Skip to main content

The Properties of the Standard Genetic Code and Its Selected Alternatives in Terms of the Optimal Graph Partition

  • Conference paper
  • First Online:
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

The standard genetic code (SGC) is a system of rules, which assigns 20 amino acids and stop translation signal to 64 codons, i.e triplets of nucleotides. The structure of the SGC shows some properties suggesting that this code evolved to minimize deleterious effects of mutations and translational errors. To analyse this issue, we presented the structure of the SGC and its natural alternative versions as a graph, in which vertices corresponded to codons and edges to point mutations between these codons. The mutations were weighted according to the mutation type, i.e. transitions and transversions. Under this representation, each genetic code is a partition of the set of vertices into 21 disjoint subsets, while its resistance to the mutation consequences can be reformulated into the optimal graph clustering task. In order to investigate this problem, we developed an appropriate clustering algorithm, which searched for the codes showing the minimum average calculated for the set conductance of codon groups. The algorithm found three best codes for various ranges of the weights for the mutations. The average weighted-conductance of the studied genetic codes was the most similar to that of the best codes in the range of weights corresponding to the observed transversion/transition ratio in natural mutational pressures. However, it should be noted that the optimization of the codes was not as perfect as the best codes and many alternative genetic codes performed better than the SGC. These results may suggest that the evolution of the SGC was driven not only by the selection for the robustness to mutations or mistranslations.

Supported by the National Science Centre, Poland (Narodowe Centrum Nauki, Polska) under Grants number UMO-2017/27/N/NZ2/00403 and UMO-2017/25/B/ST6/02553.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abascal, F., Posada, D., Knight, R.D., Zardoya, R.: Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol. 4(5), 711–718 (2006)

    Article  Google Scholar 

  2. Aloqalaa, D.A., Kowalski, D.R., Błażej, P., Wnetrzak, M., Mackiewicz, D., Mackiewicz, P.: The impact of the transversion/transition ratio on the optimal genetic code graph partition. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, pp. 55–65. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007381000550065

  3. Ardell, D.H.: On error minimization in a sequential origin of the standard genetic code. J. Mol. Evol. 47(1), 1–13 (1998). https://doi.org/10.1007/PL00006356

    Article  Google Scholar 

  4. Ardell, D.H., Sella, G.: On the evolution of redundancy in genetic codes. J. Mol. Evol. 53(4–5), 269–281 (2001). https://doi.org/10.1007/s002390010217

    Article  Google Scholar 

  5. Błażej, P., Wnetrzak, M., Mackiewicz, P.: The importance of changes observed in the alternative genetic codes. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOINFORMATICS, pp. 154–159 (2018)

    Google Scholar 

  6. Beineke, L.W., Wilson, R.J.: Topics in Algebraic Graph Theory. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  7. Błażej, P., Mackiewicz, D., Wnȩtrzak, M., Mackiewicz, P.: The impact of selection at the amino acid level on the usage of synonymous codons. G3-Genes Genom. Genet. 7(3), 967–981 (2017)

    MATH  Google Scholar 

  8. Błażej, P., Mackiewicz, P., Cebrat, S., Wańczyk, M.: Using evolutionary algorithms in finding of optimized nucleotide substitution matrices. In: Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 41–42. Companion ACM (2013)

    Google Scholar 

  9. Błażej, P., Wnȩtrzak, M., Mackiewicz, D., Mackiewicz, P.: Optimization of the standard genetic code according to three codon positions using an evolutionary algorithm. PLoS One 13(8), e0201715 (2018)

    Article  MATH  Google Scholar 

  10. Błażej, P., Kowalski, D., Mackiewicz, D., Wnȩtrzak, M., Aloqalaa, D., Mackiewicz, P.: The structure of the genetic code as an optimal graph clustering problem. bioRxiv (2018).https://doi.org/10.1101/332478. https://www.biorxiv.org/content/early/2018/05/28/332478

  11. Błażej, P., Mackiewicz, D., Grabinska, M., Wnȩtrzak, M., Mackiewicz, P.: Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Sci. Rep. 7, 1061 (2017). https://doi.org/10.1038/s41598-017-01130-7

    Article  Google Scholar 

  12. Błażej, P., Miasojedow, B., Grabinska, M., Mackiewicz, P.: Optimization of mutation pressure in relation to properties of protein-coding sequences in bacterial genomes. PLoS One 10, e0130411 (2015). https://doi.org/10.1371/journal.pone.0130411

    Article  Google Scholar 

  13. Błażej, P., Wnȩtrzak, M., Mackiewicz, D., Gagat, P., Mackiewicz, P.: Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J. Theor. Biol. 464, 21–32 (2019). https://doi.org/10.1016/j.jtbi.2018.12.030

    Article  MATH  Google Scholar 

  14. Błażej, P., Wnȩtrzak, M., Mackiewicz, D., Mackiewicz, P.: The influence of different types of translational inaccuracies on the genetic code structure. BMC Bioinf. 20(1), 114 (2019)

    Article  MATH  Google Scholar 

  15. Błażej, P., Wnȩtrzak, M., Mackiewicz, P.: The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization. Biosystems 150, 61–72 (2016)

    Article  Google Scholar 

  16. Bollobás, B.: Modern Graph Theory. graduate Texts in Mathematics, vol. 184. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-0619-4

    Book  MATH  Google Scholar 

  17. Bove, J.M.: Molecular features of mollicutes. Clin. Infect. Dis. 17(Suppl 1), S10–31 (1993)

    Article  Google Scholar 

  18. Bulmer, M.: The selection-mutation-drift theory of synonymous codon usage. Genetics 129(3), 897–907 (1991)

    Google Scholar 

  19. Chin, J.W.: Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014)

    Article  Google Scholar 

  20. Clark-Walker, G.D., Weiller, G.F.: The structure of the small mitochondrial dna of kluyveromyces thermotolerans is likely to reflect the ancestral gene order in fungi. J. Mol. Evol. 38(6), 593–601 (1994). https://doi.org/10.1007/BF00175879

    Article  Google Scholar 

  21. Crick, F.H.: The origin of the genetic code. J. Mol. Biol. 38(3), 367–379 (1968)

    Article  Google Scholar 

  22. Crozier, R.H., Crozier, Y.C.: The mitochondrial genome of the honeybee apis mellifera: complete sequence and genome organization. Genetics 133(1), 97–117 (1993)

    Google Scholar 

  23. Del Cortona, A., et al.: The plastid genome in cladophorales green algae is encoded by hairpin chromosomes. Curr. Biol. 27(24), 3771–3782 e6 (2017)

    Article  Google Scholar 

  24. Di Giulio, M.: The coevolution theory of the origin of the genetic code. J. Mol. Evol. 48(3), 253–5 (1999)

    Article  Google Scholar 

  25. Di Giulio, M.: An extension of the coevolution theory of the origin of the genetic code. Biol. Direct 3, 37 (2008)

    Article  Google Scholar 

  26. Di Giulio, M.: The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory. J. Theor. Biol. 399, 134–40 (2016)

    Article  Google Scholar 

  27. Di Giulio, M.: Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory. J. Theor. Biol. 414, 1–4 (2017)

    Article  Google Scholar 

  28. Di Giulio, M.: The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J. Mol. Evol. 29(4), 288–293 (1989)

    Article  Google Scholar 

  29. Di Giulio, M.: A discriminative test among the different theories proposed to explain the origin of the genetic code: the coevolution theory finds additional support. Biosystems 169, 1–4 (2018)

    Article  Google Scholar 

  30. Di Giulio, M., Medugno, M.: Physicochemical optimization in the genetic code origin as the number of codified amino acids increases. J. Mol. Evol. 49(1), 1–10 (1999). https://doi.org/10.1007/PL00006522

    Article  Google Scholar 

  31. Duchêne, S., Ho, S.Y., Holmes, E.C.: Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models. BMC Evol. Biol. 15(1), 36 (2015). https://doi.org/10.1186/s12862-015-0312-6

    Article  Google Scholar 

  32. Dudkiewicz, A., et al.: Correspondence between mutation and selection pressure and the genetic code degeneracy in the gene evolution. Future Gener. Comput. Syst. 21(7), 1033–1039 (2005)

    Article  Google Scholar 

  33. Epstein, C.J.: Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature 210(5031), 25–28 (1966)

    Article  Google Scholar 

  34. Freeland, S.J., Hurst, L.D.: The genetic code is one in a million. J. Mol. Evol. 47(3), 238–248 (1998). https://doi.org/10.1007/PL00006381

    Article  Google Scholar 

  35. Freeland, S.J., Hurst, L.D.: Load minimization of the genetic code: history does not explain the pattern. Proc. Roy. Soc. London B: Biol. Sci. 265(1410), 2111–2119 (1998)

    Article  Google Scholar 

  36. Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic code. Mol. Biol. Evol. 17(4), 511–518 (2000)

    Article  Google Scholar 

  37. Freeland, S.J., Wu, T., Keulmann, N.: The case for an error minimizing standard genetic code. Orig. Life Evol. Biosph. 33(4–5), 457–477 (2003). https://doi.org/10.1023/A:1025771327614

    Article  Google Scholar 

  38. Gilis, D., Massar, S., Cerf, N.J., Rooman, M.: Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol. 2(11), research0049-1 (2001)

    Article  Google Scholar 

  39. Gojobori, T., Li, W.H., Graur, D.: Patterns of nucleotide substitution in pseudogenes and functional genes. J. Mol. Evol. 18(5), 360–369 (1982). https://doi.org/10.1007/BF01733904

    Article  Google Scholar 

  40. Goldberg, A.L., Wittes, R.E.: Genetic code: aspects of organization. Science 153(3734), 420–424 (1966)

    Article  Google Scholar 

  41. Goodarzi, H., Najafabadi, H.S., Torabi, N.: Designing a neural network for the constraint optimization of the fitness functions devised based on the load minimization of the genetic code. Biosystems 81(2), 91–100 (2005)

    Article  Google Scholar 

  42. Haig, D., Hurst, L.D.: A quantitative measure of error minimization in the genetic code. J. Mol. Evol. 33(5), 412–417 (1991). https://doi.org/10.1007/BF02103132

    Article  Google Scholar 

  43. Heaphy, S.M., Mariotti, M., Gladyshev, V.N., Atkins, J.F., Baranov, P.V.: Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in condylostoma magnum. Mol. Biol. Evol. 33(11), 2885–2889 (2016)

    Article  Google Scholar 

  44. Hershberg, R., Petrov, D.A.: Selection on codon bias. Ann. Rev. Genet. 42, 287–299 (2008)

    Article  Google Scholar 

  45. Janouskovec, J., et al.: Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia. Mol. Biol. Evol. 30(11), 2447–62 (2013)

    Article  Google Scholar 

  46. Khorana, H.G., et al.: Polynucleotide synthesis and the genetic code. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 31, pp. 39–49. Cold Spring Harbor Laboratory Press (1966)

    Google Scholar 

  47. Knight, R.D., Landweber, L.F., Yarus, M.: How mitochondria redefine the code. J. Mol. Evol. 53(4–5), 299–313 (2001). https://doi.org/10.1007/s002390010220

    Article  Google Scholar 

  48. Kowalczuk, M., et al.: High correlation between the turnover of nucleotides under mutational pressure and the DNA composition. BMC Evol. Biol. 1(1), 13 (2001)

    Article  Google Scholar 

  49. Kumar, S.: Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics 143(1), 537–548 (1996)

    MathSciNet  Google Scholar 

  50. Kurnaz, M.L., Bilgin, T., Kurnaz, I.A.: Certain non-standard coding tables appear to be more robust to error than the standard genetic code. J. Mol. Evol. 70(1), 13–28 (2010). https://doi.org/10.1007/s00239-009-9303-9

    Article  Google Scholar 

  51. Lang-Unnasch, N., Aiello, D.P.: Sequence evidence for an altered genetic code in the neospora caninum plastid. Int. J. Parasitol. 29(10), 1557–62 (1999)

    Article  Google Scholar 

  52. Lee, J.R., Gharan, S.O., Trevisan, L.: Multiway spectral partitioning and higher-order cheeger inequalities. J. ACM (JACM) 61(6), 37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  54. Lim, P.O., Sears, B.B.: Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and acholeplasma-laidlawii deduced from 2 ribosomal-protein gene-sequences. J. Bacteriol. 174(8), 2606–2611 (1992)

    Article  Google Scholar 

  55. Lynch, M.: Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. U.S.A. 107(3), 961–968 (2010)

    Article  Google Scholar 

  56. Lyons, D.M., Lauring, A.S.: Evidence for the selective basis of transition-to-transversion substitution bias in two rna viruses. Mol. Biol. Evol. 34(12), 3205–3215 (2017)

    Article  Google Scholar 

  57. Mackiewicz, P., et al.: Optimisation of asymmetric mutational pressure and selection pressure around the universal genetic code. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5103, pp. 100–109. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69389-5_13

    Chapter  Google Scholar 

  58. Massey, S.E.: A neutral origin for error minimization in the genetic code. J. Mol. Evol. 67(5), 510–516 (2008). https://doi.org/10.1007/s00239-008-9167-4

    Article  Google Scholar 

  59. McCutcheon, J.P., McDonald, B.R., Moran, N.A.: Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. Plos Genet. 5(7), (2009)

    Google Scholar 

  60. Morgens, D.W., Cavalcanti, A.R.: An alternative look at code evolution: using non-canonical codes to evaluate adaptive and historic models for the origin of the genetic code. J. Mol. Evol. 76(1–2), 71–80 (2013). https://doi.org/10.1007/s00239-013-9542-7

    Article  Google Scholar 

  61. Morton, B.R.: Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes. Genetics 159(1), 347–358 (2001)

    Google Scholar 

  62. Muhlhausen, S., Findeisen, P., Plessmann, U., Urlaub, H., Kollmar, M.: A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. Genome Res. 26(7), 945–955 (2016)

    Article  Google Scholar 

  63. Nirenberg, M., et al.: The RNA code and protein synthesis. In: Cold Spring Harbor symposia on quantitative biology, vol. 31, pp. 11–24. Cold Spring Harbor Laboratory Press (1966)

    Google Scholar 

  64. Novozhilov, A.S., Wolf, Y.I., Koonin, E.V.: Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol. Direct 2, 24 (2007)

    Article  Google Scholar 

  65. Osawa, S., Ohama, T., Jukes, T.H., Watanabe, K.: Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria. J. Mol. Evol. 29(3), 202–207 (1989). https://doi.org/10.1007/BF02100203

    Article  Google Scholar 

  66. Panek, T., et al.: Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol. 15(1), 8 (2017)

    Article  Google Scholar 

  67. Petrov, D.A., Hartl, D.L.: Patterns of nucleotide substitution in drosophila and mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 96(4), 1475–1479 (1999)

    Article  Google Scholar 

  68. Rosenberg, M.S., Subramanian, S., Kumar, S.: Patterns of transitional mutation biases within and among mammalian genomes. Mol. Biol. Evol. 20(6), 988–993 (2003)

    Article  Google Scholar 

  69. Sammet, S.G., Bastolla, U., Porto, M.: Comparison of translation loads for standard and alternative genetic codes. BMC Evol. Biol. 10, 178 (2010). https://doi.org/10.1186/1471-2148-10-178

    Article  Google Scholar 

  70. Sanchez-Silva, R., Villalobo, E., Morin, L., Torres, A.: A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr. Biol. 13(5), 442–447 (2003)

    Article  Google Scholar 

  71. Santos, J., Monteagudo, Á.: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinf. 12, 56 (2011). https://doi.org/10.1186/1471-2105-12-56

    Article  Google Scholar 

  72. Santos, J., Monteagudo, Á.: Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability. BMC Bioinf. 18(1), 195 (2017). https://doi.org/10.1186/s12859-017-1608-x

    Article  Google Scholar 

  73. Santos, M.A.S., Keith, G., Tuite, M.F.: Nonstandard translational events in candida-albicans mediated by an unusual seryl-transfer RNA with a 5’-CAG-3’ (leucine) anticodon. EMBO J. 12(2), 607–616 (1993)

    Article  Google Scholar 

  74. Schneider, S.U., Leible, M.B., Yang, X.P.: Strong homology between the small subunit of ribulose-1,5-bisphosphate carboxylase oxygenase of 2 species of acetabularia and the occurrence of unusual codon usage. Mol. Gener. Genet. 218(3), 445–452 (1989). am870 Times Cited:55 Cited References Count:45

    Article  Google Scholar 

  75. Sengupta, S., Yang, X., Higgs, P.G.: The mechanisms of codon reassignments in mitochondrial genetic codes. J. Mol. Evol. 64(6), 662–88 (2007). https://doi.org/10.1007/s00239-006-0284-7

    Article  Google Scholar 

  76. Tlusty, T.: A colorful origin for the genetic code: information theory, statistical mechanics and the emergence of molecular codes. Phys. Life Rev. 7(3), 362–376 (2010)

    Article  Google Scholar 

  77. Wakeley, J.: The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol. Evol. 11(4), 158–162 (1996)

    Article  Google Scholar 

  78. Wnȩtrzak, M., Błażej, P., Mackiewicz, D., Mackiewicz, P.: The optimality of the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC Evol. Biol. 18, 192 (2018)

    Article  MATH  Google Scholar 

  79. Woese, C.R.: On the evolution of the genetic code. Proc. Natl. Acad. Sci. U.S.A. 54(6), 1546–1552 (1965)

    Article  Google Scholar 

  80. Wong, J.T.: A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. U.S.A. 72(5), 1909–12 (1975)

    Article  Google Scholar 

  81. Wong, J.T., Ng, S.K., Mat, W.K., Hu, T., Xue, H.: Coevolution theory of the genetic code at age forty: pathway to translation and synthetic life. Life (Basel) 6(1), E12 (2016)

    Google Scholar 

  82. Wong, J.T.F.: Coevolution theory of the genetic code: a proven theory. Orig. Life Evol. Biosph. 37(4–5), 403–408 (2007)

    Article  MathSciNet  Google Scholar 

  83. Xie, J.M., Schultz, P.G.: Innovation: a chemical toolkit for proteins - an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7(10), 775–782 (2006)

    Article  Google Scholar 

  84. Zahonova, K., Kostygov, A.Y., Sevcikova, T., Yurchenko, V., Elias, M.: An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26(17), 2364–9 (2016)

    Article  Google Scholar 

  85. Zhou, T., Weems, M., Wilke, C.O.: Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26(7), 1571–1580 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Mackiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aloqalaa, D.A., Kowalski, D.R., Błażej, P., Wnȩtrzak, M., Mackiewicz, D., Mackiewicz, P. (2020). The Properties of the Standard Genetic Code and Its Selected Alternatives in Terms of the Optimal Graph Partition. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics