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Abstract. Set constraints provide a highly general way to formulate
program analyses. However, solving arbitrary boolean combinations of
set constraints is NEXPTIME-hard. Moreover, while theoretical algo-
rithms to solve arbitrary set constraints exist, they are either too complex
to realistically implement or too slow to ever run.
We present a translation that converts a set constraint formula into an
SMT problem. Our technique allows for arbitrary boolean combinations
of set constraints, and leverages the performance of modern SMT solvers.
To show the usefulness of unrestricted set constraints, we use them to
devise a pattern match analysis for functional languages, which ensures
that missing cases of pattern matches are always unreachable. We im-
plement our analysis in the Elm compiler and show that our translation
is fast enough to be used in practical verification.

Keywords: Program analysis · SMT · pattern-matching · set constraints

1 Introduction

Set constraints are a powerful tool for expressing a large number of program
analyses in a generic way. Featuring recursive equations and inequations over
variables denoting sets of values, set constraints allow us to model the sets of
values an expression could possibly take. While they were an active area of
research in decades prior, they have not seen widespread adoption. In their most
general form, finding solutions for a conjunction of set constraints is NEXPTIME-
complete. While efficient solvers have been developed for restricted versions of
the set constraint problem [4, 26], solvers for unrestricted set constraints are not
used in practice.

However, since the development of set constraints, there have been significant
advances in solvers for SAT modulo theories (SMT). Although SMT requires
exponential time in theory, solvers such as Z3 [31] and CVC4 [8] are able to
solve a wide range of satisfiability problems in practice. Given the success of
SMT solvers in skirting the theoretical intractability of SAT, one wonders, can
these solvers be used to solve set constraints? We show that this is possible with
reasonable performance. Our full contributions are as follows:

⋆ This material is based on work supported by the NSERC CGS-D scholarship.
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• We devise a pattern match analysis for a strict functional language, ex-
pressed in terms of unrestricted set constraints (Sec. 2).

• We provide a method for translating unrestricted set constraint problems
into SAT modulo UF, a logical theory with booleans, uninterpreted func-
tions, and first order quantification (Sec. 3). Additionally, we show that
projections, a construct traditionally difficult to formulate with set con-
straints, are easily formulated using disjunctions in SMT (Sec. 3.1).

• We implement our translation and analysis, showing that they are usable
for verification despite NEXPTIME-completeness (Sec. 4).

Motivation: Pattern Match Analysis

Our primary interest in set constraints is using them to devise a functional pat-
tern match analysis. Many functional programming languages feature algebraic

datatypes, where values of a datatype D are formed by applying a constructor

function to some arguments. Values of an algebraic type can be decomposed
using pattern matching, where the programmer specifies a number of branches
with free variables, and the program takes the first branch that matches the
given value, binding the corresponding values to the free variables. If none of the
patterns match the value, a runtime error is raised.

Many modern languages, such as Elm [12] and Rust [25] require that pattern
matches be exhaustive, so that each pattern match has a branch for every possi-
ble value of the given type. This ensures that runtime errors are never raised due
to unmatched patterns, and avoids the null-pointer exceptions that plague many
procedural languages. However, the type systems of these languages cannot ex-
press all invariants. Consider the following pseudo-Haskell, with an algebraic
type for shapes, and a function that calculates their area.

data Shape =

Square Double

| Circle Double

| NGon [Double]

area :: Shape -> Double

area shape = case shape of

NGon sides -> ...

_ -> simpleArea shape

where simpleArea sshape = case sshape of

Square len -> len * len

Circle r -> pi * r * r

_ -> error "This cannot happen"

The above code is perfectly safe, since simpleArea can only be called from
area, and will never be given an NGon. However, it is not robust to changes. If
we add the constructor Triangle Double Double Double to our Shape definition,
then both matches are still exhaustive, since the _ pattern covers every possible
case. However, we now may face a runtime error if area is given a Triangle. In
general, requiring exhaustiveness forces the programmer to either manually raise
an error or return a dummy value in an unreachable branch.

We propose an alternate approach: remove the catch-all case of simpleArea,
and use a static analysis to determine that only values matching Circle or Square
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x ∈ ProgVariabe, X ∈ TypeVariable, D ∈ DataType, K ∈ DataConstructor

Terms

t ::= x | λx. t | match t with {
−−−−→
P ⇒ t;}

| t1 t2 | KD(
−→
t ) | let x = t1 in t2

Patterns

P ::= x | KD(
−→
P )

Underlying Types

τ ::= X | D | τ1 → τ2

Datatype environments

∆ ::= · | D =
−−−−→
K(

−→
T ),∆

Underlying Type Schemes

σ ::= ∀
−→
X. τ

Type Environments

Γ ::= · | X,Γ | x : T, Γ

Fig. 1. λMatch: syntax

will be passed in. Such analysis would mark the above code safe, but would signal
unsafety if Triangle were added to the definition of Shape.

The analysis for this particular case is intuitive, but can be complex in gen-
eral:

• Because functions may be recursive, we need to be able to handle recur-
sive equations (or inequations) of possible pattern sets. For example, a
program dealing with lists may generate a constraint of the form X ⊆
Nil ∪ Cons(⊤, Cons(⊤, X)).

• We wish to encode first-match semantics : if a program takes a certain
branch in the pattern match, then the matched value cannot possibly
match any of the previous cases.

• We wish to avoid false negatives by tracking what conditions must be
true for a branch to be taken, and to only enforce constraints from that
branch when it is reachable. If we use logical implication, we can express
constraints of the form “if xmatches pattern P1, then y must match pattern
P2”.

Sec. 2 gives such an analysis, while Sec. 3 describes solving these constraints.
Both are implemented and evaluated in Sec. 4.

2 A Set Constraint-based Pattern Match Analysis

Here, we describe an annotated type system for pattern match analysis. It tracks
the possible values that expressions may take. Instead of requiring that each
match be exhaustive, we restrict functions to reject inputs that may not be cov-
ered by a pattern match in the function’s body. Types are refined by constraints,
which are solved using an external solver (Sec. 3).

2.1 λMatch Syntax

We present λMatch, a small, typed functional language, whose syntax we give in

Fig. 1. Throughout, for a given metavariable M we write
−→
M

i

for a sequence of
objects matching M. We omit the positional index i when it is unneeded.
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Γ ⊢ t : τ (Expression typing)

Ctor

K(−→τ ) ∈ ∆(D)
−−−−−→
Γ ⊢ t : τ

Γ ⊢ KD(
−→
t ) : D

Lam
x : τ1, Γ ⊢ t : τ2

Γ ⊢ λx. t : τ1 → τ2
App

Γ ⊢ t1 : τ1 → τ2
Γ ⊢ t2 : τ1

Γ ⊢ t1 t2 : τ2

Var
Γ (x) = ∀

−→
X. τ

Γ ⊢ x :
−−−−→
[τ ′/X]τ

Mat
Γ ⊢ t : τ

−−−−−−−−→
Γ ⊢ P : τ |Γ ′

−−−−−−−→
Γ ′ ⊢ t′ : τ ′

Γ ⊢ match t with {
−−−−→
P ⇒ t′; } : τ ′

Let
x : τ1,

−→
X,Γ ⊢ t1 : τ1 x : ∀

−→
X. τ1, Γ ⊢ t2 : τ2

Γ ⊢ let x = t1 in t2 : τ2

Γ ⊢ P : τ |Γ ′ (Pattern typing and binding generation)

Var
Γ ⊢ x : τ |(x : τ ), Γ

Ctor
K(−→τ ) ∈ ∆(D)

−−−−−−−−→
Γ ⊢ P : τ |Γ ′

Γ ⊢ KD(
−→
P ) : D|

⋃−→
Γ ′

Fig. 2. Underlying Typing for Expressions and Patterns

In addition to functions and applications, we have a form KD(
−→
t ) which

applies the data constructor K to the argument sequence
−→
t to make a term of

type D. Conversely, the form match t′ with {
−−−−→
P ⇒ t;} chooses the first branch

Pi ⇒ ti; for which t′ matches pattern Pi, and then evaluates ti after binding the
matching parts of t′ to the variables of Pi. We use Haskell-style shadowing for
non-linear patterns: e.g. (x, x) matches any pair, and binds the second element
to x. We omit advanced matching features, such as guarded matches, since these
can be desugared into nested simple matches. We use type environments Γ store
free type variables and types for program variables. We assume a fixed datatype
environment ∆ that stores the names of each datatype D, along with the name
and argument-types of each constructor of D.

2.2 The Underlying Type System

The underlying type system is in the style of Damas and Milner [13], where
monomorphic types are separated from polymorphic type schemes. The declar-
ative typing rules for the underlying system are standard (Fig. 2). We do not
check the exhaustiveness of matches, as this overly-conservative check is pre-
cisely what we aim to replace. The analysis we present below operates on these
underlying typing derivations, so each expression has a known underlying type.
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V ∈ SetVariable

Set constraints

C ::= E1 ⊆ E2 | C1 ∧ C2 | C1 ∨ C2 | ¬C

Annotated Types

T ::= XE | DE | (T1 → T2)
E

Set expressions

E ::= V | E1 ∪E2 | E1 ∩ E2 | ¬E

| KD(
−→
E ) | K−i

D (E) | ⊤ | ⊥

Annotated Schemes

S ::= ∀
−→
X,

−→
V .C ⇒ T

Fig. 3. λMatch: annotations

2.3 Annotated Types

For our analysis, we annotate types with set expressions (Fig. 3). We define
their semantics formally in Sec. 3, but intuitively, they represent possible shapes
that the value of an expression might have in some context. We have variables,
along with intersection, union and negation, and ⊤ and ⊥ representing the sets
of all and no values respectively. The form KD(E1 . . . Ea) denotes applying the
arity-a constructor K of datatype D to each combination of values from the sets

denoted by
−→
E . Conversely, K−i

D (E) denotes the ith projection of K: it takes the
ith argument of each value constructed using K from the set denoted by E.

Set constraints then specify the inclusion relationships between those sets.
These are boolean combinations of atomic constraints of the form E1 ⊆ E2. Our
analysis uses these in annotated type schemes, to constrain which annotations a
polymorphic type accepts as instantiations. The idea is similar to Haskell’s type-
class constraints, and we adopt a similar notation. Since each syntactic variant
has a top-level annotation E, we use TE to denote an annotated type T along
with its top-level annotation E. Annotated types TE replace underlying types τ
in our rules, and our analysis emits constraints on E that dictate its value. We
note that boolean operations such as =⇒ and ⇐⇒ , can be decomposed into
∧, ∨, and ¬. Similarly, we use E1 = E2 as a shorthand for E1 ⊆ E2 ∧ E2 ⊆ E1,
and T and F as shorthands for ⊥ ⊆ ⊤ and ⊤ ⊆ ⊥ respectively.

2.4 The Analysis

We present our pattern match analysis in Fig. 4. The analysis is phrased as an
annotated type system in the style of Nielson and Nielson [32]. The judgment
Γ |Cp ⊢ t : TE | C says that, under context Γ , if Cp holds, then t has the
underlying type of T and can take only forms from E, where the constraint C
holds. Cp is an input to the judgment called the path constraint, which must
hold for this part of the program to have been reached. The set expression E

and constraint C are outputs of the judgment, synthesized by traversing the
expression. We need an external solver for set constraints to find a value for
each variable V that satisfies C. This is precisely what we define in Sec. 3. We
write the conversion between patterns and set-expressions as P [[P ]].

The analysis supports higher-order functions, and it is polyvariant : refined
types use polymorphism, so that precise analysis can be performed at each in-
stantiation site. A variant of Damas-Milner style inference with let-generalization
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Γ |Cp ⊢ t : TE | C (Pattern Match Analysis)

AVar

Γ (x) = ∀
−→
X,

−→
V .C ⇒ TE

−→
V ′ fresh

Γ |Cp ⊢ x :
−−−−→
[V ′/V ]

−−−−→
[τ ′/X](TE)

| (Cp =⇒
−−−−→
[V ′/V ]C)

AApp

Γ |Cp ⊢ t1 : (TE1

1 → TE2

2 )E3 | C1

Γ |Cp ⊢ t2 : T
E′

1

1 | C2

Γ |Cp ⊢ t1 t2 : TE2

2

|C1∧C2∧(Cp =⇒ TE1

1 ≡ T
E′

1

1 )

ACtor

K(
−→
T ) ∈ ∆(D)

−−−−−−−−−−−−→
Γ |Cp ⊢ t : TE | C

Γ |Cp ⊢ KD(
−→
t ) : DK(

−→
E ) |

∧−→
C

ALam

V fresh

x : T V
1 , Γ |Cp ⊢ t : TE

2 | C

Γ |Cp ⊢ λx. t : (T V
1 →TE

2 )⊤ |C

AMat

V fresh Γ |Cp ⊢ t : TE | Cdsc

−−−−−−−−−−−−−−−−−−→
Γ |Cp ⊢ Pi : T

E∩Pi(
−→
P )|Γi

i

−−−−−−−−−−−−−−−−−−−−−−−−→
Ci := (E ∩ P [[Pi]] ∩ Pi(

−→
P ) 6⊆ ⊥)

i −−−−−−−−−−−−−−−→
Γi|Ci ∧ Cp ⊢ t′i : T

′E′

i

i

Cres :=
∧−−−−−−−−−−−→

Ci =⇒ E′
i ⊆ V

i

Csaf := (Cp =⇒ (E ⊆
⋃−−−→

P [[Pi]]
i

))

Γ |Cp ⊢ match t with {
−−−−−→
Pi ⇒ t′i} : T ′V | Cdsc ∧ Cres ∧ Csaf

ALet

T ′V
′

1 := freshen(T1) x : T ′
1,
−→
X,Γ |Cp ⊢ t1 : TE

1 | C1
−→
V = (FV(E) ∪ FV(C1)) \ (FV(Γ ) ∪ FV(Cp)) T ′V

′

1 ≡ TE
1 ∧ C1 satisfiable

x : (∀
−→
X,

−→
V . (T ′V

′

1 ≡ TE
1 ∧ C1) ⇒ TE

1 ), Γ |Cp ⊢ t2 : TE2

2 | C2

Γ |Cp ⊢ let x = t1 in t2 : TE2

2 | C2

Γ ⊢ P : TE|Γ ′ (Analysis pattern environments. P, TE are input, Γ ′ is output)

Var
Γ ⊢ x : TE|(x : TE), Γ

Ctor

K(T1, . . . , Tn) ∈ ∆(D)
−−−−−−−−−−−−−−−→
Γ ⊢ P : TK−i(E) : Γ ′

1

i

Γ ⊢ KD(
−→
P ) : DE |

⋃−→
Γ ′

i

Fig. 4. Pattern Match Analysis

is used to generate these refined types. Moreover, the analysis is push-button: no
additional input need be provided by the programmer. It is sound but conserva-
tive: it accounts for all possible values an expression may take, but may declare
some matches unsafe when they will not actually crash. The lack of polymor-
phic recursion is a source of imprecision, but a necessary one for preserving
termination without requiring annotations from the programmer.

We generate two sorts of constraints. First, we constrain what values ex-
pressions could possibly take. For example, if we apply a constructor KD(

−→
t ),

and we know the possible forms
−→
E for

−→
t , then in any context, this expressions
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T1 ≡ T2 := C (Type equating)

(T1 → T ′
1)

E1 ≡ (T2 → T ′
2)

E2 := (T1 ≡ T2) ∧ (T ′
1 ≡ T ′

2) ∧E1 = E2

XE1 ≡ XE2 := E1 = E2 DE1 ≡ DE2 := E1 = E2 T1 ≡ T2 := F otherwise

freshen(T ) := T (Annotation freshening where V fresh)

freshen(XE) := XV
freshen(DE) := DV

freshen((T1 → T2)
E) := (freshen(T1) → freshen(T2))

V

P [[x]] := E (Set expression matched by pattern )

P [[x]] := ⊤ P [[K(
−→
P )]] := K(

−−−→
P [[P ]])

Pi(
−→
P ) := C (Not-yet covered pattern at branch i)

P0(P0 . . . Pn) = ⊤ Pi(P0 . . . Pn) = ¬P [[P0]] ∩ . . .¬P [[Pi−1]] when 0 < i ≤ n

Fig. 5. Auxiliary Metafunctions

can only ever evaluate to values in the set K(
−→
E ). Second, we generate safety

constraints, which must hold to ensure that the program encounters no runtime
errors. Specifically, we generate a constraint that when we match on a term t,
all of its possible values are covered by the left-hand side of one of the branches.

Variables: Our analysis rule AVar for variables looks up a scheme from Γ .
However, typing schemes now quantify over type and set variables, and carry a
constraint along with the type. We then take instantiation of type variables as
given, since we know the underlying type of each expression. Each set variable
is instantiated with a fresh variable. We then give x the type from the scheme,
with the constraint that the instantiated version of the scheme’s constraint must
hold if this piece of code is reachable (i.e. if the path condition is satisfiable).

Functions and Applications: The analysis rule ALam for functions is
straightforward. We generate a fresh set variable with which to annotate the
argument type in the environment, and check the body in this extended envi-
ronment. Since functions are not algebraic datatypes and cannot be matched
upon, we emit ⊤ as a trivial set of possible forms for the function itself.

We know nothing about the forms that the parameter-type annotation V

may take, since it depends entirely on what concrete argument is given when
the function is applied. However, when checking the body, we may encounter a
pattern match that constraints what values V may take without risking runtime
failure. So our analysis may emit safety constraints involving V , but it will not
constrain it otherwise. Generally, (TE1

1 → TE2

2 ) means that the function can
safely accept any expression matching E1, and may return values matching E2.

Applications are analyzed using AApp. Annotations and constraints for the
function and argument are both generated, and we emit a constraint equating the
argument’s annotated type with its domain, under the assumption that the path
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condition holds and this function call is actually reachable. The metafunction

TE1

1 ≡ T
E′

1

1 (defined in Fig. 5) traverses the structure of the argument and
function domain type, constraining that parallel annotations are equal. This
traversal is possible because the underlying type system guarantees that the
function domain and argument have identical underlying types.

Constructors: As we mentioned above, applying a constructor to argu-
ments can only produce a value that is that constructor wrapped around its
argument’s values. The rule ACtor for a constructor K infers annotations and
constraints for each argument, then emits those constraints and applies K to
those annotations.

Pattern matching: It is not surprising that in a pattern match analysis, the
interesting details are found in the case for pattern matching. The rule AMat

begins by inferring the constraint Cdsc and annotation E for the discriminee t.

For each branch, we perform two tasks. First, for each branch’s pattern Pi,
we use an auxiliary judgment to generate the environment Γi binding the pat-
tern variables to the correct types and annotations, using projection to access
the relevant parts. For P1, the annotation of the whole pattern is E i.e. the
annotation for t. However, the first-match semantics mean that if we reach Pi,
then the discriminee does not match any of P1 . . . Pi−1. So for each Pi, we extend
the environment with annotations obtained by intersecting E with the negation

of all previous patterns, denoted P i(
−→
P ) (Fig. 5).

Having obtained the extended environment for each branch, we perform our
second task: we check each right-hand-side in the new environment, obtaining an
annotation E′

i. When checking the results, we augment the path constraint with
Ci, asserting that some possible input matches this branch’s pattern, obtained
via P [[]] (Fig. 5), but none of the previous. This ensures that safety constraints
for the branch are only enforced when the branch can actually be taken.

To determine the annotation for the entire expression, we could naively take
the union of the annotations for each branch. However, we can be more precise
than this. We generate a fresh variable V for the return annotation, and constrain
that it contains the result E′

i of each branch, provided that it Ci holds, and it is
possible we actually took that branch. This uses implication, justifying the need
for a solver that supports negation and disjunction.

Finally, we emit a safety constraint Csaf , saying that if it is possible to reach
this part of the program (that is, if Cp holds), then the inputs to the match must
be contained within the values actually matched.

Let-expressions: Our ALet rule deals with the generalization of types into
type schemes. This rule essentially performs Damas-Milner style inference, but
for the annotations, rather than the types. When defining x = t1, we check t1
in a context extended with its type variables, and a monomorphic version of its
own type. The metafunction freshen takes the underlying type for t1 and adds
fresh annotation variables across the entire type. This allows for monomorphic
recursion. The metafunction ≡ constrains the freshly generated variables on T ′

to be equal to the corresponding annotations on T1 obtained when checking t1.
Again this traversal is possible because the underlying types must be identical.
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Once we have a constraint for the definition, we check that its constraint is in
fact satisfiable, ensuring that none of the safety constraints are violated. In our
implementation, this is where the call to the external solver is made.

To generate a type scheme for our definition, we generalize over all variables
free in the inferred annotation or constraint but not free in Γ or Cp. Finally, we
check the body of the let-expression in a context extended with the new vari-
able and type scheme. Because let-expressions are where constraints are actually
checked, we assume that all top-level definitions of a program are wrapped in
let-declarations, and are typed with environment · and path constraint T.

Example - Safety Constraints: To illustrate our analysis, we return to
the Ngon code from Sec. 1. We assume that all Double terms are given annotation
⊤. Then, the simpleArea function would be given the annotated type scheme
∀V1, V2. C1 ∧ C2 ∧ C3 ⇒ NgonV1 → DoubleV2 , where

C1 := V1 ⊆ Square(⊤) ∪ Circle(⊤) C2 := (V1 ∩ Square(⊤) 6⊆ ⊥) =⇒ ⊤ ⊆ V2

C3 := ((V1 ∩ Circle(⊤) ∩ ¬Square(⊤)) 6⊆ ⊥) =⇒ ⊤ ⊆ V2

C1 is the Csaf generated by the AMat rule, saying that the function can safely
accept input from Square(⊤) ∪ Circle(⊤). C2 and C3 are conjuncts of Cres, de-
scribing how, if the input overlaps with Square then the output can be anything,
and that if the input overlaps with Circle but not Square, then the output can
be anything. C2 and C3 are trivially satisfiable: Circle(⊤) ∩ ¬Square(⊤) is
Circle(⊤), so they are essentially saying that V2 must be ⊤.

When we call simpleArea from area, we are in the branch after the Ngon

case has been checked. The scheme for simpleArea is instantiated with the path
constraint V4 ⊆ ⊤ ∩ ¬(Ngon(⊤)), where V4 is the annotation for shape, because
it is called after we have a failed match with Ngon sides.

Suppose we instantiate V1, V2 with fresh V ′
1 , V

′
2 . The call to simpleArea creates

a constraint that V4 = V ′
1 . Taking this equality into account, the safety constraint

is instantiated to V4 ⊆ ⊤ ∩ ¬(Ngon(⊤)) =⇒ V4 ⊆ (Square(⊤) ∪ Circle(⊤)).
This is satisfiable for any value of shape, so at every call to area the analysis sees
that the safety constraint is satisfied. If we add a Triangle constructor, then the
constraint is unsatisfiable any time V4 is instantiated to a set with Triangle.

Example - Precision on results of matching: To illustrate the precision
of our analysis for the results of pattern matching, we turn to a specialized
version of the classic map function:

intMap : (Int -> Int) -> List Int -> List Int ->

intMap f l = case l of

Nil -> Nil

Cons h t -> Cons (f h) (intMap f t)

Suppose we have concrete arguments f : (IntV11 → IntV12)V1 and l :
(ListInt)V2 . The safety constraint for the match is that V2 ⊆ Nil∪Cons(⊤,⊤),
which is always satisfiable since the match is exhaustive. The result of the case
expression is given a fresh variable annotation V3. From the first branch, we have
the constraint that V2 ∩ Nil 6⊆ ⊥ =⇒ Nil ⊆ V3.
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The analysis is more interesting for the second branch. The bound pat-
tern variables h and t are given annotations Cons−1(V2) and Cons−2(V2) re-
spectively, since they are the first and second arguments to Cons. Because our
recursion is monomorphic, the recursive call intMap f t generates the trivial
constraint (V2 ∩ ¬Nil ∩ Cons(⊤,⊤)) 6⊆ ⊥ =⇒ V1 ⊆ V1, and the more interest-
ing constraint (V2 ∩ ¬Nil ∩ Cons(⊤,⊤)) 6⊆ ⊥ =⇒ Cons−2(V2) ⊆ V2. This sec-
ond constraint may seem odd, but it essentially means that without polymor-
phic recursion, our program’s pattern matches must account for any length of
list. This is where having set constraints is extremely useful: if we were to use
some sort of symbolic execution to try to determine a single logical value that
l could take, then treating the recursive call monomorphically would create an
impossible equation. But the set Cons(a, Nil), Cons(a, Cons(b, Nil)), . . . satisfies
our set constraints, albeit in an imprecise way.

When checking the body, suppose that V5 is the fresh variable ascribed to the
return type of intMap. For the result of the second branch, we have the constraints
V2 ∩¬Nil∩ Cons(⊤,⊤) 6⊆ ⊥ =⇒ Cons(V12, V5) ⊆ V3. This essentially says that
if the input to the function can be Cons, then so can the output, but if the input
is always Nil, then this branch contributes nothing to the overall result. Finally,
we have a constraint V5 = V3, generated by the metafunction ≡.

Our result annotation V3 is constrained by (V2 ∩ Nil 6⊆ ⊥ =⇒ Nil ⊆ V3)
∧ (V2 ∩¬Nil∩Cons(⊤,⊤) 6⊆ ⊥ =⇒ Cons(V12, V3) ⊆ V3), capturing how intMap

returns nil empty result for nil input, and non-nil results for non-nil input.

3 Translating Set Constraints to SMT

While the above analysis provides a fine-grained way to determine which pattern
matches may not be safe, it depends on the existence of an external solver to
check the satisfiability of the resulting set constraints. We provide a simple,
performant solver by translating set constraints into an SMT formula.

3.1 A Primer in Set Constraints

We begin by making precise the definition of the set constraint problem. Consider
a set of (possibly 0-ary) functions F = {fa1

1 , . . . , fan
n }, where each a ≥ 0 is the

arity of the function fa
i . The Herbrand Universe HF is defined inductively: each

f0
i ∈ F is in HF , and if a > 0 and h1, . . . , ha are in HF , then fa

i (h1, . . . , ha)
is in HF . (We write HF as H when the set F is clear.) Each fa

i is injective,
but is otherwise uninterpreted, behaving like a constructor in a strict functional
language. We assume all terms are finite, although similar analyses can account
for laziness and infinite data [28].

This allows us to formalize the semantics of set expressions. The syntax is

the same as inFig. 3, although we use the notation fa
i (
−→
E ) instead of KD(

−→
E )

to denote that we are using arbitrary function symbols from some Herbrand
universe H, instead of specific constructors for a datatype. Given a substitution
σ : V → P(H), we can assign a meaning H[[E]]σ ⊆ H for an expression E by
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H[[⊥]]
σ
= ∅

H[[⊤]]
σ
= H

H[[V ]]σ = σ(V )

H[[¬E1]]σ = H \ H[[E1]]σ

H[[E1 ∩E2]]σ = H[[E1]]σ ∩H[[E2]]σ

H[[E1 ∪E2]]σ = H[[E1]]σ ∪H[[E2]]σ

H[[fa
i (E1, . . . , Ea)]]σ = {fa

i (h1, . . . , ha)

| h1 ∈ H[[E1]]σ, . . . , ha ∈ H[[Ea]]σ}

Fig. 6. Semantics of Set Expressions

mapping variables to their substitutions, and applying the corresponding set op-
erations. The full semantics are given in Fig. 6. Note that the expressions on the
left are to be interpreted as syntax, whereas those on the right are mathematical
sets.

A set constraint atom A is a constraint of the form E1 ⊆ E2. These are also
referred to as positive set constraints in previous work. A set constraint literal

L is either an atom or its negation ¬(E1 ⊆ E2), which we write as E1 6⊆ E2.
Constraints which contain negative literals are called negative set constraints.

An unrestricted set constraint, denoted by metavariable C, is a boolean combi-
nation (i.e. using ∧, ∨ and ¬) of set constraint atoms, as we defined in Fig. 3.
For example, (X ⊆ Y =⇒ Y ⊆ X)∧ (Y 6⊆ Z) is an unrestricted set constraint.

Given a set constraint C, the satisfiability problem is to determine whether
there exists a substitution σ : V → P(H) such that, if each atom E1 ⊆ E2 in C

is replaced by the truth value of H[[E1]]σ ⊆ H[[E2]]σ, then the resulting boolean
expression is true. Since solving for arbitrary boolean combinations of set con-
straints is difficult, we focus on a more restricted version of the problem. The

conjunctive set constraint problem for a sequence of literals
−→
L is to find a vari-

able assignment that causes
∧−→

L to be true. We explain how to extend our
approach to arbitrary boolean combinations in Sec. 3.7.

One can see that the Herbrand universe H closely matches the set of terms
that can be formed from a collection of algebraic datatypes, and that allowing
negative constraints and arbitrary boolean expressions satisfies the desiderata
for our pattern match analysis.

3.2 Projection

Many analyses (including ours) on a notion of projection. For a set expression E,
we denote the jth projection of E for function fa

i by f
−j
i (E). For a substitution

σ, we have H[[f−j
i (E)]]σ = {hj | f

a
i (h1, . . . , hj , . . . ha) ∈ E}.

While we don’t explicitly include projections in our grammar for set expres-
sions, we can easily express them using boolean formulae. Given some constraint
C[f−j

i (E)], we can replace this with:
C[Xj ] ∧ (E ∩ fa

i (⊤, . . . ,⊤)) = fa
i (X1, . . . , Xj, . . . Xa) ∧ (E = ⊥ ⇐⇒ Xj = ⊥)

where each Xk is a fresh variable. The first condition specifies that our variable

holds the jth component of every f(
−→
h ) in E. The second condition is neces-
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sary because fa
i (X1, . . . , Xj, . . . Xa) = ⊥ if any Xk is empty, so any value of Xj

vacuously satisfies E′ = fa
i (X1, . . . , Xj , . . .Xa) if E

′ and some Xi are empty.

3.3 Set Constraints and Monadic Logic

The first step in our translation is converting a conjunction of set constraint
literals into a formula in first-order monadic logic, for which satisfiability is de-
cidable. We then translate this into a search for a solution to an SMT problem
over UF, the theory of booleans, uninterpreted functions and first-order quan-
tification. We gradually build up our translation, first translating set constraints
into monadic logic, then translating monadic logic into SMT, then adding opti-
mizations for efficiency. The complete translation is given in Sec. 3.6.

Monadic first order logic, sometimes referred to as the monadic class, con-
sists of formulae containing only unary predicates, boolean connectives, and

constants. Bachmair et al. [7] found a translation from a conjunction
∧−→

L of
positive set constraint atoms to an equisatisfiable monadic formula, which was
later extended to negative set constraints with equality [11]. We summarize
their procedure here, with a full definition in Fig. 7. For each sub-expression

E of
∧−→

L , we create a predicate PE(x), denoting whether an element x is
contained in E. Along with this, the formula E [[E]] gives the statement that
must hold for PE to respect the semantics of set expressions. This is similar
to the Tsieten transformations used to efficiently convert arbitrary formulae
to a normal form [38]. Given PE(x) for each E, we can represent the con-
straint E1 ⊆ E2 as ∀x. (PE1

(x) =⇒ PE2
(x)). Similarly, E1 6⊆ E2 corresponds

to ∃x. (PE1
(x) ∧ ¬PE2

(x)). 1

The key utility of having a monadic formula is the finite model property [1,
29]:

Theorem 1. Let T be a theory in monadic first-order logic with N predicates.

Then, for any sentence S in T , there exists a model satisfying S if and only if

there exists a model satisfying S with a finite domain of size at most 2N .

The intuition behind this is that if there exists a model satisfying S, then then
we can combine objects that have identical truth values for each predicate. This
is enough to naively solve set constraints: we convert them into formulae monadic
logic, then search the space of all models of size up to 2N for one that satisfies
the monadic formulae. However, this is terribly inefficient, and disregards much
of the information we have from the set constraints.

Example - Translation: Consider C3 from the safety constraint example
in Sec. 2. We see that L[[((V1 ∩ Circle(⊤) ∩ ¬Square(⊤)) 6⊆ ⊥) =⇒ ⊤ ⊆ V2]]
is
(∃y. PV1∩Circle(⊤)∩¬Square(⊤)(y) ∧ ¬F) =⇒ (∀x.T =⇒ PV2

(x)). Applying the
E [[]] equivalences for ∩,∪ and ¬ with basic laws of predicate logic gives us:

1 The original translation transformed constants and functions into existential vari-
ables. We skip this, since SMT supports uninterpreted functions and constants.
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M ∈ M (Monadic formulae)

E [[E]] = M (Predicates for set expressions)

E [[⊤]] = ∀x.P⊤(x) | E [[⊥]] = ∀x.¬P⊥(x) | E [[X]] = T

E [[E1 ∩E2]] = ∀x. PE1∩E2
(x) ⇐⇒ (PE1

(x) ∧ PE2
(x))

E [[E1 ∪E2]] = ∀x. PE1∪E2
(x) ⇐⇒ (PE1

(x) ∨ PE2
(x))

E [[¬E1]] = ∀x. P¬E1
(x) ⇐⇒ ¬PE1

(x)

E [[fa
i (E1, . . . , Ea)]] = (∀x1 . . . xa. Pfa

i
(E1,...,Ea)(f

a
i (x1, . . . , xa)) ⇐⇒ PE1

(x1) ∧ . . . PEa(xa))

(
∧

ga
′

j
6=fa

i

∀x1 . . . xa′Pfa
i
(E1,...,Ea)(g

a′

j (x1, . . . , x
′
a)) ⇐⇒ F)

L[[L]] = M (Literal predicates)

L[[E1 ⊆ E2]] = ∀x.PE1
(x) =⇒ PE2

(x)

L[[E1 6⊆ E2]] = ∃y.PE1
(y) ∧ ¬PE2

(y)

L[[
∧−→

L ]] = M (Conjunction)

L[[
∧−→

L ]] = E [[E1]] ∧ . . . ∧ E [[En]] ∧
∧−−−→

L[[L]]

where E1 . . . En all subexpressions of
−→
L

Fig. 7. Translating Set Constraints to Monadic Logic

(∃y. PV1
(y) ∧ PCircle(⊤)(y) ∧ ¬PSquare(⊤)(y)) =⇒ ∀x. PV2

(x).
Finally, adding the E [[]] conditions for functions gives us:
(∀x. PCircle(⊤)(fCircle(x))) ∧ (∀x.¬PCircle(⊤)(fSquare(x)))
∧ (∀x. PSquare(⊤)(fSquare(x))) ∧ (∀x.¬PSquare(⊤)(fCircle(x)))
∧ ((∃y. PV1

(y) ∧ PCircle(⊤)(y) ∧ ¬PSquare(⊤)(y)) =⇒ ∀x. PV2
(x)).

C3 is satisfiable iff there is a model defining predicates PV1
, PV2

, PCircle(⊤) and
PSquare(⊤), and functions fCircle,fSquare in which the above formula is true.

3.4 Monadic Logic in SMT

To understand how to translate monadic logic into SMT, we first look at what
exactly a model for a monadic theory is. Suppose B = {T,F} is the set of
booleans, which we call bits, and say a bit is set if it is T. For our purposes,
a model consists of a set D, called the domain, along with interpretations IP :
D → B for each predicate P and fa

i : Da → D for each function, which define
the value of P (x) and f(x1, . . . , xa) for each x, x1, . . . , xa ∈ D. A naive search for
a satisfying model could guess M ≤ 2N , set D = {1 . . .M}, and iterate through
all possible truth assignments for each IP , and all possible mappings for each
fa
i , searching for one that satisfies the formulae in the theory.

However, we can greatly speed up this search if we instead impose structure
onD. Specifically, if we have predicates P1 . . . PN , we takeD ⊆ B

N : each element
of our domain is a boolean sequence with a bit for each sub-expression E. The
idea is that each element of B

N models a possible equivalence class of predicate
truth values. For b ∈ D, we want bi to be T when PEi

(b) holds. This means that
our maps IP are already fixed: IPEi

(b) = bi i.e. the ith bit of sequence b.
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P⊤(b) := T

PX(b) := bit for X in b

Pfa
i
(E1,...Ea)(b) := bit for fa

i (E1, . . . Ea) in b

P¬E1
(b) := ¬PE1

(b)

P⊥(b) := F

PE1∩E2
(b) := PE1

(b) ∧ PE2
(b)

PE1∪E2
(b) := PE1

(b) ∨ PE2
(b)

Fig. 8. Recursive Definition of Predicates for the SMT Translation

However, with this interpretation, B
N is too large to be our domain. Suppose

we have formulae Ei and Ej where Ej = ¬Ei. Then there are sequences in B
n

with both bits i and j set to T. To respect the consistency of our logic, we need
D to be a subset of B

N that eliminates such inconsistent elements.
Suppose that we have a function D : B

N → B, which determines whether

a bit-sequence is in the domain of a potential model. If L[[
∧−→

L ]] contains the
formula ∀x1 ∈ D . . . ∀xn ∈ D.Φ[x1 . . . xn], for some Φ, we can instead write:
∀b1 ∈ B

N . . . ∀bn ∈ B
N .D(b1) ∧ . . . ∧ D(bn) =⇒ Φ[b1 . . . bn].

That is, our domain can only contain values that respect the semantics of set

expressions. Similarly, if L[[
∧−→

L ]] contains ∃x. Φ[x], we can write ∃b ∈ B
N .D(b)∧

Φ[b]. Since all functions in a model are implicitly closed over the domain, we also

specify that ∀
−→
b ∈ (Bn)a.

−−→
D(b) =⇒ D(fa

i (
−→
b )). This ensures that our formulae

over boolean sequences are equivalent to the original formulae.

This is enough to express L[[
∧−→

L ]] as an SMT problem. We assert the ex-
istence of D : B

N → B along with fa
i : (BN )a → B

N for each function in our

Herbrand universe. We modify each formula in L[[
∧−→

L ]] to constrain a boolean
sequences variable bi ∈ B

n in place of each variable xi ∈ D as described above.
We add D qualifiers to existentially and universally quantified formulae, and re-
place each PEi

(xj) with the ith bit of bj. We add a constraint asserting that each
fa
i is closed over the values satisfying D. The SMT solver searches for values for
all existential variables, functions, and D that satisfy this formula.

3.5 Reducing the Search Space

While this translation corresponds nicely to the monadic translation, it has more
unknowns than are needed. Specifically, D will always reject boolean sequences
that violate the constraints of each E [[Ei]]. For example, the bit for PE1∩E2

in b

must always be exactly PE1
(b) ∧ PE2

(b). In fact, for each form except function
applications and set variables, the value of a bit for an expression can be re-
cursively determined by values of bits for its immediate subexpressions (Fig. 8).
This means that our boolean sequences need only contain slots for expressions
of the form X or fa

i (E1, . . . Ea), shrinking the problem’s search space.
What’s more, we now only need to include the constraints from E [[]] for ex-

pressions of the formX or fa
i (E1, . . . Ea), since the other constraints hold by defi-

nition given our definitions of each PE . Similarly, our constraints restrict the free-
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dom we have in choosing fa
i . Specifically, we know that Pfa

i
(E1,...,Ea)(f

a
i (b1, . . . , ba))

should hold if and only if PEi
(bi) holds for each i ≤ a. Similarly, we know that

Pfa
i
(E1,...,Ea)(g

a′

j (b1, . . . , ba′)) should always be F when f 6= g. So for each fa
i , it

suffices to find a mapping from inputs b1, . . . , ba to the value of PX(fa
i (b1, . . . , ba))

for each variable X . This reduces the number of unknowns in the SMT problem.

3.6 The Complete Translation

Given a conjunction of literals
∧−→

L , let X1, . . .Xk, Ek+1, . . . EN be the sequence

of variable and function-application sub-expressions of
−→
L . We define PE(b) for

each sub-expression E of
−→
L as in Fig. 8.

As unknowns, we have:
• a function D : B

N → B;

• for each negative literal Ei 6⊆ E′
i, an existential variable yi ∈ B

N ;

• for each function fa
i and each variableX ∈

−→
L , a function fa

iX : (BN )a → B,
which takes a sequences of N bits, and computes the value of the bit for
PX in the result.

We define the following known functions:
• fa

ifa
i (E1,...,Ea)

: (BN )a → B for each fa
i and each sub-expression of the form

fa
i (E1, . . . , Ea), where fa

ifa
i
(E1,...,Ea)

(b1, . . . , ba) = PE1
(b1) ∧ . . . ∧ PEa

(ba);

• fa

iga′

j (E1,...,Ea′)
: (BN )a → B returningF, for each fa

i and each sub-expression

of the form ga
′

j (E1, . . . , Ea′) where f 6= g;

• fa
iSMT : (BN )a → B

N for each fa
i , where f

a
iSMT (b1, . . . , ba) is the sequence:

fa
iX1

(b1, . . . , ba) . . . f
a
iXk

(b1, . . . , ba)f
a
iEk+1

(b1, . . . , ba) . . . f
a
iEN

(b1, . . . , ba)
We assert that the following hold:
• for each negative constraint Ei 6⊆ E′

i with corresponding existential vari-
able yi, that D(yi) ∧ PEi

(yi) ∧ ¬PE′

I
(yi) holds;

• ∀x ∈ B
N . (D(x) ∧ PEi

(x)) =⇒ PE′

i
(x) for each positive Ei ⊆ E′

i;

• ∀x1 . . . xa. (
∧

j=1...a D(xj)) =⇒ D(fa
iSMT (x1, . . . , xa)) for each function fa

i

A solution to these assertions exists iff the initial set constraint is satisfiable.

3.7 Arbitrary Boolean Combinations

Allowing arbitrary boolean combinations of set constraints enriches our pattern
match analysis and to allow us to use projections. To do this, for each atom Ei ⊆
E′

i in a constraint C, we introduce a boolean ℓi, which the SMT solver guesses.
We modify our translation so that L[[Ei ⊆ E′

i]] = ℓi =⇒ ∀x. (PEi
(x) =⇒

PE′

i
(x)) and L[[Ei 6⊆ E′

i]] = ¬ℓi =⇒ (∃y. PEi
(y) ∧ ¬PE′

i
(y)). So li is true iff

Ei ⊆ E′
i. Finally, we assert the formula that is C where each occurrence of

Ei ⊆ E′
i is replaced by ℓi and Ei 6⊆ E′

i is replaced by ¬ℓi. Thus, we force our
SMT solver to guess a literal assignment for each atomic set constraint, and
then determine if it can solve the conjunction of those literals. When ℓi is false,
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Table 1. Compilation Time (ms) of Exhaustiveness versus Pattern Match Analysis

Library EX-TN PMA-TN EX-FP PM-FP EX-TP PM-TP

elm-graph 50 168 45 178 44 173
elm-intdict 42 115 38 5121* 35 113
elm-interval 40 69 39 1217* 36 1261

then L[[Ei ⊆ E′
i]] will be vacuously true, with the opposite holding for negative

constraints.

4 Evaluation and Discussion

We implemented our translation [18] atop Z3 4.8.5 with mbqi and UFBV. On
an i7-3770 CPU 32GB RAM machine, we compared the running time of Elm’s
exhaustiveness check with an implementation of our analysis [17].

In order to make the analysis practical, we implemented several optimizations
on top of our analysis. Trivially satisfiable constraints were removed, and obvious
simplifications were applied to set expressions. When a match was exhaustive,
its safety constraint was omitted, and since non-safety constraints should be
satisfiable, calls to Z3 were only made for non-empty safety constraint lists. A
union-find algorithm was used to combine variables constrained to be equal, and
intermediate variables were merged. Since the constraint of an annotated scheme
is copied at each instantiation, these ensured that the size of type annotations
did not explode. For simplicity, annotated types were not carried across module
boundaries: imported functions were assumed to accept any input and always
have return annotation ⊤. Similarly, a conservative approximation was used in
place of the full projections when determining pattern variables’ annotations.

We ran our tests on the Elm graph[21], intdict[22], and interval[9] libraries.
Each of these initially contained safe partial matches, but were modified to re-
turn dummy values in unreachable code when Elm 0.19 was released. The results
of the evaluation are given in Table 1. Runs with the prefix EX used the ex-
haustiveness check of the original Elm compiler, while those marked PMA used
our pattern-match analysis. We tested the compilers on three variants of each
library, a true-negative (-TN) version in which all matches were exhaustive, a
false-positive (-FP) version in which a match was non-exhaustive but safe, and a
true-positive (-TP) version in which a required branch was missing and running
the program would result in an error. Cases marked with an asterisk (*) are
those which were rejected by the Elm compiler, but which our analysis marked
as safe. Notably, the elm-graph library relied on the invariant that a connected
component’s depth-first search forest has exactly one element, which was too
complex for our analysis to capture.

Our analysis is slower than exhaustiveness checking in each case. However, the
pattern match analysis requires less than one second in the majority of cases, and
in the worst case requires only six seconds. The slowdown was most prominent
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in the false-positive cases that our analysis marks as safe, where Z3 was not able
to quickly disprove the satisfiability of the constraints. Conversely, in the -TN

cases where Z3 was not called, our analysis cause very little slowdown. Partial
matches tend to occur rarely in code, so we feel this is acceptable performance
for a tool integrated into a compiler.

Future Work: While our translation of set constraints to SMT attempts
to minimize the search space, we have not investigated further optimizations
of the SMT problem. The SMT solver was given relatively small problems. Few
programs contain hundreds of constructors or pattern match cases. Nevertheless,
more can be done to reduce the time spent in the SMT solver for larger problems.
Solvers like CVC4 [8] are highly configurable with regards to their strategies for
solving quantification. Fine tuning the configuration could decrease the times
required to solve our problems without requiring a custom solver. Conversely, a
solver specialized to quantified boolean arithmetic could yield faster results.

Likewise, type information could be used to speed up analysis. While we have
modeled patterns using the entire Herbrand space, values of different data types
reside in disjoint universes. Accounting for this could help partition one problem
with many variables into several problems with few variables.

Related Work - Set Constraints: The modern formulation of set con-
straints was established by Heintze and Jaffar [23]. Several independent proofs
of decidability for systems with negative constraints were given, using a number-
theoretic reduction [2, 37], tree automata [20], and monadic logic [11]. Charatonik
and Podelski established the decidability of positive and negative constraints
with projection [34]. The first tool aimed at a general, practical solver for set
constraints was BANE [4], which used a system of rewrite rules to solve a re-
stricted form of set constraints [5]. Banshee improved BANE’s performance with
code generation and incremental analysis [26]. Neither of these implementations
allow for negative constraints or unrestricted projections. Several survey papers
give a more in-depth overview of set constraint history and research [3, 24, 33].

Related Work - Pattern Match Analysis: Several pattern match anal-
yses have been presented in previous work. Koot [27] presents a higher-order
pattern match analysis as a type-and-effect system, using a presentation similar
to ours. This work was extended by Koot and Hage [28], who present an analysis
based on higher-order polymorphism. This improves the precision of the analy-
sis, but suffers from the same problems as our regarding polymorphic recursion.
All of these efforts use restricted versions of set constraints, and do not allow for
unrestricted projection, negation, and boolean combinations of constraints.

Previous versions of type inference for pattern matching have utilized condi-

tional constraints [6, 35, 36], similar to our path constraints. Castagna et al. [10]
describe a similar system, albeit more focused on type-case than pattern match-
ing. Catch [30] uses a similar system of entailment, with a restricted constraint
language to ensure finiteness. These systems are similar in expressive power to
the constraints that we used in our final implementation, but our underlying
constraint logic is more powerful. There are restrictions on where unions and
intersections can appear in conditional constraints [6], and there is not full sup-
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port for projections or negative constraints. In particular, negative constraints
allow for analyses to specify that a function’s input set must not be empty, so
that the type error can point to the function definition rather than the call-site,
avoiding the “lazy” inference described by Pottier [36]. While these have not
been integrated into our implementation, our constraint logic makes it easy to
incorporate these and other future improvements.

Another related line of work is datasort refinements. [14–16, 19]. As with
our work, the goal of datasort refinements is to allow partial pattern matches
while eliminating runtime failures. This is achieved by introducing refinements of
each algebraic data type corresponding to its constructors, possibly with unions
or intersections. Datasort refinements are presented as a type system, not as a
standalone analysis, so their handling of polymorphism and recursive types is
more precise than ours. However, checking programs with refined types requires
at least some annotation from the programmer, where our analysis can check
programs without requiring additional programmer input.

Conclusion: Unrestricted set constraints previously were used only in the-
ory. With our translation, they can be solved in practice. SMT solvers are a key
tool in modern verification, and they can now be used to solve set constraints.
We have shown that even NEXPTIME-completeness is not a complete barrier to
the use of set constraints in practical verification.
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