood pressure measurement using android smart phones. IOSR J. Dent. Med. Sci. 13(1), 28–31 (2014)

    Article  Google Scholar 

  23. Johnstone, J.A., Ford, P.A., Hughes, G., Watson, T., Garrett, A.T.: Bioharness\(^{\rm TM}\) multivariable monitoring device: part. I: validity. J. Sports Sci. Med. 11(3), 400 (2012)

    Google Scholar 

  24. Kim, N., et al.: Trending autoregulatory indices during treatment for traumatic brain injury. J. Clin. Monit. Comput. 30(6), 821–831 (2016)

    Article  Google Scholar 

  25. Kugiumtzis, D., Tsimpiris, A.: Measures of analysis of time series (MATS): a MATLAB toolkit for computation of multiple measures on time series data bases. arXiv preprint arXiv:1002.1940 (2010)

  26. Li, Y., Gao, Y., Deng, N.: Mechanism of cuff-less blood pressure measurement using MMSB. Engineering 5(10), 123 (2013)

    Article  Google Scholar 

  27. Liao, Y., Vemuri, V.R.: Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 21(5), 439–448 (2002)

    Article  Google Scholar 

  28. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R news 2(3), 18–22 (2002)

    Google Scholar 

  29. Marani, R., Perri, A.G.: An intelligent system for continuous blood pressure monitoring on remote multi-patients in real time. arXiv preprint arXiv:1212.0651 (2012)

  30. McBride, J.C., et al.: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Comput. Methods Programs Biomed. 114(2), 153–163 (2014)

    Article  Google Scholar 

  31. Monge-Álvarez, J.: Higuchi and Katz fractal dimension measures (2015). https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures/content/Fractaldimensionmeasures/HiguchiFD.m

  32. Morabito, F.C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., Palamara, I.: Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 14(7), 1186–1202 (2012)

    Article  MATH  Google Scholar 

  33. Mouradian, V., Poghosyan, A., Hovhannisyan, L.: Noninvasive continuous mobile blood pressure monitoring using novel PPG optical sensor. In: 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), pp. 1–3. IEEE (2015)

    Google Scholar 

  34. Myers, L., Sirois, M.J.: Spearman correlation coefficients, differences between. In: Encyclopedia of Statistical Sciences, vol. 12 (2004)

    Google Scholar 

  35. Nye, R., Zhang, Z., Fang, Q.: Continuous non-invasive blood pressure monitoring using photoplethysmography: a review. In: 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), pp. 176–179. IEEE (2015)

    Google Scholar 

  36. Patil, T.R., Sherekar, S.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)

    Google Scholar 

  37. Payne, R., Symeonides, C., Webb, D., Maxwell, S.: Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100(1), 136–141 (2006)

    Article  Google Scholar 

  38. Program, N.H.B.P.E., et al.: The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure (2004)

    Google Scholar 

  39. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46. IBM, New York (2001)

    Google Scholar 

  40. Sackl-Pietsch, E.: Continuous non-invasive arterial pressure shows high accuracy in comparison to invasive intra-arterial blood pressure measurement. Unpublished manuscript (2010)

    Google Scholar 

  41. Sahani, A.K., Ravi, V., Sivaprakasam, M.: Automatic estimation of carotid arterial pressure in ARTSENS. In: 2014 Annual IEEE India Conference (INDICON), pp. 1–6. IEEE (2014)

    Google Scholar 

  42. Sahoo, A., Manimegalai, P., Thanushkodi, K.: Wavelet based pulse rate and blood pressure estimation system from ECG and PPG signals. In: 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), pp. 285–289. IEEE (2011)

    Google Scholar 

  43. Schroeder, E.B., Liao, D., Chambless, L.E., Prineas, R.J., Evans, G.W., Heiss, G.: Hypertension, blood pressure, and heart rate variability. Hypertension 42(6), 1106–1111 (2003)

    Article  Google Scholar 

  44. Seo, J., Pietrangelo, S.J., Lee, H.S., Sodini, C.G.: Noninvasive arterial blood pressure waveform monitoring using two-element ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(4), 776–784 (2015)

    Article  Google Scholar 

  45. Shdefat, A.Y., Joo, M.I., Choi, S.H., Kim, H.C.: Utilizing ECG waveform features as new biometric authentication method. Int. J. Electr. Comput. Eng. (IJECE) 8(2), 658 (2018)

    Article  Google Scholar 

  46. Simjanoska, M., Gjoreski, M., Gams, M., Madevska Bogdanova, A.: Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors 18(4), 1160 (2018)

    Article  Google Scholar 

  47. Simjanoska., M., Papa., G., Seljak., B.K., Eftimov., T.: Comparing different settings of parameters needed for pre-processing of ECG signals used for blood pressure classification. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, pp. 62–72. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007390100620072

  48. Takahashi, N., Kuriyama, A., Kanazawa, H., Takahashi, Y., Nakayama, T.: Validity of spectral analysis based on heart rate variability from 1-minute or less ECG recordings. Pacing Clin. Electrophysiol. 40, 1004–1009 (2017)

    Article  Google Scholar 

  49. Tanaka, S., Nogawa, M., Yamakoshi, T., Yamakoshi, K.I.: Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method. IEEE Trans. Biomed. Eng. 54(10), 1892–1895 (2007)

    Article  Google Scholar 

  50. Technology, Z.: Zephyr bioharness 3.0 user manual (2017). https://www.zephyranywhere.com/media/download/bioharness3-user-manual.pdf

  51. Thomas, S.S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., Jafari, R.: BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE J. Biomed. Health Inform. 20(5), 1291–1300 (2016)

    Article  Google Scholar 

  52. Trobec, R., Tomašić, I., Rashkovska, A., Depolli, M., Avbelj, V. (eds.): Commercial ECG systems. In: Body Sensors and Electrocardiography. SAST, pp. 101–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59340-1_6

  53. Winderbank-Scott, P., Barnaghi, P.: A non-invasive wireless monitoring device for children and infants in pre-hospital and acute hospital environments (2017)

    Google Scholar 

  54. Wong, M.Y.M., Poon, C.C.Y., Zhang, Y.T.: An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc. Eng. 9(1), 32–38 (2009)

    Article  Google Scholar 

  55. Xu, Y., Luo, M., Li, T., Song, G.: ECG signal de-noising and baseline wander correction based on ceemdan and wavelet threshold. Sensors 17(12), 2754 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0098, and project Z2-1867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tome Eftimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simjanoska, M., Papa, G., Koroušić Seljak, B., Eftimov, T. (2020). ECGpp: A Framework for Selecting the Pre-processing Parameters of ECG Signals Used for Blood Pressure Classification. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics