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Abstract. We aim at demonstrating the influence of diversity in the ensemble of
CNNs on the detection of black-box adversarial instances and hardening the gen-
eration of white-box adversarial attacks. To this end, we propose an ensemble of
diverse specialized CNNs along with a simple voting mechanism. The diversity
in this ensemble creates a gap between the predictive confidences of adversaries
and those of clean samples, making adversaries detectable. We then analyze how
diversity in such an ensemble of specialists may mitigate the risk of the black-box
and white-box adversarial examples. Using MNIST and CIFAR-10, we empiri-
cally verify the ability of our ensemble to detect a large portion of well-known
black-box adversarial examples, which leads to a significant reduction in the risk
rate of adversaries, at the expense of a small increase in the risk rate of clean sam-
ples. Moreover, we show that the success rate of generating white-box attacks by
our ensemble is remarkably decreased compared to a vanilla CNN and an ensem-
ble of vanilla CNNs, highlighting the beneficial role of diversity in the ensemble
for developing more robust models.

1 Introduction

Convolutional Neural Networks (CNNs) are now a common tool in many computer
vision tasks with a great potential for deployement in real-world applications. Unfor-
tunately, CNNs are strongly vulnerable to minor and imperceptible adversarial mod-
ifications of input images a.k.a. adversarial examples or adversaries. In other words,
generalization performance of CNNs can be significantly dropped in the presence of
adversaries. While identifying such benign-looking adversaries from their appearance
is not always possible for human observers, distinguishing them from their predictive
confidences by CNNs is also challenging since these networks, as uncalibrated learning
models [1], misclassify them with high confidence. Therefore, the lack of robustness of
CNNs to adversaries can lead to significant issues in many security-sensitive real-world
applications such as self-driving cars [2].

To address this issue, one line of thought, known as adversarial training, aims at
enabling CNNs to correctly classify any type of adversarial examples by augmenting
a clean training set with a set of adversaries [3–7]. Another line of thought is to de-
vise detectors to discriminate adversaries from their clean counterparts by training the
detectors on a set of clean samples and their adversarials ones [4, 8–10]. However, the
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Fig. 1. A schematic explanation of ensemble of specialists for a 3-classes classification. On the
left, a generalist (h(.)) trained on all 3 classes. In the middle and on the right, two special-
ist binary-classifiers h1(.) and h2(.) are trained on different subsets of classes, i.e. respectively
(red,green) and (red, blue). A black-box attack, shown by a black star, which fools a general-
ist classifier (left), can be classified as different classes by the specialists, creating diversity in
their predictions. Moreover, generation of a white-box adversarial example by the specialists can
create two different fooling directions toward two unlike fooling classes. The fooling directions
(in term of derivatives) are shown by black arrows in zoomed-in figures. Such different fooling
directions by the specialists can harden the generation of high confidence white-box attacks (sec-
tion 3). Thus, by leveraging diversity in an ensemble of specialists, without the need of adversarial
training, we may mitigate the risk of adversarial examples.

performance of these approaches, by either increasing correct classification or detecting
adversaries, is highly dependent on accessing a holistic set containing various types of
adversarial examples. Not only generating such a large number of adversaries is com-
putationally expensive and impossible to be made exhaustively, but adversarial training
does not necessarily grant robustness to unknown or unseen adversaries [11, 12].

In this paper, we aim at detecting adversarial examples by predicting them with high
uncertainty (low confidence) through leveraging diversity in an ensemble of CNNs,
without requiring a form of adversarial training. To build a diverse ensemble, we pro-
pose forming a specialists ensemble, where each specialist is responsible for classifying
a different subset of classes. The specialists are defined so as to encourage divergent pre-
dictions in the presence of adversarial examples, while making consistent predictions
for clean samples (Fig. 1). We also devise a simple voting mechanism to merge the
specialists’ predictions to efficiently compute the final predictions. As a result of our
method, we are enforcing a gap between the predictive confidences of adversaries (i.e.,
low confidence predictions) and those of clean samples (i.e., high confidence predic-
tions). By setting a threshold on the prediction confidences, we can expect to properly
identify the adversaries. Interestingly, we provably show that the predictive confidence
of our method in the presence of disagreement (high entropy) in the ensemble is upper-
bounded by 0.5 + ε′, allowing us to have a global fixed threshold (i.e., τ = 0.5) without
requiring fine-tuning of the threshold. Moreover, we analyze our approach against the
black-box and white-box attacks to demonstrate how, without adversarial training and
only by diversity in the ensemble, one may design more robust CNN-based classifica-
tion systems. The contributions of our paper are as follows:

– We propose an ensemble of diverse specialists along with a simple and compu-
tationally efficient voting mechanism in order to predict the adversarial examples
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with low confidence while keeping the predictive confidence of the clean samples
high, without training on any adversarial examples.

– In the presence of high entropy (disagreement) in our ensemble, we show that the
maximum predictive confidence can be upper-bounded by 0.5 + ε′, allowing us to
use a fixed global detection threshold of τ = 0.5.

– We empirically exhibit that several types of black-box attacks can be effectively
detected with our proposal due to their low predictive confidence (i.e., ≤ 0.5).
Also, we show that attack-success rate for generating white-box adversarial exam-
ples using the ensemble of specialists is considerably lower than those of a single
generalist CNN and a ensemble of generalists (a.k.a pure ensemble).

2 Specialists Ensemble

Background For aK-classification problem, let us consider training set of {(xi,yi)}Ni=1

with xi ∈ X as an input sample along with its associated ground-truth class k, shown
by a one-hot binary vector yi ∈ [0, 1]K with a single 1 at its k-th element. A CNN,
denoted by hW : X → [0, 1]K , maps a given input to its conditional probabilities
over K classes. The classifier hW(·)4 is commonly trained through a cross-entropy loss
function minimization as follows:

min
W

1

N

N∑
i=1

L(h(xi),yi;W) = − 1

N

N∑
i=1

log hk∗(xi), (1)

where hk∗(xi) indicates the estimated probability of class k∗ corresponding to the true
class of given sample xi. At the inference time, the threshold-based approaches like
our approach define a threshold τ in order to reject the instances with lower predictive
confidence than τ as an extra class K + 1:

d(x|τ) =

{
argmaxk hk(x), if maxk hk(x) > τ

K + 1, otherwise
. (2)

2.1 Ensemble Construction

We define the expertise domain of the specialists (i.e. the subsets of classes) by sepa-
rating each class from its most likely fooled classes. We later show in Section 3 how
separation of each class from its high likely fooling classes can promote entropy in
the ensemble, which in turns leads to predicting adversaries with low confidence (high
uncertainty).

To separate the most fooling classes from each other, we opt to use the fooling
matrix of FGS adversarial examples C ∈ RK×K . This matrix reveals that the clean
samples from each true class have a high tendency to being fooled toward a limited
number of classes not uniformly toward all of them (Fig. 2.1(a)). The selection of FGS
adversaries is two-fold; their generation is computationally inexpensive, and they are
highly transferable to many other classifiers, meaning that different classifiers (e.g. with
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(a) CIFAR-10 FGS fooling matrix (b) The expertise domains of “Airplane” class

Fig. 2. (a) Fooling matrix of FGS adversaries for CIFAR-10, which is computed from 5000 ran-
domly selected FGS adversaries (500 per class). Each row shows the fooling rates (in percentage)
from a true class to other classes (rows and columns are true and fooling classes, respectively).
(b) An example of forming expertise domains for class “Airplane”: its high likely fooled classes
(in yellow zone) and less likely fooled classes (in red zone) are forming two expertise domains.

different structures) behave in similar manner in their presence, i.e. fooled to the same
classes [13–15].

Using each row of the fooling matrix (i.e. ci), we define two expertise domains for
i-th true class so as to split its high likely fooling classes from its less likely fooling
classes as follows (Fig. 2.1(b)):

– Subset of high likely fooling classes of i: Ui = ∪{j} if cij > µi, j ∈ {1, . . . ,K}
– Subset of less likely fooling classes of i: Ui+K = {1, . . . ,K} \ Ui,

where µi =
∑K
j=1 cij (average of fooling rates of i-th true class). Repeating the above

procedure for allK classes makes 2K subsets (expertise domains) for aK classification
problem. Note that the duplicated expertise domains can be removed so as to avoid
having multiple identical expertise domains (specialists).

Afterwards, for each expertise domain, one specialist is trained in order to form an
ensemble of specialist CNNs. A generalist (vanilla) CNN, which trained on the samples
belonging to all classes, is also added to this ensemble. The ensemble involving M ≤
2K + 1 members is represented by H = {h1, . . . , hM}, where hj(·) ∈ [0, 1]K is j-th
individual CNN mapping a given input to conditional probability over its expert classes,
i.e. the probability of the classes out of its expertise domain is fixed to zero.

2.2 Voting Mechanism

To compute the final prediction out of our ensemble for a given sample, we need to acti-
vate relevant specialists, then averaging their prediction along with that of the generalist
CNN. Note that we cannot simply use the generalist CNN to activate specialists since
in the presence of adversaries it can be fooled, then causing selection (activation) of
the wrong specialists. In Algorithm 1, we devise a simple and computationally efficient
voting mechanism to activate those relevant specialists, then averaging their predictions.

Let us first introduce the following elements for each class i:
4 For convenience,W is dropped from hW(·).
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Algorithm 1 Voting Mechanism
Input: EnsembleH = {h1, . . . , hM}, expertise domains U = {U1, . . . ,UM}, input x
Output: Final prediction h̄(x) ∈ [0, 1]K

1: vk(x)←
∑M
j=1 I

(
k = argmaxKi=1 h

j
i (x)

)
, k = 1, . . . ,K

2: k∗ ← argmaxKk=1 vk(x)
3: if vk∗(x) = dM

2
e

4: Hk∗ ← {hi ∈ H | k∗ ∈ Ui}
5: h̄(x)← 1

|Hk∗ |
∑
hi∈Hk∗

hi(x)
6: else
7: h̄(x)← 1

M

∑
hi∈H h

i(x)

8: return h̄(x)

– The actual number of votes for i-th class by the ensemble for a given sample
x: vi(x) =

∑M
j=1 I

(
i = argmax{1,...K} h

j(x)
)

, i.e. it shows the number of the
members that classify x to i-th class.

– The maximum possible number of votes for i-th class is dM2 e ≤ K + 1. Recall
that for each row, we split all K classes into two expertise domains, where class i
is included in one of them. Considering all K rows and the generalist, we end up
having at maximum K + 1 subsets that involve class i.

As described in Algorithm 1, for a given sample x, if there is a class with its actual
number of votes equal to its expected number of votes, i.e. vi(x) = dM2 e, then it means
all of the specialists, which are trained on i-th class, are simultaneously voting (classi-
fying) for it. We call such a class a winner class. Then, the specialists CNNs voting to
the winner class are activated to compute the final prediction (lines 3–5 of Algorithm 1),
producing a certain prediction (with high confidence). Note that in the presence of clean
samples, the relevant specialists in the ensemble are expected to do agree on the true
classes since they, as strong classifiers, have high generalization performance on their
expertise domains.

If no class obtains its maximum expected number of votes (i.e. @i, vi(x) = dM2 e ),
it means that the input x leads the specialists to disagree on a winner class. In this sit-
uation, when no agreement exists in the ensemble, all the members should be activated
to compute the final prediction (line 7 of Algorithm 1). Averaging of the predictions
by all the members leads to a final prediction with high entropy (i.e. low confidence).
Indeed, a given sample that creates a disagreement (entropy) in the ensemble is either a
hard-to-classify sample or an abnormal sample (e.g. adversarial examples).

Using the voting mechanism for this specialists ensemble, we can create a gap be-
tween the predictive confidences of clean samples (having high confidence) and those
of adversaries (having low confidence). Finally, using a threshold τ on these predictive
confidences, the unusual samples are identified and rejected. In the following, we argue
that our voting mechanism enables us to set a global fixed threshold τ = 0.5 to perform
identification of adversaries. This is unlike some threshold-based approaches [10, 16]
that need to tune different thresholds for various datasets and their types of adversaries.
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Corollary 1. In a disagreement situation, the proposed voting mechanism makes the
highest predictive confidence to be upper-bounded by 0.5 + ε′ with ε′ = 1

2M .

Proof. Consider a disagreement situation in the ensemble for a given x, where all
the members are averaged to create h̄(x) = 1

M

∑
hj∈H h

j(x). The highest predic-
tive confidence of h̄(x) belongs to the class that has the largest number of votes, i.e.
m = max[v1(x), . . . , vK(x)]. Let us represent these m members that are voting to this
class (k-th class) as Hk = {hj ∈ H | k ∈ Uj}. Since each individual CNNs in the en-
semble are basically uncalibrated learners (having very high confident prediction for a
class and near to zero for the remaining classes), the confidence probability of k-th class
of those excluded members from Hk (those that do not vote for k-th class) can be neg-
ligible. Thus, their prediction can be simplified as h̄k(x) = 1

M

∑
hj∈Hk

hjk(x) + ε
M ≈

1
M

∑
hj∈Hk

hjk(x) (the small term ε
M is discarded). Then, from the following inequality∑

hj∈Hk
hjk(x) ≤ m, we have 1

M

∑
hj∈Hk

hjk(x) ≤ m
M (I).

On the other hand, due to having no winner class, we know that m < dM2 e (or
m < M

2 + 1
2 ), such that by multiplying it by 1

M we obtain m
M < 1

2 + 1
2M (II).

Finally considering (I) and (II) together, it derives 1
M

∑
hj∈Hk

hjk(x) < 0.5 + 1
2M .

For the ensemble with a large size, e.g. likewise our ensemble, the term ε′ = 1
2M is

small. Therefore, it shows the class with the maximum probability (having the maxi-
mum votes) can be upper-bounded by 0.5 + ε′. � �

3 Analysis of Specialists ensemble

Here, we first explain how adversarial examples give rise to entropy in our ensemble,
leading to their low predictive confidence (with maximum confidence of 0.5 + ε′). As
well, we examine the role of diversity in our ensemble, which harden the generation of
white-box adversaries.

In a black-box attack, we assume that the attacker is not aware of our ensemble
of specialists, thus generates some adversaries from a pre-trained vanilla CNN g(·) to
mislead our underlying ensemble. Taking a pair of an input sample with its true label,
i.e. (x, k), an adversary x′ = x+δ fools the model g such that k = argmax g(x) while
k′ = argmax g(x′) with k′ 6= k, where k′ is one of those most-likely fooling classes for
class k (i.e. k′ ∈ Uk). Among the specialists that are expert on k, at least one of them
does not have k′ in their expertise domains since we intentionally separated k-th class
from its most-likely fooling classes when defining its expertise domains (Section 2.1).
Formally speaking, denote those expertise domains comprising class k as follows Uk =
{Uj | k ∈ Uj} where (I) Uj 6= Ui ∀Ui, Uj ∈ Uk and (II) k′ /∈ ∩ Uk. Therefore,
regarding the fact that (I) the expertise domains comprising k are different and (II)
their shared classes do not contain k′, it is not possible that all of their corresponding
specialists models are fooled simultaneously toward k′. In fact, these specialists may
vote (classify) differently, leading to a disagreement on the fooling class k′. So, due to
this disagreement in the ensemble with no winner class, all the ensemble’s members are
activated, resulting in prediction with high uncertainty (low confidence) according to
corollary 1. Generally speaking, if {∩ Uk} \ k is a small or an empty set, harmoniously
fooling the specialist models, which are expert on k, is harder.
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In a white-box attack, an attacker attempts to generate adversaries to confidently
fool the ensemble, meaning the adversaries should simultaneously activate all of the
specialists that comprise the fooling class in their expertise domain. Otherwise, if at
least one of these specialists is not fooled, then our voting mechanism results in adver-
saries with low confidence, which can then be automatically rejected using the threshold
(τ = 0.5). In the rest we bring some justifications on the hardness of generating high
confidence gradient-based attacks from the specialists ensemble.

Instead of dealing with the gradient of one network, i.e. ∂h(x)
∂x , the attacker should

deal with the gradient of the ensemble, i.e. ∂h̄(x)
∂x , where h̄(x) computed by line 5 or line

7 of Algorithm. 1. Formally, to generate a gradient-based adversary from the ensemble
for a given labeled clean input sample (x,y = k), the derivative of the ensemble’s loss,
i.e. L(h̄(x),y) = − log h̄k(x), w.r.t. x is as follows:

∂L(h̄(x),y)

∂x
=

∂L
∂h̄k(x)

∂h̄k(x)

∂x
= − 1

h̄k(x)︸ ︷︷ ︸
β

∂h̄k(x)

∂x
= β

1

|Hk|
∑
hi∈Hk

∂hik(x)

∂x
. (3)

Initially Hk indicates the set of activated specialists voting for class k (true label) plus
the generalist for the given input x. Since the expertise domains of the activated spe-
cialists are different (Uk = {Uj | k ∈ Uj}), most likely their derivative are diverse, i.e.
fooling toward different classes, which in turn creates perturbations in various fooling
directions (Fig 1). Adding such diverse perturbation to a clean sample may promote dis-
agreement in the ensemble, where no winner class can be agreed upon. In this situation,
when all of the members are activated, the generated adversarial sample is predicted
with a low confidence, thus can be identified. For the iterative attack algorithms, e.g.
I-FGS, the process of generating adversaries may continue using the derivative of all of
the members, adding even more diverse perturbations, which in turn makes reaching to
an agreement in the ensemble on a winner fooling class even more difficult.

4 Experimentation

Evaluation Setting: Using MNIST and CIFAR-10, we investigate the performance of
our method for reducing the risk rate of black-box attacks (Eq. 5) due to of their de-
tection, and reducing the success rate of creating white-box adversaries. Two distinct
CNN configurations are considered in our experimentation: for MNIST, a basic CNN
with three convolution layers of respectively 32, 32, and 64 filters of 5 × 5, and a final
fully connected (FC) layer with 10 output neurons. Each of these convolution layers is
followed by a ReLU and 3× 3 pooling filter with stride 2. For CIFAR-10, a VGG-style
CNN (details in [17]) is used. For both CNNs, we use SGD with a Nesterov momentum
of 0.9, L2 regularization with its hyper-parameter set to 10−4, and dropout (p = 0.5)
for the FC layers. For the evaluation purposes, we compare our ensemble of specialists
with a vanilla (naive) CNN, and a pure ensemble, which involves 5 vanilla CNNs being
different by random initialization of their parameters.

Evaluation Metrics: To evaluate a predictor h(·) that includes a rejection option,
we report a risk rate ED|τ on a clean test set D = {(xi,yi)}Ni=1 at a given threshold τ ,
which computes the ratio of the (clean) samples that are correctly classified but rejected
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due to their confidence less than τ and those that are misclassified but not rejected due
to a confidence value above τ :

ED|τ =
1

N

N∑
i=1

(
(I[d(xi|τ) 6= K + 1] × I[argmaxh(xi) 6= yi])

+ (I[d(xi|τ) = K + 1] × I[argmaxh(xi) = yi])

)
.

(4)

In addition, we report the risk rate EA|τ on each adversaries set, i.e.A = {(x′i,yi)}N
′

i=1

including pairs of an adversarial example x′i associated by its true label, to show the
percentage of misclassified adversaries that are not rejected due to their confidence
value above τ :

EA|τ =
1

N ′

N ′∑
i=1

(I[d(x′i|τ) 6= K + 1] × I[argmaxh(x′i) 6= yi]) . (5)

4.1 Empirical Results

Black-box attacks: To assess our method on different types of adversaries, we use var-
ious attack algorithms, namely FGS [5], TFGS [7], DeepFool (DF) [18], and CW [19].
To generate the black-box adversaries, we use another vanilla CNN, which is differ-
ent from all its counterparts involved in the pure ensemble– by using different random
initialization of its parameters. For FGS and T-FGS algorithms we generate 2000 adver-
saries with ε = 0.2 and ε = 0.03, respectively, for randomly selected clean test samples
from MNIST and CIFAR-10. For CW attack, due to the high computational burden re-
quired, we generated 200 adversaries with κ = 40, where larger κ ensures generation
of high confidence and highly transferable CW adversaries.

Fig. 3 presents risk rates (ED|τ ) of different methods on clean test samples of
MNIST (first row) and those of CIFAR-10 (second row), as well as their correspond-
ing adversaries EA|τ , as functions of threshold (τ ). As it can be seen from Fig. 3, by
increasing the threshold, more adversaries can be detected (decreasing EA) at the cost
of increasing ED, meaning an increase in the rejection of the clean samples that are
correctly classified.

To appropriately compare the methods, we find an optimum threshold that creates
small ED and EA collectively, i.e. argminτ ED|τ + EA|τ . Recall that, as corollary 1
states, in our ensemble of specialists, we can fix the threshold of our ensemble to
τ∗ = 0.5. In Table 1, we compare the risk rates of our ensemble with those of pure
ensemble and vanilla CNN at their corresponding optimum thresholds. For MNIST, our
ensemble outperforms naive CNN and pure ensemble as it detects a larger portion of
MNIST adversaries while its risk rate on the clean samples is only marginally increased.
Similarly, for CIFAR-10, our approach can detect a significant portion of adversaries at
τ∗ = 0.5, reducing the risk rates on adversaries. However, at this threshold, our ap-
proach has higher risk rate on the clean samples than that of two other methods.

White-box attacks: In the white-box setting, we assume that the attacker has full
access to a victim model. Using each method (i.e. naive CNN, pure ensemble, and
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(a) MNIST test data (b) MNIST FGS (c) MNIST TFGS

(d) CIFAR-10 test data (e) CIFAR-10 FGS (f) CIFAR-10 TFGS

Fig. 3. The risk rates on the clean test samples and their black-box adversaries as the function of
threshold (τ ) on the predictive confidence.

Task XXXXXXXXXMethods
Adversaries FGS TFGS CW DeepFool

EA / ED EA / ED EA / ED EA / ED

MNIST
Naive CNN 48.21 / 0.84 28.15 / 0.84 41.5 / 0.84 88.68 / 0.84
Pure Ensemble 24.02 / 1.1 18.35 / 1.1 28.5 / 1.1 72.73 / 1.1
Specialists Ensemble 18.58 / 0.73 18.05 / 0.73 24 / 0.73 54.24 / 0.73

CIFAR-10
Naive CNN 59.37 / 12.11 23.47 / 12.11 51.5 / 12.11 28.81 / 12.11
Pure Ensemble 36.59 / 18.5 8.37 / 13.79 4.0 / 13.79 7.7 / 18.5
Specialists Ensemble 25.66 / 21.25 4.21 / 21.25 3.5 / 21.25 6.02 / 21.25

Table 1. The risk rate of the clean test set (ED|τ∗) along with that of black-box adversarial
examples sets (EA|τ∗) are shown in percentage at the optimum threshold of each method. The
methods with the lowest collective risk rate (i.e. EA + ED) is underlined, while the best results
for the two types of risk considered independently are in bold.

specialists ensemble) as a victim model, we generate different sets of adversaries (i.e.
FGS, Iterative FGS (I-FGS), and T-FGS). A successful adversarial attack x′ is achieved
once the underlying model misclassifies it with a confidence higher than its optimum
threshold τ∗. When the confidence for an adversarial example is lower than τ∗, it can
be easily detected (rejected), thus it is not considered as a successful attack.

We evaluate the methods by their white-box attacks success rates, indicating the
number of successful adversaries that satisfies the aforementioned conditions (i.e. a
misclassification with a confidence higher than τ∗) during t iterations of the attack
algorithm. Table 2 exhibits the success rates of white-box adversaries (along with their
used hyper-parameters) generated by naive CNN (τ∗ = 0.9), pure ensemble (τ∗ =
0.9), and specialists ensemble (τ∗ = 0.5). For the benchmark datasets, the number of
iterations of FGS and T-FGS is 2 while that of iterative FGS is 10. As it can be seen
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MNIST CIFAR-10
XXXXXXXXXMethods

Adversaries FGS T-FGS I-FGS FGS T-FGS I-FGS
ε=0.2 ε=0.2 ε=2×10−2 ε=3×10−2 ε=3×10−2 ε=3×10−3

Naive CNN 89.94 66.16 66.84 86.16 81.38 93.93
Pure Ensemble 71.58 50.64 48.62 42.65 13.96 45.78
Specialists Ensemble 45.15 27.43 13.63 34.1 7.43 34.20

Table 2. Success rate of white-box adversarial examples (lower is better) generated by naive
CNN, pure ensemble (5 generalists), and specialists ensemble at their corresponding optimum
threshold. An successful white-box adversarial attack should fool the underlying model with a
confidence higher than its optimum τ∗.

in Table 2, the success rates of adversarial attacks using ensemble-based methods are
smaller than those of naive CNN since diversity in these ensembles hinders generation
of adversaries with high confidence.

Fig. 4. Gray-box CW adversaries that
confidently fool our specialists ensem-
ble. According to the definition of
adversarial example,however, some of
them are not actually adversaries due
to the significant visual perturbations.

Gray-box CW attack: In the gray-box set-
ting, it is often assumed that the attacker is aware
of the underlying defense mechanism (e.g. spe-
cialists ensemble in our case) but has no access
to its parameters and hyper-parameters. Follow-
ing [20], we evaluate our ensemble on CW adver-
saries generated by another specialists ensemble,
composed of 20 specialists and 1 generalist for
100 randomly selected MNIST samples. Evalua-
tion of our specialists ensemble on these targeted
gray-box adversaries (called ”gray-box CW”) re-
veals that our ensemble provides low confidence
predictions (i.e. lower than 0.5) for 74% of them
(thus able to reject them) while 26% have con-
fidence more than 0.5 (i.e. non-rejected adver-
saries). Looking closely at those non-rejected ad-
versaries in Fig. 4.1, it can be observed that some of them can even mislead a human
observer due to adding very visible perturbation, where the appearance of digits are
significantly distorted.

5 Related Works

To address the issue of robustness of deep neural networks, one can either enhance
classification accuracy of neural networks to adversaries, or devise detectors to identify
adversaries in order to reject to process them. The former class of approaches, known
as adversarial training, usually train a model on the training set, which is augmented
by adversarial examples. The main difference between many adversarial training ap-
proaches lies in the way that the adversaries are created. For example, some [3,5,7,21]
have trained the models with adversaries generated on-the-fly, while others conduct
adversarial training with a pre-generated set of adversaries, either produced from an
ensemble [22] or from a single model [18, 23]. With the aim detecting adversaries to
avoid making wrong decisions over the hostile samples, the second category of ap-
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proaches propose the detectors, which are usually trained by a training set of adver-
saries [4, 8–10, 24, 25].

Notwithstanding the achievement of some favorable results by both categories of
approaches, the main concern is that their performances on all types of adversaries are
extremely dependent on the capacity of generating an exhaustive set of adversaries,
which comprises different types of adversaries. While making such a complete set of
adversaries can be computationally expensive, it has been shown that adversely training
a model on a specific type of adversaries does not necessarily confer a CNN robustness
to other types of adversaries [11, 12].

Some ensemble-based approaches [26,27] were shown to be effective for mitigating
the risk of adversarial examples. Strauss et al. [26] demonstrated some ensembles of
CNNs that are created by bagging and different random initializations are less fooled
(misclassify adversaries), compared to a single model. Recently, Kariyappa et al. [27]
have proposed an ensemble of CNNs, where they explicitly force each pair of CNNs
to have dissimilar fooling directions, in order to promoting diversity in the presence
of adversaries. However, computing similarity between the fooling directions by each
pair of members for every given training sample is computationally expensive, results
in increasing training time.

6 Conclusion

In this paper, we propose an ensemble of specialists, where each of the specialist clas-
sifiers is trained on a different subset of classes. We also devise a simple voting mech-
anism to efficiently merge the predictions of the ensemble’s classifiers. Given the as-
sumption that CNNs are strong classifiers and by leveraging diversity in this ensemble,
a gap between predictive confidences of clean samples and those of black-box adver-
saries is created. Then, using a global fixed threshold, the adversaries predicted with
low confidence are rejected (detected). We empirically demonstrate that our ensemble
of specialists approach can detect a large portion of black-box adversaries as well as
makes the generation of white-box attacks harder. This illustrates the beneficial role of
diversity for the creation of ensembles in order to reduce the vulnerability to black-box
and white-box adversarial examples.
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