Skip to main content

Features of Using Nonlinear Dynamics Method in Electrical Impedance Signals Analysis of the Ocular Blood Flow

  • Conference paper
  • First Online:
  • 404 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1211))

Abstract

The article describes an approach to constructing an algorithm for qualitative and quantitative comparison of electrical impedance diagnostics signals using the nonlinear dynamics method. The biophysical factors for the electrical impedance diagnostics signal formation and their relationship with a variety of the developed algorithm parameters are presented. The method with the transpalpebral rheoophthalmography signal attractor reconstruction is considered. The optimal reconstruction parameters have been chosen to construct an attractor in the given coordinates space. It has been carried out the analysis of the reconstructed attractors mass centers position for the transpalpebral rheoophthalmography signals, on the basis of which the decision rule has been formulated for comparing and dividing the signals into groups. The results have been verified on electrical impedance signals of the eye blood flow. The application of the developed technique is shown on the example of transpalpebral rheoophthalmography signal analysis in patients with primary open-angle glaucoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lazarenko, V.I., Kornilovsky, I.M., Ilenkov, S.S., et al.: Our method of functional heography of eye. Vestn. oftalmol. 115(4), 33–37 (1999)

    Google Scholar 

  2. Lazarenko, V.I., Komarovskikh, E.N.: Results of the examination of hemodynamics of the eye and brain in patients with primary open-angle glaucoma. Vestn. oftalmol. 120(1), 32–36 (2004). https://doi.org/10.21687/0233-528X-2017-51-3-22-30

    Article  Google Scholar 

  3. Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Transpalpebral tetrapolar reoophtalmography in the assessment of parameters of the eye blood circulatory system. Vestn. Ross. Akad. Med. Nauk 70(3), 372–377 (2015). https://doi.org/10.15690/vramn.v70i3.1336

    Article  Google Scholar 

  4. Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Using quantitative parameters of ocular blood filling with transpalpebral rheoophthalmography. IFMBE Proc. 65, 37–40 (2017). https://doi.org/10.1007/978-981-10-5122-7_10

    Article  Google Scholar 

  5. Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Modeling of ocular and eyelid pulse blood filling in diagnosing using transpalpebral rheoophthalmography. IFMBE Proc. 65, 1000–1003 (2017). https://doi.org/10.1007/978-981-10-5122-7_250

    Article  Google Scholar 

  6. Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Mathematical modeling of ocular pulse blood filling in rheoophthalmography. IFMBE Proc. 68(1), 495–498 (2018). https://doi.org/10.1007/978-981-10-9035-6_91

    Article  Google Scholar 

  7. Luzhnov, P.V., Shamaev, D.M., Kiseleva, A.A., et al.: Using nonlinear dynamics for signal analysis in transpalpebral rheoophthalmography. Sovremennye tehnologii v medicine 10(3), 160–167 (2018). https://doi.org/10.17691/stm2018.10.3.20

    Article  Google Scholar 

  8. Kiseleva, A.A., Luzhnov, P.V., Nikolaev, A.P., Iomdina, E.N., Kiseleva, O.A.: Nonlinear dynamics method in the impedance signals analysis of the eye blood flow of patients with glaucoma. In: Proceedings of 12th International Joint Conference on Biomedical Engineering Systems and Technologies BIODEVICES, vol. 1, pp. 75–80 (2019). https://doi.org/10.5220/0007554800750080

  9. Kiseleva, A., Luzhnov, P., Dyachenko, A., Semenov, Y.: Rheography and spirography signal analysis by method of nonlinear dynamics. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies BIODEVICES, vol. 1, pp. 136–140 (2018). https://doi.org/10.5220/0006579301360140

  10. Betelin, V.B., Eskov, V.M., Galkin, V.A., et al.: Stochastic volatility in the dynamics of complex homeostatic systems. Dokl. Math. 95, 92 (2017). https://doi.org/10.1134/S1064562417010240

    Article  MathSciNet  MATH  Google Scholar 

  11. Elhaj, F., Salim, N., Harris, A., Swee, T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016). https://doi.org/10.1016/j.cmpb.2015.12.024

    Article  Google Scholar 

  12. Akar, S.A., Kara, S., Agambayev, S., Bilgic, V.: Nonlinear analysis of EEG in major depression with fractal dimensions. In: 37th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 7410–7413 (2015). https://doi.org/10.1109/embc.2015.7320104

  13. Gracia, J., et al.: Nonlinear local projection filter for impedance pneumography. EMBEC/NBC -2017. IP, vol. 65, pp. 306–309. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5122-7_77

    Chapter  Google Scholar 

  14. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  15. Flammer, J., Orgul, S., Costa, V.P., et al.: The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393 (2002)

    Article  Google Scholar 

  16. Kurysheva, N.I., Parshunina, O.A., Shatalova, E.O., et al.: Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye Res. 42(3), 411–417 (2017)

    Article  Google Scholar 

  17. Schmetterer, L.: Ocular perfusion abnormalities in glaucoma. Russian Ophthalmol. J. 4, 100–109 (2015)

    Google Scholar 

  18. Siesky, B., Harris, A., Ehrlich, R., Kheradiya, N., Lopez, C.R.: Glaucoma risk factors: ocular blood flow. In: Schacknow, P., Samples, J. (eds.) The Glaucoma Book, pp. 111–134. Springer, New York (2010). https://doi.org/10.1007/978-0-387-76700-0_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Luzhnov .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest. The paper was supported by a grant from RFBR (No. 18-08-01192).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiseleva, A.A., Luzhnov, P.V., Iomdina, E.N. (2020). Features of Using Nonlinear Dynamics Method in Electrical Impedance Signals Analysis of the Ocular Blood Flow. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics