
Using Deep Reinforcement Learning Methods
for Autonomous Vessels in 2D Environments

Mohammad Etemad1, Nader Zare1, Mahtab Sarvmaili1, Amı́lcar Soares1,
Bruno Brandoli Machado1, and Stan Matwin12

1 Institute for Big Data Analytics, Dalhousie University, Halifax
2 Institute for Computer Science, Polish Academy of Sciences, Warsaw

Abstract. Unmanned Surface Vehicles technology (USVs) is an excit-
ing topic that essentially deploys an algorithm to safely and efficiently
performs a mission. Although reinforcement learning is a well-known ap-
proach to modeling such a task, instability and divergence may occur
when combining off-policy and function approximation. In this work,
we used deep reinforcement learning combining Q-learning with a neu-
ral representation to avoid instability. Our methodology uses deep q-
learning and combines it with a rolling wave planning approach on agile
methodology. Our method contains two critical parts in order to perform
missions in an unknown environment. The first is a path planner that is
responsible for generating a potential effective path to a destination with-
out considering the details of the root. The latter is a decision-making
module that is responsible for short-term decisions on avoiding obstacles
during the near future steps of USV exploitation within the context of
the value function. Simulations were performed using two algorithms:
a basic vanilla vessel navigator (VVN) as a baseline and an improved
one for the vessel navigator with a planner and local view (VNPLV).
Experimental results show that the proposed method enhanced the per-
formance of VVN by 55.31% on average for long-distance missions. Our
model successfully demonstrated obstacle avoidance by means of deep
reinforcement learning using planning adaptive paths in unknown envi-
ronments.

Keywords: Deep reinforcement learning · path planning · obstacle
avoidance · maritime autonomous surface vessels

1 Introduction

Ship collision avoidance and path planning is a fundamental research topic for
autonomous navigation. Several methods have been proposed in the literature to
this end. However, deep reinforcement learning strategies have empowered mod-
els for automatic maneuverability of vessels [4]. Autonomous vehicles have been
developed and improved in different areas, ranging from unmanned aerial (e.g.,
planes and drones) [8], to underwater (e.g., ships, remotely operated underwater
vehicles (ROVs), submarine gliders, and unmanned suface vessels (USVs)) [1].

ar
X

iv
:2

00
3.

10
24

9v
1

 [
cs

.L
G

]
 2

3
M

ar
 2

02
0

2 M. Etemad et al.

Path planning has the objective of generating a path between an initial lo-
cation and the desired destination with an optimal or near-optimal performance
under specific constraints. Avoiding obstacles in real or simulated environments
is an essential task for safely driving USVs towards a target without human
intervention [5]. For example, in marine application scenarios, it is of extreme
importance to avoid obstacles such as rocks, floaters, debris, and other ships [4].

In this paper, we develop a new method for path planning and obstacle
avoidance in marine environments by using deep reinforcement learning (DRL)
and local view strategy, namely Vessel Navigator with Planner and Local View
(VNPLV). Unlike previous method as proposed in [16], which has a single envi-
ronment with a fixed origin and destination points, we developed a methodology
that can surpass traditional global approaches in unknown environments with-
out any limitation of various origin and destination points. Basically, we improve
the performance of the model by feeding it with CNN features and reducing the
number of states using the RamerDouglasPeucker algorithm. Results show that
we can further enhance our model by using the idea of rolling wave planning
and that our method benefits from combining the path planner for longterm
planning and local view for short term decisions [9].

We summarize the contributions of our work as follows. Inspired by agile
methodology, we implemented the idea of rolling wave planning by using a deep
reinforcement learning model for short-term decision making and a planner for
longterm general planning. ii) We created 2D marine environments by extract-
ing information of geographical layers. iii) We developed a deep reinforcement
learning method for agents that simulates USV movements. Agents trained by
our method are able to autonomously plan their path and avoid obstacles in a
simulated 2D marine environment. iv) We performed extensive experiments by
means of simulations comparing our method and a baseline and propose a metric
named Rate of Arrival to Destination (RATD) to evaluate the performance of
our method.

The rest of this paper is organized as follows. Section 2 presents some related
works in the area of path planning, reinforcement learning, and deep reinforce-
ment learning. In Section 3, we provide definitions used across our work and
detail our four proposed methods. Section 4 demonestrates the performance of
our method in a simulated marine environment. Finally, Section 5 concludes the
work and also discusses future works.

2 Related works

In recent years USVs have attracted a great deal of attention from several mar-
itime companies and research groups all over the world. There exist several
approaches developed and applied for the USVs, which are mainly divided into
path planning, obstacle avoidance, and intelligent optimization methods. We
divide this section into three subsections to which our work is related.

Traditional path planning approaches. Several research methods on col-
lision avoidance have been developed for path planning based on A* and Artificial

Vessel Navigator with Planner and Local View (VNPLV) 3

Potential Field (APF). The algorithm A* is a global heuristic search strategy
that takes into account both the start position and the destination. However, the
algorithm is considered in the literature to be an inefficient search in a large grid
map. The works of [3] and [17] proposed hierarchical path planning strategies to
improve the efficiency of A*. In contrast to A* algorithm, APF employs repulsive
fields to model the environment with higher efficiency [10]. Such a strategy can
create a smoother path when it compares with A*.

Reinforcement learning. Some articles have employed reinforcement
learning (RL) for the collision avoidance and path planning task to improve the
autonomy of the obstacle avoidance system. Reinforcement learning is a classical
machine learning method, first proposed by Sutton in 1984, and widely explored
in the ’90s. It has been widely used in the artificial intelligence field. Although
the main algorithm used for path planning is Q-Learning [13], many methods
in the literature are hybrid of RL with other methods [11]. In general, the two
main drawbacks of RL approaches are the high cost of the learning process that
depends on the environment and the user condition, and the degrees of freedom
(DOF). Although the reinforcement learning algorithms have shown successful
performance in variety of domains, their applicability has been restricted to fully
observable low-dimensional state spaces domains.

Deep reinforcement learning. DRL is a novel topic which has been
emerged to address the challenges of using RL in complex, high dimensional
problems. In addition to the outstanding performance of Deep RL models in
other domains, they have attracted a lot of attention in ship collision avoid-
ance topic. The work of [4] proposed a deep reinforcement learning obstacle
avoidance approach with the deep Q-network architecture for unmanned marine
vessels in unknown environment. The authors presented a learning policy for
obstacle avoidance at a safe distance in unknown environments with 3-DOF.
They used the replay buffer and self-play trials to learn the control behaviors.
Recently, [13] presented a prototype of multiple autonomous vessels controlled
by deep q-learning. Their reward function and the training process were designed
with respect to the maneuverability of the vessel, including speed, and accelera-
tion. The incorporated navigation rules employed the conversion to navigational
limitation by polygons or lines.

It is also important to point out that there exist two kinds of analysis re-
garding the enviroment exploration: (i) the global view, and (ii) the local view.
Environment exploration is linked to the performance of the approaches, but
there is no strict definition related to the size of the local view. The most note-
worthy approach for local view strategy is based on line-of-sight (LOS), presented
by [14]. Moreover, utilizing a local view became a best practice in some strategic
game solvers such as [15].

In this paper we present a path planning method using deep q-learning with
unknown position of dynamically generated obstacles in the environment. Our
DRL-based method is focused on a local view strategy which reduces the number
of states. Our policy is obtained using four different iterations of evolving our
proposed work evaluated in simulation experiments detailed in Section 3.2.

4 M. Etemad et al.

3 A New DRL Method for Unmmaned Surface Vessels

In this section we go through the details of the proposed method. First, we define
the main concepts used to model our agent-environment approach (Section 3.1).
After that, we describe our proposed method for path planning and obstacle
avoidance in the maritime domain (Section 3.2).

3.1 Definitions

In this work, an agent is a vessel voyaging from an origin in the environment
with the objective of safely arriving at a desired destination in the environment.
The environment is a bounding box area that contains a body of water that
an agent can voyage through and variety of lands which the agent cannot travel
through. The environment has access to a layer of obstacles, such as vessels
moving in the environment. Our agent can take some actions from a set of
directions to move from its current location to its next location in a direction for
0.001 degrees, which is about 100 meters of distance traveled in the real world.

An origin point is the position of an agent at the first moment of the train-
ing or testing phases of our methods. This means that our agent is positioned
at the location of the origin point at the start of each experiment or training
episode. We can define an origin point, OP = (xs, ys), as a tuple where xs is the
latitude of the agent at the start of the experiment or training episode, and ys
is the longitude of the agent.

The destination point is the final geographical position that an agent
should arrive at. We define DP = (xd, yd) as a tuple where xd is the latitude of
the desired location that the agent aims to arrive at, and yd is the longitude of
that location.

We use eight discrete actions A = {N,S,E,W,NE,NW,SE, SW}, repre-
senting the directions North, South, East, West, Northeast, Northwest, South-
east, and Southwest, respectively.

In this work, we use five discrete outcomes for an action is taken by an
agent O = {hit an obstacle, hit land, arrive at target, vanish target, normal
movement}. To hit an obstacle means that the agent hits one of the vessels
moving in the environment. To hit land means the agent took a direction that
moved it to a geographic area that has land, which is not suitable for the vessel.
To arrive at target means that our agent successfully reached its destination
point. To vanish target means that the agent is farther from the target than
the distance threshold. Finally, a normal movement is an output where the
agent has not finished its mission, but there is no reason to stop the voyage.

Each action and its outcome for our agent in the environment is considered
as one step si = (ai, oi), where si ∈ S, ai ∈ A, oi ∈ O, and S is the set of all
possible steps. Therefore, each step moves our agent from a current state to a
future state.

An episode is a set of consecutive steps with a fixed origin and destination
point. In an episode, the agent voyages from the origin point with the objective
of arriving at its destination point.

Vessel Navigator with Planner and Local View (VNPLV) 5

An episode ej = (OPj , DPj , < s1, s2, ..., sn >) - where OPj is an origin
point, DPj is its destination point, < s1, s2, ..., sn > - is a sequence of steps, and
ej ∈ E, where E is the set of all possible episodes. The outcome of an episode
is the outcome of the last step of that episode, which is sn. When the outcome
of an episode is to hit an obstacle, go to land, vanish target, this is considered
to be a failed episode. If the outcome of an episode is arrive at target, this is
considered to be a successful episode. In this work, we define a maximum
number of steps for each episode because we want to encourage our agent to
arrive at its destination as fast as possible and to avoid repetitive actions. If
the number of steps in each episode exceeds this number, we call that episode a
failed episode as well.

A plan , which is defined as pk = (OPk, DPk, < e0, e1, ..., em >) where, OPk

is an origin point, DPk is its destination point, and < e1, e2, ..., em > is a set of
episodes. The destinations in each episode (e0, e1, ..., em) of a plan pk are called
intermediary goals, except for the last episode, which is the final destination
reached by a plan. If the outcome of a plan is not reached the destination, we
call that plan a failed plan. The arrive at target outcome means the agent has
(i) arrived at target and (ii) the agent is in its destination. If the outcome of a
plan is to reach the destination, we call that plan a successful plan.

We limit the knowledge our agent has about the environment so that the
agent is only able to observe within the boundary around itself. This approach
of creating a local view has been used in [15]; however, the local view of our work
is not a limitation for an agent. In this way, we force the agent to learn general
rules of movement, without memorizing the whole environment and the best
paths. Furthermore, some details in the environment, such as dynamic obstacles
that are far from an agent, can move to other locations by the time our agent
arrives there.

Having access to full information about the environment would encourages
our agent to memorize the environment. When an intermediary goal is outside
of our agent’s local view, a subset of our environment, we make an abstract

Fig. 1. Vanilla Vessel Navigator (VVN)

6 M. Etemad et al.

Fig. 2. Vessel Navigator with planner and localview (VNPLV)

line from the agent position to its intermediary goal and find the shadow of the
intermediary goal inside the local view with some margin of freedom.

3.2 Baseline and our proposed method

In Figures 1 and 2, we summarize the baseline method and our proposed one,
respectively. In these figures, xs and ys are the origin point coordinates, xd, yd are
destination point coordinates, ai is the action suggested by the method, Q(s, a) is
the action value function that predicts the reward given to an agent if it selects an
action a in state s, ReLU is a rectified linear unit, Linear is a linear activation
function, Flatten is a flattening process that involves transforming the entire
pooled feature map matrix into a single column, and Conv is a convolutional
neural network. We detail how these methods work below.

Vanilla Vessel Navigator (VVN).
This method was implemented based on the work of [16], but we addressed

the two limitations of their algorithm for a fair comparison with our method. The
first limitation is that the model’s destination is a static point, and as a result, the
model is able to learn only routes to a single destination. The second limitation
is that using the QLearning approach with a large and dynamic environment
makes it impossible for QLearning to train.

In our implementation of the VVN method, the agent receives its origin and
destination point with freedom inside the environment.

Figure 1 shows the architecture of this method where the origin point (xs
and ys), and destination point (xd and yd) are the only inputs that feed our
model. The output of this architecture, which is the argmax of the outputs of
our neural network, determines the action of our agent. Since the objective of
this paper is not to search for the best model for this architecture, we select one
model with reasonably good results on training using a trial-and-error approach.

In the original model presented by [16], by changing the destination point,
the agent would need to be trained again. Therefore agent trained by the original

Vessel Navigator with Planner and Local View (VNPLV) 7

method is not able to use its knowledge from previous training. Our modification
removed this limitation so that the origin and destination points can be selected
dynamically, and such retraining limitations are not necessary. Figure 1 shows
the reactions between the agent and the environment. The agent receives two
origin and destination points, OP and DP, from the environment and the reward
that the agent gained during its last action. The neural network model estimates
the next action of the agent by updating its parameters using the reward of the
previous action.

Vessel Navigator with Planner and Local View (VNPLV).

In the first step of our proposed method (Figure 2), we introduce a path
planner that makes a full plan from the start point to the destination without
considering any dynamic obstacle in its way using the Floyd Algorithm [6]. The
Floyd algorithm has the objective of finding the shortest paths in a weighted
graph. This algorithm is computationally expensive but we only run it once for
an environment and store the calculations results. This can be seen as high-level
planning without considering the details of a plan. In the second step, we re-
duce this high-level plan by removing similar intermediary goals applying the
RamerDouglasPeucker algorithm [7], in our work ε = 0.001 geomtry degree. The
RamerDouglasPeucker algorithm has the objective of simplifying a curve com-
posed of a line of segments to a similar curve with fewer points. This reduction
gives our agent more flexibility in making local decisions. In the third step, our
agent decides on the details of the plan in the near future to arrive at the shadow
of its intermediary goal residing in the local view. The shadow is a point in the
direction to intermediary goal inside a definde margin of the local view.in This
work we use a margin of 3 pixcels. Our agent observes its local view and finds
an abstract destination point, which is the shadow of the nearest intermediate
destination provided by the path planner. This first destination point is the des-
tination point of the first episode in this plan, which resides in the local view.
The agent starts moving towards its abstract destination point, which is residing
inside the local view. After achieving the intermediary goals (i.e., the destina-
tion point of that episode), the environment updates the destination point of the
next episode in its plan. The idea of using CNN is not a novel idea and has been
introduced in reinforcement learning by the work of [12]. Moreover, the idea of
using a local view also is introduced in [15]. To the best of our knowledge, we are
the first to use a combination of path planning and local view for implement-
ing the rolling wave planning approach for this problem. In Figure 2, our agent
benefits from two planning modules. First, the path planner provides a longterm
plan without considering any dynamic obstacles on the way to arriving at the
destination. Second, a DRL decision-making approach provides details for short-
term decisions actions in detail. This part is responsible for avoiding obstacles
and moving the agent safely in the near future.

8 M. Etemad et al.

4 Experiments

In this section we describe the dataset and evaluation metrics (Sec. 4.1), the
setup for our algorithm (Sec. 4.2) and the experiments performed (Sec. 4.3).

4.1 Dataset creation and evaluation metrics

We selected a region in the area of Halifax, Nova Scotia (Canada) with a
bounding box (longitude, latitude) starting from (−63.69, 44.58) and ending at
(−63.49, 44.73). We created a water and a land layer using public data on earth
elevation using the NOAA3 dataset.

Then we drew a buffer of 50 meters around the land and used it as the
environment. We also randomly added some moving objects to play the role
of obstacles in this simulated 2D environment. In this work, we dynamically
generated the obstacles during an episode. However, the design we have in mind
for the future is based on the assumption that these obstacles can be dynamic
and can move based on traffic patterns, such as can be extracted from Automatic
Identification System (AIS) messages.

We also defined a metric called RATD to measure the performance of a
method as follows. When we test a method, we randomly generate a set of
origin and destination points N . Such information is provided to the method
being tested as an episode or a plan.

Then we observe if the method can successfully place the agent at its destina-
tion (i.e., a successful episode or a successful plan) or not (i.e., a failed episode or
a failed plan). We count how many times a model successfully conducts the agent

to its destination and call it P . The RATD is calculated as RATD = |P |
|N | ∗ 100.

4.2 Training and testing setup

In our experiments, we use the reward function R(oi ∈ O) detailed in Equation
1, where ∆d is the distance in geometry degree that an agent moved from the last
state, ψ is set at 1,000, ∆od is the distance of our agent from its nearest obstacle
in geometry degree, and φ is set at 20. In Equation 1 we deducted κ from the
reward to encourage the agent to find the nearest path, and it was set at 0.01.
The values of ψ, φ, and κ were manually tuned using a trial and error approach
and the values reported are those that provided the optimal performance for all
methods.

R(x) =

−5, Vanish target, Obstacle collision, Land collision

+5, Arrive target

ψ ∗∆d − φ ∗∆od − κ, Other

(1)

3 https://coast.noaa.gov/dataviewer/

Vessel Navigator with Planner and Local View (VNPLV) 9

In this work, we use a target network to adjust the action-values (Q) iter-
atively towards the target values as in [12]. The application of target network
application is to reduce correlations with the target. In the work of [12], a re-
ply buffer is proposed to eliminate relationships in the observation chain and to
soften fluctuations in the data distribution, and we use the same idea here.

In our training phase, a training step includes 1,000 episodes or plans ran-
domly executed to update our neural network parameters. Each of these episodes
or plans includes an undefined number of training steps. We store i) the agent’s
state, ii) the agent’s next state iii) the reward, and iv) the action, in a reply
buffer with a size of 100,000 in the same way as introduced in [12].

We retrieve 3,000 items from this reply buffer after every 100 training steps.
Every 200 training steps, the parameters of our model are copied to our target
network. These values were configured empirically by trial and error tests.

In the training phase of our models we use the idea of exploit and explore
which means the action of our agent is based on two types of learning [2]. First,
exploring the environment randomly and measure the gained rewards. Second,
exploiting the learned knowleadge by using the parameters of the trained neural
network. In this work, we assigned the weight of 0.9 for the explore part and 0.1
weight for the exploit part. The weight of explore increases during the training
so that in traing step 25,000 of our training, the weight of exploit becomes 0.9
and the weight of explore becomes 0.1. After training step 25,000, these weights
are not changed.

4.3 Result analysis and discussion

An experiment was conducted to answer the two following research questions.
First, what is the rate of arriving at the destination if we randomly select some
sets of origin and destination points for episodes? Second, how does this rate
change by increasing the distance between the origin and destination points?
We increased the distance between the origin and destination points using the
following distances in degrees [0.01, 0.02, 0.04, 0.08, 0.16, 0.32], which is roughly
equal to [1364.59, 2729.11, 5457.90, 13004.68, 21824.01, 43627.70] in meters.

Figure 3 shows the results of our experiment for each training step.
Therefore, each point in Figure 3 represents the results of 100 tests while the

x-axis shows the progress on the number of training steps in a 102 scale. Between
each two points, we update the parameters of our models using 1,000 executions
of episodes or plans so that they update the parameters of our network. In this
experiment, we dynamically randomly add some vessels on the body of water to
play the role of obstacles.

The results for VVN (Figure 3(a)) show that by increasing the distance be-
tween the origin point and the destination point, the percentage of successful
trips decreases. In the experiment with a distance of 0.32 degree from origin
to destination, the mean of RATD decreased from 79.44% (using VNPLV) to
24.13% (using VVN). These results show a weakness of VVN, as it is only good
for near distance situations and cannot perform well in long-distance path plan-
ning. This is because (i) the search space of the agent increases when the distance

10 M. Etemad et al.

Fig. 3. Results of training of each model for different sets of distances between the
start point and destination.

Fig. 4. Comparing the two vessel navigation methods using RATD for six category of
distances after training models for 100,000 training steps

is longer, and (ii) the probability of selecting actions from a loop of actions can
increase so that the agent can just move back and forth without arriving at its
destination. In Figure 3(a) the shortest distance, shown by yellow, achieved the
highest RATD. As can be seen, by increasing the distance, the VVN performance
declined so that the mean of RATD was 24.13% for a 0.32 degree distance.

Figure 3(b) shows the result for the VNPLV.

The results shows that the performance of VNPLV is improved considerably,
55.31% on mean of RATD for a 0.32 degree distance, in comparison to VVN.
The proposed method is more stable and learns better to navigate our agent,
even with fewer episodes for training. This enhancement is because VNPLV is
equipped with two crucial modules to benefit from rolling wave planning. First,
the longterm planner provides a potential optimal path without considering the
details of the movement. Second, the local view makes the decisions related to
navigating the agent in the near future to avoid dynamic obstacles.

Figure 4 presents a high level comparison of all methods developed in this
work. Figure 4 shows boxplots of the RATD for the distances of 0.01, 0.02, 0.04,
0.08, 0.16, and 0.32 degrees. As can be seen, VNPLV has the best performance
values for all categories of distances. We used a T-test to compare the results of
VVN and VNLPV methods which supports that there is a statistically signifi-

Vessel Navigator with Planner and Local View (VNPLV) 11

cant difference between VVN and VNPLV p value=0.000019. The results show
that the mean of the RATD for these two methods are statistically different,
confirming that the performance of VNPLP is higher than the VVN for this
experimental setup.

5 Conclusions and Future Works

In this work, we proposed a method to improve the performance of the RL Vessel
Navigator model using the concept of rolling wave planning in agile methodology.

Our proposed method takes advantage of two planning approaches: 1) long-
term planning using a path planner with the assumption of no obstacles to
generate a potential efficient path, and 2) a short-term decision-maker that is
the output of our reinforcement learning model to avoid dynamically generated
obstacles and to navigate the agent in the near future.

Our experiments show that the use of a local view improves the performance
of our basic model. However, its performance reduces when the distance between
the origin point and destination increases. We address this weakness using a
path planner to provide a potentially efficient path for the whole trip without
the detail of movements. This is followed by a short-term decision-maker to
navigate agents safely.

Although we applied the idea of adaptive planning from the agile methodol-
ogy for autonomous navigation, it can be applied to any other domain to increase
the agent’s performance. We intend to expand our work in various ways. We want
to connect our dynamically generated obstacles to AIS messages received from
vessels and test our agent in an unknown environment with dynamic obstacles.
In this way, we would like to change the core neural network with sequence model
networks such as a combination of RNN and CNN to have a memory of the past
agent actions. We also would like to add similar agents to the environment and
define a global task to perform it simultaneously in the environment.

Acknowledgments The authors would like to thank NSERC (Natural Sci-
ences and Engineering Research Council of Canada) for financial support, and
Jennifer Strang, GIS Analyst at the Dalhousie University Libraries, for her help
in preparing the geographic data for analysis. Computations were performed on
the DeepSense computing platform. DeepSense is funded by ACOA, the Province
of Nova Scotia, The Centre for Ocean Ventures & Entrepreneurship (COVE),
Ocean Frontier Institute (OFI), IBM and Dalhousie University.

References

1. et al., R.B.W.: Autonomous underwater vehicles (auvs): Their past, present and
future contributions to the advancement of marine geoscience. Marine Geology
352, 451 – 468 (2014)

12 M. Etemad et al.

2. Brafman, R.I., Tennenholtz, M.: R-max-a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research
3(Oct), 213–231 (2002)

3. Cheng, L., Liu, C., Yan, B.: Improved hierarchical a-star algorithm for opti-
mal parking path planning of the large parking lot. In: 2014 IEEE International
Conference on Information and Automation (ICIA). pp. 695–698 (July 2014).
https://doi.org/10.1109/ICInfA.2014.6932742

4. Cheng, Y., Zhang, W.: Concise deep reinforcement learning obstacle avoidance for
underactuated unmanned marine vessels. Neurocomputing 272, 63 – 73 (2018)

5. Elkins, L.e.a.: The autonomous maritime navigation (amn) project: Field tests,
autonomous and cooperative behaviors, data fusion, sensors, and vehicles. Journal
of Field Robotics 27(6), 790–818 (2010). https://doi.org/10.1002/rob.20367

6. Floyd, R.W.: Algorithm 97: shortest path. Comm. of the ACM 5(6), 345 (1962)
7. Hershberger, J., Snoeyink, J.: An o (n log n) implementation of the douglas-peucker

algorithm for line simplification. In: Proceedings of the tenth annual symposium
on Computational geometry. pp. 383–384 (1994)

8. Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: Survey of unmanned
aerial vehicles (uavs) for traffic monitoring. Handbook of unmanned aerial vehicles
pp. 2643–2666 (2015)

9. Larman, C.: Agile and iterative development: a manager’s guide. Addison-Wesley
Professional (2004)

10. Lyu, H., Yin, Y.: Fast path planning for autonomous ships in restricted waters.
Applied Sciences 8(12), 2592 (2018)

11. Magalhães, J., Damas, B., Lobo, V.: Reinforcement learning: The application to
autonomous biomimetic underwater vehicles control. IOP Conference Series: Earth
and Environmental Science 172, 012019 (jun 2018). https://doi.org/10.1088/1755-
1315/172/1/012019

12. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

13. Shen, H., Hashimoto, H., Matsuda, A., Taniguchi, Y., Terada, D.,
Guo, C.: Automatic collision avoidance of multiple ships based on
deep q-learning. Applied Ocean Research 86, 268 – 288 (2019).
https://doi.org/https://doi.org/10.1016/j.apor.2019.02.020

14. Tran, N.H., Choi, H.S., Baek, S.H., Shin, H.Y.: Tracking control of an unmanned
surface vehicle. In: Zelinka, I., Duy, V.H., Cha, J. (eds.) AETA 2013: Recent Ad-
vances in Electrical Engineering and Related Sciences. pp. 575–584. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

15. Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature 575(7782), 350–354
(2019)

16. Wang, C., Zhang, X., Li, R., Dong, P.: Path planning of maritime autonomous sur-
face ships in unknown environment with reinforcement learning. In: International
Conference on Cognitive Systems and Signal Processing. pp. 127–137. Springer
(2018)

17. Wang, H., Zhou, J., Zheng, G., Liang, Y.: Has: Hierarchical a-star algorithm for big
map navigation in special areas. In: 2014 5th International Conference on Digital
Home. pp. 222–225 (Nov 2014). https://doi.org/10.1109/ICDH.2014.49

https://doi.org/10.1109/ICInfA.2014.6932742
https://doi.org/10.1002/rob.20367
https://doi.org/10.1088/1755-1315/172/1/012019
https://doi.org/10.1088/1755-1315/172/1/012019
https://doi.org/https://doi.org/10.1016/j.apor.2019.02.020
https://doi.org/10.1109/ICDH.2014.49

	Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D Environments

