Skip to main content

Simultaneous Segmentation of Retinal OCT Images Using Level Set

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1211))

  • 402 Accesses

Abstract

Medical images play a vital role in clinical diagnosis and treatments of various diseases. In the field of ophthalmology, Optical coherence tomography (OCT) has become an integral part of the non-invasive advanced eye examination by providing images of the retina in high resolution. Reliable identification of the retinal layers is necessary for the extraction of clinically useful information used for tracking the progress of medication and diagnosing various ocular diseases because changes to retinal layers highly correlate with the manifestation of eye diseases. Owing to the complexity of retinal structures and the cumbersomeness of manual segmentation, many computer-based methods are proposed to aid in extracting useful layer information. Additionally, image artefacts and inhomogeneity of pathological structures of the retina pose challenges by significantly degrading the performance of these computational methods. To handle some of these challenges, this paper presents a fully automated method for segmenting retinal layers in OCT images using a level set method. The method starts by establishing a specific Region of interest (ROI), which aids in handling over- and under-segmentation of the target layers by allowing only the layer and image features to influence the curve evolution. An appropriate level set initiation is devised by refining the edges from the image gradient. Then the prior understanding of the OCT image is utilised in constraining the evolution process to segment seven layers of the retina simultaneously. Promising experimental results have been achieved on 225 OCT images, which show the method converges close to the actual layer boundaries compared to the ground truth images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhi, M., Duker, J.S.: Optical coherence tomography-current and future applications. Curr. Opin. Ophthalmol. 24(3), 213 (2013)

    Article  Google Scholar 

  2. Al-Ayyoub, M., AlZu’bi, S., Jararweh, Y., Shehab, M.A., Gupta, B.B.: Accelerating 3D medical volume segmentation using GPUs. Multimedia Tools Appl. 77(4), 4939–4958 (2018)

    Article  Google Scholar 

  3. Boyer, K.L., Herzog, A., Roberts, C.: Automatic recovery of the optic nervehead geometry in optical coherence tomography. IEEE Trans. Med. Imaging 25(5), 553–570 (2006). https://doi.org/10.1109/TMI.2006.871417

    Article  Google Scholar 

  4. Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010). https://doi.org/10.1364/OE.18.019413

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  6. Dodo, B.I., Li, Y., Liu, X.: Retinal oct image segmentation using fuzzy histogram hyperbolization and continuous max-flow. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 745–750. IEEE (2017)

    Google Scholar 

  7. Dodo, B.I., Li, Y., Tucker, A., Kaba, D., Liu, X.: Retinal oct segmentation using fuzzy region competition and level set methods. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 93–98. IEEE (2019)

    Google Scholar 

  8. Dodo, B.I., Li, Y., Eltayef, K., Liu, X.: Graph-cut segmentation of retinal layers from oct images. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOIMAGING, vol. 2, pp. 35–42. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006580600350042

  9. Dodo, B.I., Li, Y., Eltayef, K., Liu, X.: Min-Cut segmentation of retinal OCT images. In: Cliquet Jr., A., et al. (eds.) BIOSTEC 2018. CCIS, vol. 1024, pp. 86–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29196-9_5

    Chapter  Google Scholar 

  10. Dodo., B.I., Li., Y., Liu., X., Dodo., M.I.: Level set segmentation of retinal oct images. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOIMAGING, vol. 2, pp. 49–56. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007577600490056

  11. Duan, J., Tench, C., Gottlob, I., Proudlock, F., Bai, L.: Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance. Pattern Recogn. 72, 158–175 (2017). https://doi.org/10.1016/j.patcog.2017.07.004. http://www.sciencedirect.com/science/article/pii/S0031320317302650

    Article  Google Scholar 

  12. Garvin, M.K.: Automated 3-D segmentation and analysis of retinal optical coherence tomography images. PhD thesis - The University of Iowa (2008)

    Google Scholar 

  13. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991). https://doi.org/10.1002/jcp.24872. (New York, N.Y)

    Article  Google Scholar 

  14. Jaffe, G.J.: OCT of the Macula: an expert provides a primer on useful scans, identifying artifacts and time domain vs. spectral domain technology. In: Reinal Physician, pp. 10–12 (2012)

    Google Scholar 

  15. Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans. Med. Imaging 20(9), 900–916 (2001). https://doi.org/10.1109/42.952728

    Article  Google Scholar 

  16. Lang, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013). https://doi.org/10.1364/BOE.4.001133

    Article  Google Scholar 

  17. Liu, Y., Carass, A., Solomon, S.D., Saidha, S., Calabresi, P.A., Prince, J.L.: Multi-layer fast level set segmentation for macular oct. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1445–1448, April 2018

    Google Scholar 

  18. Lu, S., Yim-liu, C., Lim, J.H., Leung, C.K.S., Wong, T.Y.: Automated layer segmentation of optical coherence tomography images. In: Proceedings - 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, vol. 1, no. 10, pp. 142–146 (2011). https://doi.org/10.1109/BMEI.2011.6098329

  19. Novosel, J., Vermeer, K.A., Thepass, G., Lemij, H.G., Vliet, L.J.V.: Loosely coupled level sets for retinal layer segmentation in optical coherence tomography. In: IEEE 10th International Symposium on Biomedical Imaging, pp. 998–1001 (2013)

    Google Scholar 

  20. Raftopoulos, R., Trip, A.: The application of optical coherence tomography (OCT) in neurological disease. Adv. Clin. Neurosci. Rehabil. 12(2), 30–33 (2012)

    Google Scholar 

  21. Shi, Y., Karl, W.C.: A fast level set method without solving pdes [image segmentation applications]. In: Proceedings (ICASSP 2005) IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 2, pp. ii/97-ii100, March 2005. https://doi.org/10.1109/ICASSP.2005.1415350

  22. Sun, Y., Zhang, T., Zhao, Y., He, Y.: 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement. J. Innov. Opt. Heal. Sci. 9(02), 1650008 (2016)

    Article  Google Scholar 

  23. Tian, J., Varga, B., Somfai, G.M., Lee, W.H., Smiddy, W.E., DeBuc, D.C.: Real-time automatic segmentation of optical coherence tomography volume data of the macular region. PLoS ONE 10(8), 1–20 (2015). https://doi.org/10.1371/journal.pone.0133908

    Article  Google Scholar 

  24. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001). https://doi.org/10.1109/83.935033

    Article  MATH  Google Scholar 

  25. Vincent, L.: Morphological area openings and closings for grey-scale images. In: O, Y.L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 126, pp. 197–208. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-03039-4_13

    Chapter  Google Scholar 

  26. Wang, C., Wang, Y., Kaba, D., Wang, Z., Liu, X., Li, Y.: Automated layer segmentation of 3D macular images using hybrid methods. In: Zhang, Y.-J. (ed.) ICIG 2015. LNCS, vol. 9217, pp. 614–628. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21978-3_54

    Chapter  Google Scholar 

  27. Wang, Q., Boyer, K.L.: The active geometric shape model: a new robust deformable shape model and its applications. Comput. Vis. Image Underst. 116(12), 1178–1194 (2012)

    Article  Google Scholar 

  28. Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans. Med. Imaging 30, 484–496 (2011). https://doi.org/10.1109/TMI.2010.2087390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Isa Dodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dodo, B.I., Li, Y., Dodo, M.I., Liu, X. (2020). Simultaneous Segmentation of Retinal OCT Images Using Level Set. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics