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ABSTRACT

Mixing ICI and CSI Models

for More Efficient Probabilistic Inference

Michael Roher Advisor:

University of Guelph, 2020 Dr. Yang Xiang

Bayesian Networks (BNs) concisely represent probabilistic knowledge of uncer-

tain environments by encoding causal dependencies and exploiting conditional in-

dependencies between variables. The strength of each variable’s dependence on its

parents is quantified by a conditional probability table (CPT). However, these CPTs

suffer from an exponential growth on the number of parents.

To address the exponential growth, various local models have been introduced for

representational savings and further inference efficiency. Some exploit context-specific

independence (CSI), which concisely encode duplicated probabilities. Others exploit

independence of causal influence (ICI), which encode causal relationships between

variables. Existing techniques apply only ICI or only CSI in a BN, such that exploiting

one model sacrifice savings yielded by the other.

We develop an exact inference framework for BNs modelled with both: We apply

Non-Impeding Noisy-AND Trees for ICI, and CPT-trees for CSI. The experimental

evaluation demonstrates a significant inference efficiency gain beyond what is attain-

able by exploiting only one type of model.



iii

Acknowledgments

First and foremost, I would like to offer my deepest gratitude to my supervisor,

Yang Xiang. I am grateful for his invaluable guidance, insight and support. I would

like to thank my committee members, Pascal Matsakis and Mark Wineberg, for their

excellent feedback and constructive comments when reading this thesis. Lastly, I

want to express my sincere appreciation of my family and friends for their endless

support, proofreading, and laughs.



iv

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

List of Abbreviations xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Graph Theory Fundamentals . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Interpretations of Probability . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Joint Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Inference By JPD . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Inference by Variable Elimination . . . . . . . . . . . . . . . . 13

2.5.3 Dependency Structure Compilation . . . . . . . . . . . . . . . 15

2.5.4 Inference by Message Passing . . . . . . . . . . . . . . . . . . 17

2.5.5 Lazy Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . 21

2.7 Independence of Causal Influence Models . . . . . . . . . . . . . . . . 21

2.7.1 Noisy-OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



v

2.7.2 Noisy-AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.3 Non-Impeding Noisy-AND Trees . . . . . . . . . . . . . . . . . 26

2.7.4 Inference by Multiplicative Factorization . . . . . . . . . . . . 30

2.7.5 Inference by De-causalization . . . . . . . . . . . . . . . . . . 31

2.7.6 Existence of NAT Models in Real-World BNs . . . . . . . . . 32

2.8 Context-Specific Independence . . . . . . . . . . . . . . . . . . . . . . 33

2.8.1 Default Tables & Normalization . . . . . . . . . . . . . . . . . 35

2.8.2 Rule-based Representation & Variable Elimination . . . . . . 36

2.8.3 CPT-tree & Network Transformation . . . . . . . . . . . . . . 37

3 Orthogonality of NAT & CSI Models 40

3.1 General Information on Orthogonality . . . . . . . . . . . . . . . . . 40

3.2 Converting from a CSI Model to a NAT Model . . . . . . . . . . . . . 42

3.2.1 Normalization of a CPT-tree to a Tabular CPT . . . . . . . . 43

3.2.2 Compression of a CSI CPT to a NAT Model . . . . . . . . . . 43

3.3 Converting from a NAT Model to a CSI Model . . . . . . . . . . . . . 44

3.3.1 Normalization of a NAT Model to a Tabular CPT . . . . . . . 45

3.3.2 Clustering a CPT to Estimate Number of CPT-Tree Parameters 45

3.3.3 Splitting Clusters to Ensure Exploitability . . . . . . . . . . . 50

3.3.4 Extending Clustering to Multi-valued Variables . . . . . . . . 54

3.4 Evaluating Expression of CSI Models as NAT Models . . . . . . . . . 57

3.4.1 Pre-processing: Adding CSI to an Existing CPT . . . . . . . . 58

3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Evaluating Expression of NAT CPTs as CSI Models . . . . . . . . . . 61

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 61

4 Formalizing CPT-tree Transformation 63

4.1 Set-valued CPT-tree Edges . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Algorithm Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Generate BN Segment to Encode CSI Interaction . . . . . . . 65

4.2.2 Assignment of CPTs to Generated BN Segment . . . . . . . . 70

4.2.3 Generate Multiplexer CPT . . . . . . . . . . . . . . . . . . . . 72

4.3 Demonstration of Exactness . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Dependence on Variable Duplications . . . . . . . . . . . . . . . . . . 77

4.4.1 General Information on Variable Duplications . . . . . . . . . 77

4.4.2 Loop Demonstration . . . . . . . . . . . . . . . . . . . . . . . 78



vi

4.4.3 Frequency of Loops . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Mixed NAT-CSI Bayesian Networks 81

5.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Inference Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Framework Outline . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 Producing Lazy Junction Trees from DTBNs . . . . . . . . . . 85

5.2.3 Framework Demonstration . . . . . . . . . . . . . . . . . . . . 85

6 Experimental Evaluation 90

6.1 Coexistence of NAT & CSI Models in Real-World BNs . . . . . . . . 90

6.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Computational Gain of Mixing NAT & CSI . . . . . . . . . . . . . . 92

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Performance of De-causalization vs. Transformation . . . . . . . . . . 95

6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusion 98

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101



vii

List of Tables

2.1 NAT modelling was confirmed by evaluating its existence on these BNs

from the bnlearn repository. The Andes— BN is the Andes BN with 3

isolated nodes removed. Table reprinted from [22]. . . . . . . . . . . . 33

3.1 Frequency of values in 3rd iteration’s cluster. . . . . . . . . . . . . . . 52

3.2 Frequency of values in 4th iteration’s cluster. . . . . . . . . . . . . . . 53

3.3 Summary of experiments when representing CSI CPTs as NAT models. 60

6.1 Summary of results from clustering Andes– and Win95pts BNs. . . . 91



viii

List of Figures

2.1 (a) An example undirected graph. (b) An example directed graph. . . 7

2.2 JPD over seven binary variables t, u, v, w, x, y, z. The JPD has 27 in-

stantiations. Due to space reasons, only the first 5 and last 5 instanti-

ations are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A Bayesian network’s two components: a DAG (top-left) and a CPT

for each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 (a) Moralization of DAG in Figure 2.3. Edges added by moralization

shown in red. (b) Triangulation. Edges added by triangulation shown

in blue. (c) Generation of Junction Tree . . . . . . . . . . . . . . . . 15

2.5 CollectEvidence (red arrows) and DistributeEvidence (blue arrows) on

the junction tree from Figure 2.4. The assigned CPTs are indicated in

gray below each cluster. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 An example dual gate with n input causal failure events. . . . . . . . 27

2.7 An example direct gate with n input causal success events. . . . . . . 27

2.8 An example NAT with one dual gate (upper) and one direct gate (lower). 28

2.9 (a) Dual gate with k causes. (b) Multiplicative factorization of (a). . 30

2.10 (a) Dual gate with k causes. (b) De-causalization of (a). . . . . . . . 31

2.11 KL and ED Distances from comparison of posterior marginals of 8

real-world BNs. Figure reprinted from [22]. . . . . . . . . . . . . . . . 33

2.12 Default table for P (z|y, w, x) . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Rule-based representation of the CPT P (g|f, d, e) in Figure 2.3. . . . 37

2.14 CPT-tree for P (g|f, d, e). . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.15 BN segment generated from network transformation of the CPT-tree

in Figure 2.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Binary-valued CPT P (e+|c+1 , c+2 , c+3 ) where all causes reinforce each

other demonstrating that a Noisy-OR can be encoded by the NIN-

AND gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Binary CPT-tree encoding the CSI interaction IC(z;w|y, x = x1). . . 43

3.3 Tabular CPT from the CPT-tree in Figure 3.2. . . . . . . . . . . . . . 44

3.4 NAT model from the tabular CPT in Figure 3.3 . . . . . . . . . . . . 44



ix

3.5 (a) NAT over all binary variables to be converted to a CSI model.

(b) CPT obtained by normalizing NAT model in (a). . . . . . . . . . 46

3.6 Clustering of CPT for P (z = z1|x, y, w) where all variables are binary

and the distance bound δ = 0.02. . . . . . . . . . . . . . . . . . . . . 48

3.7 CPT of P (z|x, y, w) with initial clusters specified. . . . . . . . . . . 49

3.8 CPT of P (z|x, y, w) and its clusters after splitting all unexploitable

clusters. The newly added clusters that were introduced by the split-

ting in order to make all clusters exploitable are printed in red. . . . . 55

3.9 Example CPT with three binary variables . . . . . . . . . . . . . . . 56

3.10 Example CPT with three ternary variables . . . . . . . . . . . . . . . 57

3.11 Left: Initial randomly generated CPT for P (z|x, y, w) where all vari-

ables are binary. Right: CPT P ∗(z|x, y, w) after incorporating IC(z;w|y, x =

x1). Each distinct combination of (y, z) when x = x1 is printed in a

different colour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Experiment results on representing NAT CPTs as CSI models. . . . . 61

4.1 CPT-tree with single-value arcs specifying P (z|u, v, w) where u is ternary

and all other variables are binary. . . . . . . . . . . . . . . . . . . . . 64

4.2 CPT-tree with set-value arcs specifying P (z|u, v, w) where u is ternary

and all other variables are binary. . . . . . . . . . . . . . . . . . . . . 64

4.3 (a) A BN family. (b) CPT-tree for the family. . . . . . . . . . . . . . 66

4.4 Initialization of Algorithm 4.1 . . . . . . . . . . . . . . . . . . . . . . 66

4.5 BN segment after transforming the root node of the CPT-tree. . . . . 68

4.6 BN segment after skipping the decomposition of the left-most node in

the second level of the CPT-tree, bq=q0, s as all of bq=q0’s children are

leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 BN segment after the decomposition of the right-most node in the

second level, bq=q1 as all of bq=q0 ’s children are leaves. . . . . . . . . . 69

4.8 CPT for Outer Node bq=q1,s∈s1,s2 . . . . . . . . . . . . . . . . . . . . . 71

4.9 CPT for ACAL Node bq=q0 . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 CPT for Multiplexer node b{} . . . . . . . . . . . . . . . . . . . . . . 73

4.11 (a) BN family with three binary variables u, v, z. (b) CPT-tree with

one CSI interaction: z is contextually independent of v when u = u1.

(c) Transformed network incorporating the CSI of (b). (d-f) CPTs for

each auxiliary node in (c). (g) CPT obtained by normalizing CPT-tree. 76

4.12 Three possible CPT-trees for the same BN family P (z|x,w, y). (a)

CPT-tree with 0 duplicated variables. (b) CPT-tree with 1 duplicated

variable. (c) CPT-tree with 3 duplications. . . . . . . . . . . . . . . . 77



x

4.13 (a) Transformed BN segment from CPT-tree with 0 loops in Fig-

ure 4.12 (a). (b) Junction tree for BN in panel (a). Separator labels

are omitted for readability. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.14 (a) Transformed BN segment from CPT-tree with 3 loops in Fig-

ure 4.12 (c). (b) Junction tree for BN in panel (a). Separator labels

are omitted for readability. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.15 CPT-tree segments over ternary variable x. (a) Multi-valued tree with

0 duplicated variables. (b) Binary tree with multi-valued edges and 1

duplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 (a) MNCBN DAG. (b) NAT model for family of g. (c) CPT-tree over

family of h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 DTBN of the MNCBN in Figure 5.1 . . . . . . . . . . . . . . . . . . 87

5.3 Lazy junction tree obtained by compiling MNCBN in Figure 5.1 (a) if

all CPTs are tabular. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Lazy junction tree obtained by compiling DTBN in Figure 5.2 . . . . 89

6.1 Comparison of inference runtimes of 4 conversion methods . . . . . . 93

6.2 Summary of inference runtimes by NMBNs and CMBNs . . . . . . . 96



xi

List of Abbreviations

ACAL All Children Are Leaves.

BN Bayesian Network.

CIM Causal Independence Model.

CMBN CPT-Tree Modelled Bayesian Network.

CPD Conditional Probability Distribution.

CPT Conditional Probability Table.

CSI Context-Specific Independence.

D+N De-causalization and Normalization Conversion Method.

D+T De-causalization and Transformation Conversion Method.

DAG Directed Acyclic Graph.

DTBN De-causalized and Transformed Bayesian Network.

ED Euclidean Distance.

GHz Gigahertz.

ICI Independence of Causal Influence.

JPD Joint Probability Distribution.

JT Junction Tree.



xii

KL Kullback-Leibler Divergence.

LP Lazy Propagation.

MNCBN Mixed NAT-CSI Bayesian network.

N+N Normalization and Normalization Conversion Method.

N+T Normalization and Transformation Conversion Method.

NAT Non-Impeding Noisy-AND Tree.

NIN-AND Non-Impeding Noisy-AND Tree.

NMBN NAT-Modelled Bayesian Network.



Chapter 1

Introduction

1.1 Overview

Uncertainty is ubiquitous in the real-world. Whether a doctor is diagnosing a

patient, a robot vacuum cleaner is sweeping a room, or a gambler is playing a card

game in a casino, we are likely making decisions without complete knowledge of an

uncertain environment. In the context of artificial intelligence, a common method of

representing uncertain knowledge is Bayesian probability theory. Bayesian probability

theory models the subjective belief of an agent by a probability of an event, given the

knowledge that another event has occurred.

Consider the example of a doctor diagnosing whether or not a patient has a

certain disease. The doctor will assess multiple factors, some of which are observed,

while others are unknown. The observed factors may include the patient’s medical

history, blood tests, and any pre-existing conditions. But, these tests are not perfect,

and there may be false positives, or symptoms that are imperceivable through these

tests. Thus, the doctor may represent the patient’s likelihood of suffering from the

disease as a probability, conditioned on the medical history, test results and pre-

existing conditions.

One method of representing the agent’s subjective knowledge of the environment

is through a joint probability distribution (JPD). Given a set of variables in an envi-

ronment, the JPD consists of a table specifying every instantiation of all variables in

the set. Each instantiation has a corresponding probability specifying the likelihood

of the instantiation occurring. In small environments, a JPD may be sufficient for
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inference. But, as we increase the number of variables, the size of the JPD increases

exponentially, quickly leading to models requiring billions of instantiations.

The exponential growth of a JPD is not simply a representational issue. It

leads to computational inefficiencies during inference and can ultimately lead to in-

tractability for large environments. One method to reduce the exponential growth is

by applying a model that exploits conditional independencies between variables. For

example, the likelihood of a patient suffering from a disease may be dependent on a

certain genotype, which may itself be affected by the parents’ genotype. But, once

the patient’s genotype is identified, the parents’ genotype is no longer relevant.

A JPD does not take advantage of the independencies between variables. This

was addressed by Pearl and others who introduced Bayesian networks (BNs) [12] to

model the structure in the environment. A BN consists of two components: a directed

acyclic graph to encode the dependencies and exploit the conditional independencies

between variables, and a conditional probability table (CPT) for each node in the

graph to quantify the strength of the dependency of the given node on its parent

variables. This reduces the exponential explosion on the number of variables from

exponential in JPDs to linear in BNs.

However, the CPTs are still exponential over the number of dependencies a node

has in the graph. Previous research has noted that a CPT can be expressed more

efficiently by replacing it with an alternative structure. Many of these alternative

structures can be grouped into two classes:

Independence of Causal Influence (ICI) Encodes the relationship between a vari-

able and its dependencies more efficiently. For example, consider a patient re-

covering from a headache by taking medicine and increasing water intake. An

efficient ICI model would represent the patient’s recovery by each treatment in-

dividually. That is, it would require the probability of a patient recovering from

the headache by only taking medicine, and the probability of a patient recov-

ering from the headache by only increasing their water intake. Operations on

2



these events allow for the probabilities of all other combinations of treatments

(i.e., both treatments, or neither treatment) to be computed. These operations

reduce the number of instantiations required to specify this model from expo-

nential to linear on the number of treatments. Models in this class include

Noisy-OR [12], Noisy-MAX [8], DeMorgan [10] and Non-Impeding Noisy-AND

Trees (NAT or NIN-AND) [21]. Further details of ICI models are available in

Section 2.7.

Context-Specific Independence (CSI) Encodes duplicate values in probability

tables more efficiently. For example, consider a patient’s recovery from surgery

that is dependent on whether or not they receive physiotherapy, and the skill of

the physiotherapist. If the patient completes physiotherapy, then the likelihood

of recovery increases. The magnitude of the increase is dependent on the skill of

the physiotherapist. A highly skilled physiotherapist will result in a significant

increase to the likelihood of recovery, whereas a less skilled physiotherapist will

result in a small increase to the likelihood of recovery. On the other hand, if

the patient declines physiotherapy, then the likelihood of recovery decreases.

In the most naive form, this would require four instantiations. However, it is

observed that when the patient declines physiotherapy, the likelihood of recovery

decreases, regardless of the skill of the physiotherapist. A CSI model would

encode this model efficiently by exploiting the fact that the variable encoding

the physiotherapist’s skill is redundant when the patient declines physiotherapy.

This would reduce the number of instantiations to three. Models in the CSI

class include default tables [3], CPT-trees [3], rule-based CSI [14], and algebraic

decision diagrams [4]. Further details of CSI models are available in Section 2.8.

Unfortunately, inference methods for Bayesian networks modelled with CPTs

are not directly compatible when alternative structures are used. Most naively, the

alternative structures may be expanded into exponentially sized CPTs in order to

3



execute these inference methods. This is undesirable as it discards all savings the al-

ternative structure provides. Instead, significant research has been directed towards

identifying techniques that prepare a BN modelled with alternative structures for ef-

ficient inference. The specific techniques vary depending on the alternative structure.

For instance, some models may have special conversion methods that expand the

alternative structure to a probability table while maintaining computational savings.

To our knowledge, all previous research has focused on replacing each probability

table in a BN with one class of alternative structures. This restricts the BN to the

same class for all variables. Since these alternative structures apply on a per-variable

basis, it is plausible they can coexist in the same environment. Restricting ourselves

to one class relinquishes the opportunity to exploit the other class in the same BN.

Moreover, if the variable is not well-suited for the alternative structure, then it

must be approximated by the alternative structure, or represented by a probability

table. Neither of these options are ideal. The approximation is not exact due to the

inability of a model from one class to exactly and efficiently represent a model from

the other class. On the other hand, a large probability table representation sacrifices

the inference efficiency savings yielded by the the other efficient alternative structures

in the BN.

The purpose of this thesis is to develop an inference framework for BNs modelled

with both ICI and CSI alternative structures. When both exist in a Bayesian network,

we apply NAT models for ICI and CPT-tree models for CSI. Each alternative structure

is then compiled into a probability table through special conversion methods that

preserve computational savings. The result is an efficient BN where each variable is

quantified by a tabular representation. This efficient BN is then compatible with any

typical BN inference method.
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1.2 Contributions

In this thesis, we make four main contributions:

1. We propose a framework to exploit both NAT and CSI local models in proba-

bilistic inference. We evaluate the efficiency of this framework on Lazy Propaga-

tion, an inference technique shown to attain a two orders of magnitude speedup

on very sparse Bayesian networks [11].

2. We empirically demonstrate that one class of alternative structures cannot be

efficiently and exactly encoded by the other class; thereby, validating the neces-

sity of this research.

3. We generalize and formalize the CPT-tree network transformation algorithm

by specifying a comprehensive algorithm suite. This advances the initial idea

presented by Boutillier et al. [3].

4. We establish the existence of CSI in real-world BNs. These results, in conjunc-

tion with previous research showing the existence of ICI in real-world BNs [22],

demonstrate the coexistence of both ICI and CSI in the real-world.

1.3 Thesis Layout

The remainder of this thesis is laid out as follows. Chapter 2 is a summary of the

background knowledge underlying this thesis. Chapter 3 empirically demonstrates

that NAT models and CSI models cannot efficiently and exactly encode each other.

Chapter 4 formalizes the CPT-tree transformation algorithm. Chapter 5 develops the

framework. Chapter 6 identifies CSI in real world BNs and evaluates the impact of

the framework on synthetic BNs. Chapter 7 offers concluding remarks and possible

future research opportunities.
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Chapter 2

Background

In this chapter, we present an overview of the background material underlying

this thesis. The chapter is organized as follows: Sections 2.1 to 2.3 review graph the-

ory fundamentals, two common interpretations of probability theory, and potentials,

respectively. Section 2.4 reviews joint probability distributions and an accompany-

ing inference method. Section 2.5 reviews Bayesian networks and two accompanying

inference methods. Section 2.6 reviews accuracy metrics to evaluate the closeness of

an approximation from its ground truth. Finally, we review independence of causal

influence in Section 2.7 and context-specific independence Section 2.8, which each

may be exploited for further representational and inference savings.

2.1 Graph Theory Fundamentals

A graph, G = (N,E) is a mathematical structure to represent a non-empty set

of nodes N connected by a set of edges E. Edges can be undirected or directed. An

undirected edge {ni, nj} where ni, nj ∈ N is a symmetric connection between the two

endpoints. A directed edge, (ni, nj) where ni, nj ∈ N is an asymmetric connection

between the two endpoints. We note the notation is intentionally different: braces

represent an unordered pair, while parenthesis represent an ordered pair. If an edge

(ni, nj) is directed from ni to nj, the node ni is said to be a parent (or source) of

nj and nj is said to be a child (or target) of ni. Two nodes are adjacent if they are

connected by an edge. A graph with all directed edges is a directed graph, a graph

with all undirected edges is an undirected graph, otherwise the graph is a hybrid graph.
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Figure 2.1: (a) An example undirected graph. (b) An example directed graph.

A walk in a directed graph G = (N,E), is a sequence of nodes (n0, n1, n2, . . . , nk)

with a corresponding sequence of edges ((n0, n1), (n1, n2), . . . , (nk−1, nk)) such that

each node ni in the sequence is in N and each edge (ni, ni+1) is in the sequence is in

E. We denote n0 and nk as the start and end of the walk, respectively. A path is

a walk where each node in the node sequence occurs only once. A cycle is a special

type of path that starts and ends at the same node (i.e. n0 = nk). A graph is said to

be cyclic if it contains at least one cycle, and acyclic otherwise.

A directed acyclic graph (DAG) is depicted in Figure 2.1 (b) as all edges are

directed and there are no cycles within the graph.

A family of a node ni in a directed graph G = (N,E) is {ni, π(ni)} where π(ni)

denotes all edges in E pointing to ni. To eliminate any ambiguity, a family in a graph

theory context differs from a family in a genealogy context. In the graph theory

context, a family does not include the siblings of the child node. By contrast, a

family in the genealogy context does include the siblings of the child. In Figure 2.1

(b), the family of node w is {w, t, u}.

A graph is connected if there is a path between every pair of nodes. A tree is an

acyclic connected graph that has exactly one path between every pair of nodes.

A clique of an undirected graph G is a fully-connected subgraph within G. For

example, the set of nodes {t, v, y, z, w} in Figure 2.1 (a) is a clique of size 5.

7



2.2 Interpretations of Probability

In partially observable and uncertain environments, an agent will not have com-

plete knowledge of the environment. A common approach to operate under un-

certainty is through probability theory. Two interpretations of probability include

frequentist and Bayesian.

Frequentist probability interprets probability as the frequency of an event occur-

ring. It is objective and the frequentist probability of an event a converges as the

total number of trials approaches infinity: P (α) = limn→∞
t
n

where t represents the

number of trials where the event α occurs, and n represents the total number of tri-

als. This is commonly approximated by P (α) ≈ t
n
. However, when an event can only

occur once or it is impractical to repeat the event in the real-world, the probability

of the event is undefined. For example, the probability of the next global pandemic

occurring cannot be observed by repeating experiments.

Bayesian probability interprets probability as a subjective value indicating one’s

degree of belief in the event occurring. The Bayesian interpretation is capable of

representing unrepeatable events. For example, the probability of the next global

pandemic occurring may be specified by an infectious disease expert’s degree of belief.

Throughout this thesis, we will assume the Bayesian interpretation.

2.3 Potentials

In this section, we introduce potentials, which are used in subsequent methods. A

potential φ(M) over a set of variables M is a function, which maps from a set of M ’s

values val(M) to a set of non-negative real numbers. Potentials do not necessarily

comply with the laws of probability — they may hold values outside of [0, 1]. Every

CPT is a potential but not every potential is a CPT.

If M1 and M2 are sets of variables with the corresponding potentials φ1(M1) and

8



φ2(M2), then the product of potentials is specified by:

φ(M1,M2) = φ1(M1)× φ2(M2)

Potentials also support marginalization to sum-out a variable.

φ(M1) =
∑

m2∈val(M2)

φ(M1,M2 = m2)

2.4 Joint Probability Distributions

To represent uncertain knowledge in an environment, one may choose to use

a joint probability distribution (JPD). A JPD encodes a probability for each in-

stantiation of a set of variables M . An instantiation of M represents an assign-

ment of value(s) to each variable in M. Figure 2.2 presents a JPD for 7 variables

u, v, t, w, x, y, z. Each variable is binary with each value of the form: the variable’s

letter followed by an index (e.g. {t0, t1}). The probability for a given instantiation

is obtained by locating the instantiation in the JPD. For instance, if t, u, v, w, x, y, z

hold t0, u0, v0, w0, x0, y0, z0, respectively, then we can obtain the probability of this

event as P (t = t0, u = u0, v = v0, w = w0, x = x0, y = y0, z = z0) = 0.0020.

However, a critical limitation of JPDs is that the number of probabilities in a

JPD is exponential on the number of variables in the environment. The example in

Figure 2.2 has 7 binary variables resulting in 27 = 128 probabilities. If the envi-

ronment instead has 10 variables with a domain size of 5, then the JPD will have

510 = 9, 765, 625 probabilities. This limitation is amplified when modelling real-world

environments, which may have hundreds of variables. The exponentially increasing

number of probabilities has significant time and space implications for storage and

any operations to be performed on the JPD.
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t u v w x y z P (t, u, v, w, x, y, z)

t0 u0 v0 w0 x0 y0 z0 0.0020

t0 u0 v0 w0 x0 y0 z1 0.0002

t0 u0 v0 w0 x0 y1 z0 0.0004

t0 u0 v0 w0 x0 y1 z1 0.0006

t0 u0 v0 w0 x1 y0 z0 0.0020

. . . . . . . . . . . . . . . . . . . . . . . .

t1 u1 v1 w1 x0 y1 z1 0.0175

t1 u1 v1 w1 x1 y0 z0 0.0117

t1 u1 v1 w1 x1 y0 z1 0.1050

t1 u1 v1 w1 x1 y1 z0 0.0117

t1 u1 v1 w1 x1 y1 z1 0.0175

Figure 2.2: JPD over seven binary variables t, u, v, w, x, y, z. The JPD has 27 instan-

tiations. Due to space reasons, only the first 5 and last 5 instantiations are shown.

2.4.1 Inference By JPD

A common operation on uncertain knowledge representations is inference. Infer-

ence is the process of determining the probability of an event, given a set of observa-

tions. To demonstrate inference by JPD, suppose we would like to know the posterior

distribution P (z|x = x0) from the JPD in Figure 2.2. The method begins by first

updating the JPD to P (t, u, v, w, y, z|x = x0) by the following product rule [20]:

P (t, u, v, w, y, z|x = x0) =
P (t, u, v, w, y, z, x = x0)

P (x = x0)

The distribution in the numerator P (t, u, v, w, y, z, x = x0) is computed by set-

ting the probability of all instantiations inconsistent with the observation x = x0 to 0.

In other words, given an instantiation (t′, u′, v′, w′, y′, z′, x′), if x′ 6= 0, its correspond-

ing probability is set to 0. The denominator is subsequently computed as the sum of

the remaining terms. We then divide each remaining term by the sum resulting in

the distribution P (t, u, v, w, y, z|x = x0).

We then apply the marginalization operation to sum-out all non-query variables.
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P (z|x = x0) =
∑
t

∑
u

∑
v

∑
w

∑
y

P (t, u, v, w, y, z|x = x0)

In this example, the exponential nature of JPD requires maintaining a potential

of 7 variables or 27 = 128 instantiations. For further details on inference by JPD,

refer to [20].

2.5 Bayesian Networks

v

y
z

xw

t u

P (t)

t0 t1
0.4 0.6

P (u)

u0 u1
0.1 0.9

P (x)

x0 x1
0.5 0.5

P (v|t)
t v0 v1
t0 0.8 0.2

t1 0.1 0.9

P (y|v)

v y0 y1
v0 0.7 0.3

v1 0.8 0.2

P (w|t, u)

t u w0 w1

t0 u0 0.2 0.8

t0 u1 0.9 0.1

t1 u0 0.3 0.7

t1 u1 0.4 0.6

P (z|y, w, x)

y w x z0 z1
y0 w0 x0 0.9 0.1

y0 w0 x1 0.9 0.1

y0 w1 x0 0.2 0.8

y0 w1 x1 0.1 0.9

y1 w0 x0 0.4 0.6

y1 w0 x1 0.4 0.6

y1 w1 x0 0.4 0.6

y1 w1 x1 0.4 0.6

Figure 2.3: A Bayesian network’s two components: a DAG (top-left) and a CPT for

each node.
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2.5.1 Representation

To improve on the exponential explosion of JPDs, Pearl and others [12] proposed

Bayesian networks (BN), a more efficient solution to representing uncertain knowl-

edge. Before introducing Bayesian networks [12, 20], it is first necessary to define

conditional independence.

Conditional Independence Let A,B and Z be disjoint subsets of variables. A and

B are conditionally independent given Z, denoted I(A,Z,B), iff

P (A|B,Z) = P (A|Z) whenever P (B,Z) > 0.

Conditional independence can be exploited by observing that it is unlikely all

variables will affect all other variables. Instead, it is likely only a subset of the

variables in the environment will directly affect a variable. This is the key idea

that allows for Bayesian networks to factor JPDs into a more efficient representation.

Formally, a Bayesian network (M,G,P) is a triplet specified in terms of the following:

• M is a set of variables.

• G is a directed acyclic graph whose nodes correspond one-to-one to members

of M . Each variable in the graph is conditionally independent of its non-

descendants given its parents.

• P is a set of conditional probability distributions (CPDs) for each variable

mi ∈ M , specifying the distribution for mi over its parents π(mi): P (mi|π(mi)).

A set of CPDs is said to be a conditional probability table.

Intuitively, the Bayesian network can be viewed as a a graph specifying the

dependence structure of the variables, with the conditional distributions specifying

the strength of each dependence. An example BN is presented in Figure 2.3. Since

a BN is a factored JPD, the JPD for a BN can be retrieved by combining the CPDs

according to the chain rule.
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P (m1,m2, . . . ,mn) =
n∏
i=1

P (mi|π(mi))

The BN uses a DAG in conjunction with multiple, smaller CPTs to efficiently

represent JPDs. Each CPT has a size exponential on the family size: O(df ) where d

represents the largest domain size of the family and f represents the family size.

2.5.2 Inference by Variable Elimination

In Section 2.4.1, we demonstrate that a JPD is capable of performing inference

by performing a potential’s marginalization and product operations on the joint dis-

tribution. This suffers from intractability as the JPD is exponential on the number

of variables. Since a BN factorizes a JPD into smaller CPTs by exploiting condi-

tional independence, a valid yet naive approach would be to perform inference on BN

by converting the BN into a JPD and performing inference on the resulting JPD.

Suppose, we would like to compute the prior P (z) from the distribution shown in

Figure 2.3. For brevity, we omit the introduction of evidence. Refer to [5] for details.

P (z) =
∑

t,u,v,w,x,y

P (t, u, v, w, x, y, z)

One method of improving on this approach is variable elimination. Similar to

inference by JPD, variable elimination is an inference technique that consists of suc-

cessively summing-out all non-query variables to construct a marginal distribution

over the remaining query variables. The key insight, however, is that variables can be

marginalized out while keeping the original distribution and all successive distribu-

tions in some factored form [4]. This is achieved by rewriting in terms of conditional

independencies.

P (z) =
∑

t,u,v,w,x,y

P (z|y, w, x)P (x)P (t)P (v|t)P (y|v)P (w|t, u)P (u)
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We factor this expression by re-arranging terms and pushing the summations

inside the product operations. This allows for the summations to be performed as

early as possible and the product operations as late as possible.

P (z) =
∑
y,w,x

P (z|y, w, x)P (x)
∑
t,v

P (t)P (v|t)P (y|v)
∑
u

P (w|t, u)P (u)

This results in the following computations.

φ1(w, t, u) = P (w|t, u)P (u)

φ2(w, t) =
∑
u

φ1(w, t, u)

φ3(w, t, u, y) = φ2(w, t)P (t)P (v|t)P (y|v)

φ4(w, y) =
∑
t,v

φ3(w, t, u, y)

φ5(z, y, w, x) = φ4(w, y)P (z|y, w, x)P (x)

φ6(z) =
∑
y,w,x

φ5(z, y, w, x)

The savings of variable elimination can be observed from these computations.

The largest potentials we maintained were φ3(w, t, u, y) and φ5(z, y, w, x), which each

had 4 variables and 24 = 16 instantiations. This is a significant improvement over

the inference by JPD approach, which would have required 7 variables and 27 = 128

instantiations.

However, variable elimination suffers from a key limitation: It can only estimate

one query at a time. Improvements to variable elimination have integrated alternative

data structures to cache calculations to avoid re-calculating different queries on the

same evidence [4]. However, if the evidence changes, then the cache must be discarded

and the variable elimination process must be restarted. This limits the generality of

the inference algorithm.

While some alternative methods discussed in this thesis incorporate variable

elimination, we do not make use of it due to the aforementioned limitation.
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2.5.3 Dependency Structure Compilation

One method of computing reusable, efficient inference queries in a BN is by

converting the DAG of the BN into a Junction Tree (JT). The process is demonstrated

below on the DAG pictured in Figure 2.3.

v

y
z

xw

t u

(a)

v

y
z

xw

t u

(b)

{w,x,y,z}

{v,w,y}

{t,v,w}

{t,u,w}

{w,y}

{t,w}

{v,w}

(c)

Figure 2.4: (a) Moralization of DAG in Figure 2.3. Edges added by moralization

shown in red. (b) Triangulation. Edges added by triangulation shown in blue. (c)

Generation of Junction Tree

We first construct the moralized graph GM by transforming a BN’s DAG into

an undirected graph. The transformation consists of removing directions from each

edge in the DAG to convert the directed edges into undirected edges. Then, all

parents of each child node are connected by undirected edges. On the example DAG

in Figure 2.3, we remove all directionality from the edges then connect all parents

of each child node {{t, u}, {y, w}, {y, x}}. The resulting moralized graph is shown in

Figure 2.4 (a) with red, dashed edges indicating the added edges.

Next, we convert the moralized graph into a triangulated graph GT by breaking

up all cycles that are longer than 3 nodes in length. Cycles are broken up by adding
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edges, such that every node amongst a cycle of size 4 or more has connected adjacent

nodes. An example of triangulation is presented in Figure 2.4 (b).

The purpose of triangulation is to guarantee the existence of a junction tree.

Formally, a junction tree [20] is a triplet (M,Ω, E), specified in terms of:

• M is a non-empty set of variables.

• Ω is a set of clusters such that all variables are contained in at least one cluster.

• E is the set of unordered edges connecting each cluster. Each edge is labelled

by the intersection of the two clusters it is connecting. Two clusters Q1 and Q2

in Ω may be connected iff Q1 is not equal to Q2 and their intersection has at

least one variable in common (Q1 ∩Q2 6= ∅). The intersection Q1 ∩Q2 must be

contained in every cluster on the path between Q1 and Q2.

In the context of junction trees, we refer to a clique as a clique from the tri-

angulated graph, and use cluster and node interchangeably to denote a node in the

junction tree.

To generate the junction tree, we begin with an empty graph GJT . A node is

added to GJT for each clique in GT , which is not fully contained within a larger

clique. Each node is labelled by the variables in the clique. If two clusters have any

variable(s) in common, they are included in every cluster on the path between them.

Between adjacent clusters, each edge (separator) is labelled with the intersection of

the two clusters. The resulting junction tree is shown in Figure 2.4 (c).

The advantage of a junction tree representation is it may be used for multiple

inference queries and can incorporate different observations, as long as the topology

(structure) of the BN does not change. Once the junction tree is compiled, we can

then perform inference.
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2.5.4 Inference by Message Passing

Message passing is an inference technique that passes messages over separators

between adjacent clusters in the junction tree [1]. The technique is based off the

concept of consistency.

Consistency [20] Let GJT = (M,Ω, E) be a junction tree representation. Let Q1 and

Q2 be two adjacent clusters in Ω with the separator S. Let their associated potentials

be φ(Q1), φ(Q2), φ(S), respectively. Clusters Q1 and Q2 are said to be consistent for

some constants k1 and k2 if:

∑
Q1\S

φ(Q1) = k1 × φ(S) = k2 ×
∑
Q2§

φ(Q2)

The junction tree GJT is said to be locally consistent if every pair of adjacent clusters

in T are consistent. It is said to be globally consistent if for any two clusters (not

necessarily adjacent) Q1 and Q3, it holds for some constant k that:

∑
Q1\Q3

φ(Q1) = k ×
∑
Q3\Q1

φ(Q3).

Informally, for a junction tree to be locally consistent, the marginals of each pair

of adjacent clusters must differ by a scalar multiple. Global consistency is a stricter

variation that requires all marginals of each pair of nodes — adjacent or non-adjacent

— to differ by only a scalar multiple. It follows that if a junction tree is locally

consistent, then it must be globally consistent.

Inference by junction tree passes messages over separators with the objective of

making the junction tree locally consistent. In order to make any two adjacent clusters

consistent, the algorithm applies the absorption operation to update the separator

and adjacent node’s potentials.
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Algorithm 2.1: Absorbtion

Let Q1 and Q2 be adjacent clusters with separator S in a junction tree.

Let their associated potentials be φ(Q1), φ(Q2), φ(S), respectively.

Q1 absorbs from Q2 by performing the following:

1. Updating the separator potential φ(S) to φ(S)′ =
∑

Q1\S φ(Q1)

2. Updating the clique potential φ(Q2) to φ(Q2)
′ = φ(Q2)× φ(Q1)′

φ(Q1)

With absorption introduced, we can now begin summarizing the inference by

junction tree algorithm [11, 20]. The initialization step of the algorithm consists of

incorporating the CPDs into the junction tree. This involves converting the CPDs into

potentials, and assigning each resulting potential to cliques that contain all variables

in the potential. Multiple potentials may be assigned to the same cluster. Once

all potentials have been assigned, we begin by setting each cluster’s potential to the

product of all potentials assigned to the cluster.

Next, we update a cluster’s potentials for each observation. This is attained by

setting the values of all entries inconsistent with the evidence to 0. We then arbitrarily

select one node as the root node R. CollectEvidence is then recursively invoked on R

to receive messages inwardly from the leaves to the root. When the CollectEvidence

algorithm is invoked on a generic clique Ci, it invokes CollectEvidence on all other

adjacent cliques {C1, . . . , Cm}. Once these cliques have finished collecting evidence,

Ci absorbs from {C1, . . . , Cm}.

Algorithm 2.2: CollectEvidence

Let Q be a cluster in a junction tree GJT .

A caller is either an adjacent cluster or the junction tree GJT itself.

1. Cluster Q invokes Collect Evidence on each adjacent cluster, except caller.

2. After each invoked cluster has completed, Q absorbs from it.

Once CollectEvidence is complete, we distribute the updated evidence out-

wardly from the root to the leaves by calling the DistributeEvidence algorithm.
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When invoked on a clique Ci from an adjacent clique Cj, the algorithm Ci absorbs

from Cj and then invokes DistributeEvidence on all other adjacent cliques.

Algorithm 2.3: DistributeEvidence

Let Q be a cluster in a junction tree GJT .

A caller is either an adjacent cluster or the junction tree GJT itself.

1. If caller is a cluster, Q absorbs from it.

2. Cluster Q invokes DistributeEvidence on each adjacent cluster, except

caller.

Figure 2.5 demonstrates the CollectEvidence and DistributeEvidence opera-

tions on a junction tree. The assigned CPTs are indicated in gray below each cluster.

Cluster {v, w, y} was arbitrarily chosen as the root cluster. CollectEvidence opera-

tions are shown with red arrows. DistributeEvidence operations are shown with blue

arrows.

{w,x,y,z}

{v,w,y}

{t,v,w}

{t,u,w}

{w,y}

{t,w}

{v,w}

(ROOT)

P(z|y,w,x), P(x) P(v|t)

P(w|t,u), P(t), P(u)

P(y|v)

Figure 2.5: CollectEvidence (red arrows) and DistributeEvidence (blue arrows) on

the junction tree from Figure 2.4. The assigned CPTs are indicated in gray below

each cluster.

The efficiency of inference by message passing is dependent on the treewidth of

the junction tree.

Treewidth Treewidth of a junction tree is the size of the largest cluster minus 1.
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For example, the treewidth of the junction tree in Figure 2.5 is 3.

2.5.5 Lazy Propagation

Lazy propagation [11] is an improvement over traditional messaging passing. The

key insight is that we do not need to multiply the potentials assigned to the clusters

in the initialization step. Instead, we can defer the multiplication until it is required

to do so. The result of deferring the multiplications is fewer calculations and faster

inference at the cost of occupying more space. For further information, refer to [11].

2.6 Accuracy Metrics

A common method of evaluating the similarity between an approximation and

its ground truth is by accuracy metrics. In this thesis, we make use of two accuracy

metrics: Euclidean distance and Kullback-Leibler distance.

2.6.1 Euclidean Distance

Euclidean distance (ED) computes the straight line distance between two vectors.

Since we are comparing CPTs, a CPT can be interpreted as a set of indexed CPDs,

where each state in the variable’s domain represents a dimension in vector space.

Given a ground truth CPT PGT , let PA represent a CPT that approximates

PGT , m represent the number of CPDs in the CPT, and n represent the number of

probabilities in each CPD. The ED can be calculated as follows:

ED(PGT , PA) =

√√√√ m∑
i=0

n∑
j=0

(PGT (i, j)− PA(i, j))2

The result indicates the similarity of the CPTs. The value is bounded by [0, 1]

where a value of 0 represents the CPTs are identical, and a value of 1 represents the

CPTs are entirely different. A larger ED value indicates the CPTs differ whereas a
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smaller ED value indicates the CPTs are more similar. ED treats small differences

equally to larger differences.

2.6.2 Kullback-Leibler Divergence

Kullback-Leibler divergence (or Kullback-Leibler distance, or KL distance) [9]

computes the distance of the approximation probability distribution PA from the

ground truth probability distribution PGT . The metric captures the randomness of

PA and magnifies the impact of large differences. It is non-symmetric such that the

distance of the ground truth from the approximation is not equal to the distance of

the approximation from the ground truth.

Given a ground truth CPT PGT , let PA represent a CPT that approximates PGT

where m represent the number of CPDs in the CPT and n represent the number of

probabilities in each CPD. The KL distance can be calculated as follows:

KL(PGT , PA) =
m∑
i=0

n∑
j=0

PGT (i, j)× log

(
PGT (i, j)

PA(i, j)

)
The result indicates the similarity of the CPTs. The KL distance is bounded

within [0,∞), where a larger value indicates a greater difference between the distri-

butions. A value of of 0 represents the distributions are identical (or very similar). A

value ≥ 1 represents a large difference between the distributions.

2.7 Independence of Causal Influence Models

A tabular CPT ignores any relationships between parent and child variables

resulting in the exponential space complexity on the number of parents. One way

of addressing the exponential complexity is by making use of independence of causal

influence models (also known as causal independence models). These models represent

a child variable as a dependent of its parent variables, such that the parent variables

are causes and the child variable is an effect. The key insight of causal models is that
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the models are capable of encoding each cause occurring independently to produce the

effect. In order to compose a causal independence model, we first need to introduce

a causal event.

Causal Event An event representing a set of active causes either succeeding or fail-

ing to produce an active effect.

To express a causal event, we follow the notation of Xiang [21]. When an active

cause ci = true is binary, it is denoted by c+i while an inactive binary cause is

represented by c−i . An active binary causal event is represented by e+ while an

inactive binary causal event is denoted by e−. A causal event of multiple causes

successfully producing an effect can be denoted by e+ ← c1,
+ , c+2 , . . . , c

+
k , while e+ 6←

c1,
+ , c+2 , . . . , c

+
k denotes that the causes failed to produce the effect e. A multi-valued

cause is denoted by cji where i ≥ 1 represents the cause index and j ≥ 0 represents the

intensity of the cause. A multi-valued effect is denoted by ej where j represents the

intensity of the effect. The syntax e ≥ ei (or, conversely e ≤ ei) is said to represent all

effect values with an intensity value greater (less) than or equal to ei. The probability

of a causal event is denoted P (e+ ← c+1 , c
+
2 , . . . , c

+
k ).

The interaction between causes that produce a common effect may be character-

ized as reinforcing or undermining.

Reinforcing Interaction [21] Causes which produce a common effect reinforce each

other if collectively they are at least as effective as when some are active. Let c1 and

c2 be two causes that produce an effect e.

P (e+ ← c+1 , c
+
2 ) ≥ P (e+ ← c+1 ), P (e+ ← c+2 ).

For instance, let the effect be a diagnosis of lung cancer, and causes of a diagnosis

be smoking cigarettes and exposure to asbestos. Individually, smoking a cigarette or

exposing oneself to asbestos may increase one’s chance of obtaining lung cancer, but
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the presence of both together, is more harmful and thus, more likely to increase the

chance of obtaining lung cancer.

Reinforcing interactions need not occur only between individual variables. The

causal interaction can also occur between sets of variables. This allows for recursive

mixtures. Two or more sets of variables reinforce each other if they satisfy failure

conjunction and failure independence.

Failure Conjunction [21] Let R1, R2, . . . , Rm be a disjoint set of causes that satisfy

failure conjunction iff

(e+ 6← r+1 , . . . , r
+
m) = (e+ 6← r+1 ) ∧ · · · ∧ (e+ 6← r+m).

This specifies that the failure of the group of causes is determined by the con-

junction of each causal failure event. In other words, for the joint causal event to fail

to produce the effect, it requires that every single causal event fail to produce the

effect.

Failure Independence [21] Let R1, R2, . . . , Rm be a disjoint set of causes that sat-

isfy failure independence iff

P (e+ 6← r+1 , . . . , r
+
m) = P (e+ 6← r+1 )× · · · × P (e+ 6← r+m).

This specifies that the probability of the failure of the group is the product of

the individual failure probabilities. Hence, reinforcement between sets requires that

each cause fail individually and states the probability of a set of causal failures is

their product.

By contrast, an interaction between causes may be characterized as undermining.

Undermining Interaction [21] Causes which produce a common effect undermine

each other if they are collectively less effective than some causes acting individually.

Let c1 and c2 be two causes that produce an effect e.

P (e+ ← c+1 , c
+
2 ) < P (e+ ← c+1 ), P (e+ ← c+2 ).
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For example, let the effect be recovery from lung cancer, and the causes be

two forms of treatments, which are known to inhibit each other. Individually each

treatment may heal the lung cancer, but together, they counteract, reducing the

likelihood of a person recovering from lung cancer.

Likewise, undermining interactions need not occur only between individual vari-

ables. The causal interaction can also occur between sets of variables. Two or more

sets of variables undermine each other if they satisfy success conjunction and success

independence.

Success Conjunction [21] Let R1, R2, . . . , Rm be a disjoint set of causes that satisfy

success conjunction iff

(e+ ← r+1 , . . . , r
+
m) = (e− ← r+1 ) ∧ · · · ∧ (e+ ← r+m).

This specifies that the success of the group of sets is determined by each indi-

vidual set’s successes.

Success Independence [21] Let R1, R2, . . . , Rm be a disjoint set of causes that sat-

isfy success independence iff

P (e+ ← r+1 , . . . , r
+
m) = P (e+ ← r+1 )× · · · × P (e+ ← r+m).

This specifies that the probability of all active causes is the joint probability of

each individual active cause.

The notion of reinforcing interactions and undermining interactions occurring at

a set-level allows for a recursive mixture of interactions. For instance, two causal

events e+ ← c+1 and e+ ← c+2 may reinforce each other, but together e+ ← c+1 , c
+
2 ,

they may undermine a third causal event e+ ← c+3 .

2.7.1 Noisy-OR

Noisy-OR [12] is a causal independence model that encodes reinforcing interac-

tions. It is restricted to binary variables but was later generalized to a Noisy-MAX
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model which can encode multi-valued variables [8]. The models reduces the complex-

ity of a tabular CPT to linear on the number of causes.

Formally, let C = {c1, . . . , ck} be a set of uncertain causes that produces an

effect e. Let D be a subset of the causes in C where each cause in D actively

produces e. The subset D may or may not be equal to C. A Noisy-OR model

represents the causal interactions among C by the following property:

P (e+ ← c+1 , . . . , c
+
k ) =

1− (P (e+ 6← c+1 )× · · · × P (e+ 6← c+k )) if D 6= ∅

0 if D = ∅

This property can be explained by decomposing it into two possible cases: no

causes are active (D = ∅), or at least one cause is active (D 6= ∅). If no causes

are active, then the effect must be inactive. This satisfies the failure conjunction

property. If at least one cause is active, then the effect is inactive if all active causes

fail to produce the effect; otherwise, the effect is active. The resultant causal event

has a probability equal to the product of the causal failures. This satisfies the failure

independence property.

However, neither the Noisy-OR nor the Noisy-MAX are able to model undermin-

ing interactions. This is a critical limitation that precludes the use of these models

in this thesis.

2.7.2 Noisy-AND

The Noisy-AND is a causal independence model that encodes reinforcing inter-

actions over binary variables.

Formally, let C = {c1, . . . , ck} be a set of uncertain causes that produces an

effect e. Let D be a subset of the causes in C where each cause in D actively produces

e. The subset D may or may not be equal to C. A Noisy-AND model represents the

causal interactions among C by the following property:
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P (e+ ← c+1 , . . . , c
+
k ) =

P (e+ ← c+1 )× · · · × P (e+ ← c+k ) if D = C

0 if D ⊂ C

In plain language, if all causes are true, then the probability of the active effect

is the product of all active causes. If any cause is inactive, then the probability of

the active effect is zero. The behaviour of the Noisy-AND gate is said to be impeding

since a single inactive cause prohibits an active effect. This prevents the Noisy-AND

model from encoding undermining interactions.

2.7.3 Non-Impeding Noisy-AND Trees

The previously discussed causal independence models encode reinforcing inter-

actions and reduce the number of parameters to linear on the number of causes.

However, each of these models have a significant limitation: they cannot encode un-

dermining interactions.

Non-impeding Noisy-AND Tree (NIN-AND Tree, or NAT) is a causal indepen-

dence model that can represent both reinforcement and undermining relationships.

The model represents the interactions graphically, using a recursive mixture of two

types of NIN-AND gates, dual NIN-AND gates and direct NIN-AND gates. Both

gate types accept causal events as inputs and produce an output causal event, with

a probability specified by the product of input causes’ probabilities.

Dual Gate

The dual gate operates similarly to a noisy-OR gate by modelling reinforcing

relationships between causes. The inputs and outputs of a dual gate are causal

failure events. The dual gate satisfies failure conjunction and failure independence

properties. The failure conjunction is expressed graphically by the AND gate and

the failure independence is expressed by the lack of connection between the causal
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Figure 2.6: An example dual gate with n input causal failure events.

failure events. For example, the dual gate pictured in Figure 2.6 accepts n causal

failure events as inputs: e+ 6← c+1 , . . . , e
+ 6← c+k and produces the output causal event

e+ 6← c+1 , . . . c
+
n .

Direct Gate

n
+
1

c+

, ...,

e+ +c
1
+e+ c

n
...

e+ c

Figure 2.7: An example direct gate with n input causal success events.

The direct gate operates similarly to a noisy-AND gate, with two key differences.

First, the direct gate models undermining interactions whereas the Noisy-AND models

reinforcement. More specifically, the direct gate operates on causal success events and

implements the success conjunction and success independence properties. The success

conjunction is expressed graphically by the AND gate and the success independence is

expressed by the lack of connection between the causal success input events. Second,

the direct gate is non-impeding, such that the presence of an inactive cause does not

force the output event of the direct gate to be inactive as well. As an example of a

direct gate, consider Figure 2.7, which has n causal successes as inputs: e+ ← c+1 ,
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e+ ← . . . , c+n and produces the output causal event e+ ← c+1 , . . . , c
+
n .

Recursive Combinations of NAT Gates

A recursive mixture of dual and direct gate can express complex relationships

between causes that produce an effect. This is achieved by connecting the output of

one gate as the input of another gate. A connection between gates may be negated,

denoted by a white dot, to negate the output of the upper gate before it is passed as

input to the lower gate.

+

c+
2, 3,

1
+e+ c

e+ c
2

e+
3
+c

e+ c+
1

c+

Figure 2.8: An example NAT with one dual gate (upper) and one direct gate (lower).

A complex NIN-AND is shown in Figure 2.8. The NAT consists of one dual

gate and one direct gate. The upper dual gate accepts two single causals as inputs

(e+ 6← c+1 and e+ 6← c+3 ) and outputs the causal event e+ 6← c1, c3. The lower direct

gate accepts inputs of the negation of the causal event from the above dual gate

(e+ ← c1, c3) along with the single causal (e ← c+2 ). The lower direct gate outputs

the causal event e+ ← c+1 , c
+
2 , c

+
3 .

To demonstrate how the probability of a causal event is retrieved from a NIN-

AND tree, consider the following single-causal probabilities specified for the example

NAT topology in Figure 2.8:

P (e+ ← c+1 ) = 0.8 P (e+ ← c+2 ) = 0.4 P (e+ ← c+3 ) = 0.6
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We can compute the causal event produced by the upper dual gate as the product

of the negated single-causals (e←c+1 and e+ ← c+3 ):

P (e+ 6← c+1 , c
+
3 ) = P (e+ 6← c+1 )× P (e+ 6← c+3 )

= (1− P (e+ ← c+1 ))× (1− P (e+ ← c+3 ))

= (1− 0.8)× (1− 0.6)

= 0.08

We can then compute the causal event produced by the lower direct gate as the

product of the negated output from the dual event and the single-causal

P (e+ ← c+1 , c
+
2 , c

+
3 ) = P (e+ ← c+1 , c

+
3 )× P (e+ ← c+2 )

= (1− P (e+ 6← c+1 , c
+
3 ))× P (e+ ← c+2 )

= (1− 0.08)× 0.4

= 0.368

NAT-Modelled Bayesian Networks

A NAT-modelled Bayesian network is a Bayesian network where all local dis-

tributions are modelled by NATs instead of tabular CPTs. By contrast, a normal

Bayesian network is a Bayesian network where all local distributions are modelled by

tabular CPTs.

Inference methods designed for normal Bayesian networks cannot be applied

to NAT-modelled Bayesian networks without normalization. Normalization is the

process by which each NAT model is expanded into a tabular CPT. This results in a

local structure with a size exponential on the family size, thereby discarding all space

savings of the NAT model.
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2.7.4 Inference by Multiplicative Factorization

Multiplicative factorization is an alternative inference method that preserves

some of the savings yielded by the NAT model. It was originally designed by Takawa

and D’Ambrosio [17] for the Noisy-OR and Noisy-MAX causal independence models

before being extended to NIN-AND by Xiang and Jin [24]. The method works by

factorizing a NIN-AND gate in a NAT model (Figure 2.9 (a)) into a new hybrid

graph (Figure 2.9 (b)) with both directed and undirected edges.

…. c1 c2 ck….

a1 a2 am….

e

e+↚c1 e+↚c2 e+↚ck

(a) (b)e+↚c1, c2, …, ck

Figure 2.9: (a) Dual gate with k causes. (b) Multiplicative factorization of (a).

The graph consists of one node ci per cause in the NAT, a node e for the effect

e, and one auxillary node aj for each active value in the effect domain dom(e). The

graph is connected as follows: Each cause node ci is connected to each auxillary

node ai by an undirected edge, and each auxillary node is connected to the effect

node e by a directed edge. Each undirected edge is assigned a potential f(aj, ci),

and the effect node e is assigned a potential f(e, a1, . . . , am). The hybrid graph can

subsequently be compiled into a (lazy) junction tree for inference. Refer to [24] for

further details on multiplicative factorization of NAT models.

Multiplicative factorization improves on normalization by preserving some of the

causal independencies. It has been shown to improve inference time by up to two

orders of magnitude in certain networks [24]. However, if the effect domain becomes
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large, the fully-connected nature of the auxiliary variables will result in an exponential

explosion, thereby limiting multiplicative factorization to smaller effect domains.

2.7.5 Inference by De-causalization

De-causalization is an alternative NAT inference method with the aim of avoiding

multiplicative factorization’s exponential explosion. The method involves replacing

each NAT gate (Figure 2.10 (a)) with a BN segment (Figure 2.10 (b)) quantified by

tabular local models that encodes an equivalent CPT. The resulting BN segment con-

sists of ordinary events while maintaining some of the NAT’s computational savings.

The generated BN segment consists of a node ci for each cause in the NAT gate, one

auxillary node dj for each cause in the NAT, and an effect node e. The auxillary

nodes are connected in a one-in-one-out fashion where their parent is a cause node

and their child is the effect node. A tabular local model is then assigned to each

node. Some are probabilistic, while others are deterministic. This process is repeated

for each NAT gate in a NAT-modelled BN. For further information on the conversion

process, refer to [25].

c1 c2 ck….

d1 d2 dk

e(a) (b)

….

….e+↚c1 e+↚c2 e+↚ck

e+↚c1, c2, …, ck

Figure 2.10: (a) Dual gate with k causes. (b) De-causalization of (a).

De-causalization improves on normalization by preserving some of the causal

independencies and multiplicative factorization by eliminating the exponential ex-

plosion. It has been shown to improve inference efficiency by up to two orders of
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magnitude in sparse networks [25].

2.7.6 Existence of NAT Models in Real-World BNs

It is necessary to confirm the existence of NAT models in real-world BNs. If the

existence is not proven, then NAT models would be restricted to synthetic or expert-

specified BNs. Thus, it is critical we establish that NAT models exist in real-world

BNs, which were not originally designed to be NAT modelled. The previous work of

Xiang and Baird [22] positively identified the existence of NAT models by experiment.

In this section, we summarize their approach and findings. Their experiment

began by sourcing 8 real-world BNs from a popular BN repository, bnlearn. On each

BN, they applied NAT compression to convert certain tabular CPTs into NAT models.

Tabular CPTs with less than 2 parents or where the node’s CPT is deterministic were

not compressed. The resultant NAT modelled BN is denoted a NMBN.

The BNs selected are summarized in Table 2.1. Column 1 indicates the network

name. Column 2 indicates the number of nodes in the BN. Columns 3 and 4 indicate

the number and percentage of nodes that were NAT modelled. Column 5 indicates

the number of edges in the BN. Column 6 indicates the density of the BN: % of links

added to a singly connected network.

Both the source BN and the NMBN were compiled for inference using the lazy

junction tree approach. Ten rounds of inference with different sets of evidence were

performed. The NAT’s modelling of real-world BNs compared the KL and ED dis-

tances of the posterior marginals computed by the source BN against the NMBN.

The results are presented in Figure 2.11. The previous work observed that the dis-

tances are reasonably small and that the posterior marginals are reasonably accurate,

given that 30− 50% of the families are NAT modelled. Notably, they also discovered

that the posterior error was smaller than the NAT compression error indicating that

compression errors are weakened, rather than exacerbated, by the inference.
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Network # of Nodes # NAT CPTs % NAT CPTs # of Links w

Alarm 37 16 43.2 46 28

Andes— 220 106 48.2 338 54

Barley 48 28 58.3 84 79

Child 20 6 30 25 32

Hepar2 70 33 47.1 123 78

Insurance 27 8 29.6 52 100

Win95pts 76 8 10.5 112 49

Munin 1041 11 1.1 1397 34

Table 2.1: NAT modelling was confirmed by evaluating its existence on these BNs

from the bnlearn repository. The Andes— BN is the Andes BN with 3 isolated nodes

removed. Table reprinted from [22].

Figure 2.11: KL and ED Distances from comparison of posterior marginals of 8 real-

world BNs. Figure reprinted from [22].

2.8 Context-Specific Independence

Causal independence models are not the only way to address the exponential

complexity of tabular CPTs. An alternative approach is context-specific independence

(CSI), which exploit relationships between the child variable and some of its parent

variables.

Prior to introducing CSI, it is first necessary to introduce the notion of a context.
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Context Let n be a generic node in a Bayesian network. A context is an assignment

of value(s) to a subset of n’s parents π(n).

Consider the variable z in Figure 2.3. Valid contexts include (but are not limited

to) {w = {w0}} and {w = {w0}, y = {y0, y1}}. We can now introduce context-specific

independence.

Context-specific Independence For disjoint sets of variables A,B,Z, and a non-

empty context Cxt, A and B are said to be contextually independent given Z and

context Cxt = cxt, denoted Ic(A;B|Z,Cxt = cxt), iff

P (A|B,Z, cxt) = P (A|Z, cxt) whenever P (B,Z, cxt) > 0.

For example, two CSI interactions exist in the CPT P (z|y, w, x) shown in Fig-

ure 2.3. The first occurs when (y = y0, w = w0), the probabilities of P (z|y, w, x) are

the same, regardless of the value of x. This interaction can be denoted Ic(z;x|y =

y0, w = w0). The second interaction occurs when (y = y1), the probabilities of

P (z|y, w, x) are the same, regardless of the values of w and x. This interaction can

be denoted Ic(z;w, x|y = y1).

Another way to think of CSI is to consider a real-world example. Suppose we are

modelling an individual’s recovery from surgery, depending on whether or not they

use physiotherapy and the skill of the physiotherapist. If the patient completes phys-

iotherapy, then the likelihood of recovery increases. The magnitude of the increase

is dependent on the skill of the physiotherapist. A highly skilled physiotherapist will

result in a significant increase to the likelihood of recovery, whereas a less skilled phys-

iotherapist will result in a smaller increase to the likelihood of recovery. On the other

hand, if the patient declines physiotherapy, then the likelihood of recovery decreases.

Assuming each variable is binary, a tabular CPT would represent this environ-

ment with 22 = 4 instantiations: one for each possible instantiation of values. How-

ever, it is observed that when the patient declines physiotherapy, the likelihood of

34



recovery decreases, regardless of the skill of the physiotherapist. Thus, the model

exhibits the CSI interaction where the patient’s recovery is contextually independent

of the skill of the physiotherapist when the patient declines physiotherapy. A CSI

model can exploit this interaction to reduce the number of parameters needed.

In the following sections, we discuss the various representations of CSI and a

compatible method to support inference for each.

2.8.1 Default Tables & Normalization

Default tables are a CSI model that improve on tabular CPTs by only explicitly

representing a subset of the instantiations on the parent variables. Formally, a default

table [6] is specified by a a triplet (M,P,Csi) where M is a set of variables, P is the

set of all CPDs over the variables M , and Csi is a single CSI interaction over the

variables M . The CSI interaction Csi partitions P into two segments. The first

segment contains all CPDs whose instantiations satisfy Csi. The second segment

contains all remaining CPDs in P . The default table encodes this partitioning of P

as follows: Each CPD in the first segment is consolidated into a single row (denoted

by an ∗), while the CPDs in the second partition are expressed with no change.

P (z|y, w, x)

y w x z0 z1
y0 w0 x0 0.9 0.1

y0 w0 x1 0.9 0.1

y0 w1 x0 0.2 0.8

y0 w1 x1 0.1 0.9

∗ 0.4 0.6

Figure 2.12: Default table for P (z|y, w, x)

In Figure 2.12, the CSI interaction Ic(z;w, x|y = y1) is encoded by explicitly

representing all instantiations that satisfy the interaction by the default row (denoted

by ∗), while all other rows remain unchanged.
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However, default tables suffer from two critical limitations. First, a default table

can only express one CSI interaction. Any other CSI interactions must be explicitly

represented. For instance, the CSI interaction Ic(z;x|y = y0, w = w0) in Figure 2.12

cannot be exploited and must be explicitly encoded. Second, there does not appear to

be any efficient inference methods for default tables. To perform inference on a default

table, one must expand the default table into a tabular CPT. The tabular CPT is

then compatible with any common BN inference algorithm. This is an insufficient as

all representational savings from the default table will be discarded by the expansion.

Hence, the limitations preclude the use of default tables in this thesis.

2.8.2 Rule-based Representation & Variable Elimination

A rule-based CPT is a set of rules of the form α | Cxt : P (α | Cxt) where α is

a variable, Cxt is context and P (α | Cxt) is the CPD specified by its parameters1.

The context is encoded as a logical sentence where each assignment in the context

is conjuncted together. Each instantiation must be encoded by a rule but many

instantiations can be encoded by the same rule.

CSI can be exploited by applying operations on the sentences, which simplify the

rules. One such operation is the combination operation, which consolidates rules that

correspond to identical CPDs. Let α | Cxt1 : P (α | Cxt1) and α | Cxt2 : P (α | Cxt2)

be two rules in the same rule base such that P (α | Cxt1) = P (α | Cxt2). The combi-

nation operation would replace the two rules with a new rule holding the intersection

of Cxt1 and Cxt2:

α | Cxt1 ∩ Cxt2 : P (α | Cxt1)

Additional operations include the split operation, and an extension of a poten-

tial’s product and marginalization operations to rules. The details of these rules are

omitted due to space considerations. Refer to [13] for further details.

1The rule-based representation’s notation has been modified from [13] to distinguish it from the causal

event notation.
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z | y = y0 ∧ w = w0 : 0.9

z | y = y0 ∧ w = w1 ∧ x = x1 : 0.2

z | y = y0 ∧ w = w1 ∧ x = x1 : 0.1

z | y = y1 : 0.4

Figure 2.13: Rule-based representation of the CPT P (g|f, d, e) in Figure 2.3.

The CPT P (z | y, w, x) is expressed in a rule-based form in Figure 2.13. The

combination operation was performed on each CSI interaction. For instance, four

rules with matching CPDs that all contain the context (y = y1) were combined into

one rule z | y = y1 : 0.4.

The marginalization and product rules allows for variable elimination to be ex-

tended to a set of rules [13]. Unfortunately, variable elimination appears to be the

only inference method defined for the rule-based representation. As stated in the in-

troduction to variable elimination on CPTs (Section 2.5.2), this thesis avoids its use

due to its inability to incorporate new evidence at runtime without re-compilation.

2.8.3 CPT-tree & Network Transformation

A CPT-tree is a CSI model introduced by Boutillier et al. [3], which uses a tree

structure to specify the CPT for a variable x conditioned on its parents π(x). The

tree is directed from the root (node with no parents) to the leaves (node with no

children). The tree structure restricts each node to have at most one parent resulting

in a single path from the root node to each node in the tree.

Each non-leaf node is a variable in π(x). Each outgoing edge from a node is

labelled by a value the variable holds2. The path from the root node to a leaf node

encodes a context. Each leaf node encodes a CPD of x, given the context. We note

2In Section 4.1, we generalize the labelling of edges to allow an edge to encode multiple values.
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Figure 2.14: CPT-tree for P (g|f, d, e).

that a CPT-tree is not a decision tree. While the semantics and visual appearance

are similar; a CPT-tree exists in an uncertain environment whereas a decision tree

exists in a deterministic environment.

The CPT-tree for the tabular CPT P (z|y, w, x) is shown in Figure 2.14. The CSI

interactions are observable when paths do not include all variables in π(x). Specifi-

cally, the CSI interaction Ic(z;w, x|y = y1) is encoded by the right-most branch from

the root node f . The other CSI interaction Ic(z;x|y = y0, w = w0) is encoded by the

left-most branch. Each CPD can be retrieved from the label of the leaf node. For

instance, the CPD P (z|y = y0, w = w1, x = x1) can be retrieved by following the

left path from the root node (y = y0), then the right node (w = w1), and finally, its

right child (x = x1). Hence, a CPT-tree can be normalized to an exponentially sized

tabular CPT by iterating through each instantiation of the parent variables in the

CPT-tree and retrieving the appropriate CPD.

We refer to BNs where some families are modelled by CPT-trees as CPT-tree-

modelled BNs. There are various inference methods that support inference with CPT-

tree-modelled BNs, including network transformation and clustering [3], cutset con-

ditioning [3], and variable elimination [13]. In this thesis, we will focus on network

transformation and clustering.

Network transformation and clustering consists of replacing each CPT-tree mod-
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Figure 2.15: BN segment generated from network transformation of the CPT-tree

in Figure 2.14.

elled family (Figure 2.14) with a BN segment (Figure 2.15) quantified by tabular local

models that encodes an equivalent CPT while preserving some of the context-specific

independencies. The resulting BN is then compatible with any standard BN inference

algorithm.

The initial idea of this algorithm was proposed by [3] but they did not present a

formal algorithm. A contribution of this thesis, presented in Chapter 4, is to formalize

an algorithm suite for this method. We omit further discussion on this method until

that section.
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Chapter 3

Orthogonality of NAT & CSI Models

This chapter confirms the necessity of the novel contribution introduced in our

work. The structure of the chapter is as follows. Section 3.1 introduces the premise

and motivation of testing for orthogonality. Section 3.2 discuss how a CSI model can

be approximated by a NAT model. Section 3.3 outlines how a NAT model can be

approximated by a CSI model. We test the orthogonality of NAT and CSI model

in two parts. Section 3.4 investigates if NAT models are able to encode CSI CPTs,

while Section 3.5 explores if CSI models are able to encode NAT CPTs.

3.1 General Information on Orthogonality

Two models are orthogonal if neither model is able to efficiently and exactly

encode the other. Otherwise, the models are said to be not orthogonal. To illustrate

the concept of orthogonality, consider the following two examples.

i) Rational and irrational numbers are orthogonal representations of real num-

bers. The reason for this is a rational number cannot represent an irrational number,

and conversely, an irrational number cannot represent a rational number. Consider

the irrational number π; there does not exist any rational number composed of two

integers a and b such that a
b

= π. Likewise, there does not exist any irrational number

that can represent the rational number 3
2
. Hence, the models are orthogonal since

neither representation can exactly encode the other.

ii) The Noisy-OR and NIN-AND models are not orthogonal, since the Noisy-OR

model is a special case of the NIN-AND model. The rationale for this can be demon-
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strated in two parts. It is first necessary to show that there exists a NIN-AND model

that cannot be encoded by a Noisy-OR. This can be proven by the fundamentals:

A NIN-AND model encodes both reinforcing and undermining interactions, while a

Noisy-OR model only encodes reinforcing interactions. Hence, any NIN-AND model

containing an undermining interaction cannot be expressed by a Noisy-OR. Likewise,

we must demonstrate that a NIN-AND model can efficiently and exactly encode ev-

ery Noisy-OR model. While a formal justification for this exists in [23], for simplicity

purposes, we present a sufficiently general example. Consider a BN family with a

child variable e that is dependent on three parents c1, c2 and c3. All variables are

binary since the Noisy-OR is restricted to binary variables. All causes reinforce each

other. In Figure 3.1, we show that the CPT generated by the Noisy-OR is equivalent

to the CPT specified by a dual NIN-AND gate. Hence, the models are not orthogonal

since there exist NIN-AND models that cannot be encoded by the Noisy-OR models

and every Noisy-OR model is a special case of the dual NIN-AND gate.

P (e+ ← c+1 ) = 0.9 P (e+ ← c+2 ) = 0.8 P (e+ ← c+3 ) = 0.7

P (e+|c1, c2, c3)
c1 c2 c3 by Noisy-OR by NIN-AND

T F F 0.90 (given) 0.90 (given)

F T F 0.80 (given) 0.80 (given)

F F T 0.70 (given) 0.70 (given)

T T T 0.994 0.994

T T F 0.98 0.98

T F T 0.97 0.97

F T T 0.94 0.94

F F F 0 0

Figure 3.1: Binary-valued CPT P (e+|c+1 , c+2 , c+3 ) where all causes reinforce each other

demonstrating that a Noisy-OR can be encoded by the NIN-AND gate.

To resolve any potential ambiguities, the notion of orthogonality presented in

this work differs from the geometric interpretation of orthogonality. In geometry,
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two vectors are orthogonal if they are perpendicular at their point of intersection.

When two vectors −→q ,−→r are orthogonal, their dot product is 0 (−→q ·−→r = 0), and thus

the length of the vector projection of −→q onto −→r is 0, and equivalently, −→r projected

onto −→q is 0. It can be interpreted that neither of the orthogonal vectors −→q ,−→r can

provide any approximation of the other. By contrast, in this work, the concept of

orthogonality only requires that neither model can efficiently and exactly represent

the other. It does not require that the models be unable to approximate each other.

Moreover, it is of critical importance to the necessity of this research that we

demonstrate the NAT and CSI models are orthogonal. If they are not orthogonal,

then the necessity of this research is nullified since an inference method designed for

the more general model could be applied to both classes of local models. But, if the

models are orthogonal, then a novel method is needed to support inference on a BN

modelled with both NAT and CSI local models.

Before testing for the orthogonality of the NAT and CSI models, it is first neces-

sary to demonstrate how one model may be converted into the other. In this chapter,

we make use of the CPT-tree CSI representation; however, the conversion can be

trivially applied on any CSI representation.

The following two sections demonstrate the conversion in both directions: Sec-

tion 3.2 shows the conversion from a CSI model to a NAT model. Section 3.3 shows

the conversion from a NAT model to a CSI model.

3.2 Converting from a CSI Model to a NAT Model

We demonstrate the conversion from a CSI model to a NAT model by example.

Since there does not exist a direct conversion method between NAT and CSI, we

must use an intermediary representation to facilitate the conversion. The interme-

diary representation must support conversion from a CPT-tree to the intermediary

representation, and conversion from the intermediate representation to a NAT model.
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Thus, a tabular CPT is selected as the intermediary representation since it satisfies

both properties.

Suppose, we have the CPT-tree in Figure 3.2 specifying the CPT of a family with

the child variable z and three parents w, x, y. All variables are binary. The CPT-tree

admits 1 CSI interaction: IC(z;w|y, x = x1), which states that when x = x1, z is

contextually independent of w for each y.

x

y

w

z(0.2) z(0.1)z(0.9)

y 0

x1

y0 y
1

w
0 w

1
w

z(1)

w 0
w

1

y
z(0.7)z(0.4)

y1

x 0

Figure 3.2: Binary CPT-tree encoding the CSI interaction IC(z;w|y, x = x1).

3.2.1 Normalization of a CPT-tree to a Tabular CPT

The next step is to normalize the CPT-tree to a tabular CPT. The resultant

tabular CPT is presented in Figure 3.3. We note the values encoded in the resultant

CPT are exactly identical to the values expressed by the CPT-tree.

3.2.2 Compression of a CSI CPT to a NAT Model

We can now apply compression on the tabular CPT to convert the tabular CPT

into a NAT model. Let the 0th index of a variable’s value be the inactive state

(e.g., w0 = w−) and the 1st index of a variable’s value (e.g., w1 = w+) be the active

state. The resultant NAT model is shown in Figure 3.4 with the following single-

causals:

Overall, this process allows for the conversion of an existing CPT-tree into a
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P (z|x, y, w)

x y w z0 z1
x0 y0 w0 1 0

x0 y0 w1 0.9 0.1

x0 y1 w0 0.2 0.8

x0 y1 w1 0.1 0.9

x1 y0 w0 0.4 0.6

x1 y0 w1 0.4 0.6

x1 y1 w0 0.7 0.3

x1 y1 w1 0.7 0.3

Figure 3.3: Tabular CPT from the CPT-tree in Figure 3.2.

P (z+ ← x+) = 0.6 P (z+ ← y+) = 0.8 P (z+ ← w+) = 0.1

z+←x+

z+ ↚ x+, y+,w+

z+←y+

z+↚w+

Figure 3.4: NAT model from the tabular CPT in Figure 3.3

NAT model. We omit a comparison of the resultant NAT model against the source

CPT-tree since a more comprehensive evaluation is presented in Section 3.4. In the

next section, we discuss the inverse of converting a NAT model to a CSI model.

3.3 Converting from a NAT Model to a CSI Model

In this section, we outline a method that estimates the number of parameters

needed to define a CSI model. While this suffices for our experiments, we leave the
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learning of a CPT-tree from a tabular CPT as future work.

By definition, a CPT exhibits CSI if there are duplicated CPDs. If there are no

duplicated CPDs, then a CSI representation’s space complexity will degrade to a size

exponential on the number of parents. Since a NAT is capable of representing CPTs

without duplicated CPDs efficiently, it is necessary to weaken the criterion of CSI

to similar probabilities. In other words, if two probabilities are very similar, a CSI

model can encode both probabilities as a single value with a small error.

3.3.1 Normalization of a NAT Model to a Tabular CPT

Suppose, we would like to convert the NAT in Figure 3.5 (a) to a CSI model.

The NAT model consists of 3 binary causes x, y, w that produce an effect e. All three

causes undermine each other. Let the 0th index of a variable’s value be the inactive

state (e.g., w0 = w−) and the 1st index of a variable’s value (e.g., w1 = w+) be the

active state.

Since there does not exist a direct conversion method, we will use a tabular CPT

as an intermediary representation. Thus, the first step is normalize the NAT model

into a tabular CPT. The resultant CPT is represented in Figure 3.5 (b). We note the

values encoded in the resultant CPT are exactly identical to the values expressed by

the NAT model.

3.3.2 Clustering a CPT to Estimate Number of CPT-Tree Parameters

Clustering is the process of grouping similar objects together such that the ob-

jects in the same cluster (group) have similar properties. We can apply clustering

on a CPT’s probabilities to estimate the number of parameters a CSI model would

need to approximately encode a NAT CPT. More specifically, if we apply clustering

on a binary NAT CPT, each cluster would represent a node in a CPT-tree, and the

total number of clusters would represent the total number of parameters required

to specify the CPT. Thus, if the clustering results in tight clusters (small distance
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P (z+ ← x+) = 0.39 P (z+ ← y+) = 0.40 P (z+ ← w+) = 0.41

z+←x+

z+←x+, y+,w+

z+←y+
z+←w+

(a)

P (z|x, y, w)

x y w z0 z1
x0 y0 w0 1 0

x0 y0 w1 0.59 0.41

x0 y1 w0 0.6 0.4

x0 y1 w1 0.836 0.164

x1 y0 w0 0.61 0.39

x1 y0 w1 0.84 0.16

x1 y1 w0 0.844 0.156

x1 y1 w1 0.936 0.064

(b)

Figure 3.5: (a) NAT over all binary variables to be converted to a CSI model. (b) CPT

obtained by normalizing NAT model in (a).

between member values), and the total number of clusters is significantly less than

the number of NAT parameters, then it is worthwhile to express the NAT CPT as a

CSI model. Tight clusters indicate smaller approximation errors and a fewer number

of clusters indicates the CSI model saves space.

Based on this idea, the algorithm Cluster takes a binary-valued NAT CPT T

and a distance bound δ. The algorithm groups values in the CPT into a set of clusters

Ψ, such that the following conditions hold:

1. For each cluster Q ∈ Ψ and each pair of values p, q ∈ Q, |p − q| ≤ δ. This

condition specifies the inner cluster distance (distance between the minimum

and maximum values) within each cluster is upper bounded by δ.

2. For each two clusters, Q,R ∈ Ψ, let minQ,maxQ,minR,maxR be extreme values

in Q and R, respectively. Either maxQ < minR or maxR < minQ. This condition

specifies that the clusters are ordered in ascending order, such that a cluster

with smaller member values is positioned before a cluster with larger member

values.
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3. For clusters Q,R ∈ Ψ where maxQ < minR, we have minR−maxQ > δ. This

condition specifies that the distance between any two clusters must be greater

than δ.

The algorithm Cluster satisfies these conditions.

Algorithm 3.1: Cluster(T, δ)

1 sort values of T in ascending order;

2 Ψ = an empty set of clusters [];

3 initialize Q to the cluster {t0};

4 for each prob ti of T[t1, ..., tk],

5 if (ti − first value of Q) ≥ δ,

6 add Q to Ψ;

7 Q = an empty cluster {};

8 }

9 add ti to Q;

10 }

11 if Q is not empty, add Q to Ψ;

12 return Ψ;

To demonstrate the clustering algorithm, consider the binary-valued CPT that

specifies P (z | x, y, z) shown in Figure 3.5 (b). The clustering algorithm’s parameter

T is specified as P (z = z1 | x, y, w) where z1 is arbitrarily selected ∈ dom(z). The

values are shown in Figure 3.6 (panel a). The distance bound δ is specified to be 0.02.

The algorithm begins by sorting T in ascending order (panel b). We then initialize

a set of empty clusters Ψ and create a new cluster Q containing the first element

t0 = 0 (panel c). The algorithm then iterates from the second probability to the last

probability in the sorted order.

The 1st iteration ti = 0.064, checks on line 5 if ti is in the previous cluster, or if

it is necessary to create a new cluster. This consists of computing ti minus the first
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(a)
0 0.41 0.4 0.164 0.39 0.16 0.156 0.064

(b)

(d)

(f)

(h)

(j)

(c)

(e)

(g)

(i)

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 Q3 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 Q3 Q3 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 Q3 Q3 Q4 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 Q3 Q3 Q4 Q4 ^

0 0.064 0.156 0.16 0.164 0.39 0.4 0.41
Q1 Q2 Q3 Q3 Q3 Q4 Q4 Q4

Figure 3.6: Clustering of CPT for P (z = z1|x, y, w) where all variables are binary

and the distance bound δ = 0.02.

value in the cluster (0). Since the 0.064− 0 = 0.064 > δ, the condition is met and it

is necessary to create a new cluster. This process consists of adding the cluster Q to

the set of clusters Ψ and resetting Q to an empty cluster (panel d). We then add ti

to newly reset cluster and proceed to the next iteration.

The 2nd iteration ti = 0.156, repeats the check on line 5 to determine if ti should

be grouped in the previous cluster, or if it is necessary to create a new cluster. Since

ti minus the first value in the cluster (0.064) is greater than δ, it is necessary to create

a new cluster. We add the cluster Q to the set of clusters Ψ and reset Q to an empty

cluster (panel e). We then add ti to the newly reset cluster and proceed to the next

iteration.

The 3rd iteration ti = 0.16 tests if it should be grouped in the previous cluster,

or if it is necessary to create a new cluster. Since ti minus the first value in the cluster

is ≤ δ, we need not create a new cluster. The ti value is subsequently added to the

cluster Q (panel f). The iterations continue for each of the remaining values in the

CPT (panel g through j). Once all values have been clustered, it is possible that the

last cluster is non-empty and has not been added to Ψ. Hence, once all iterations are

complete, we add Q to Ψ on line 11. Figure 3.7 shows the resulting clustered CPT.
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P (z|x, y, w)

Clust. x y w z0 z1
Q1 x0 y0 w0 1 0

Q2 x1 y1 w1 0.936 0.064

Q3 x0 y1 w1 0.844 0.156

Q3 x1 y0 w1 0.84 0.16

Q3 x1 y1 w0 0.836 0.164

Q4 x0 y0 w1 0.61 0.39

Q4 x0 y1 w0 0.6 0.4

Q4 x1 y0 w0 0.59 0.41

Figure 3.7: CPT of P (z|x, y, w) with initial clusters specified.

While this clustering algorithm groups the values according to a distance bound,

it does not guarantee that each value in the cluster corresponds to instantiations that

are exploitable by CSI.

Two instantiations in a CPT α1, α2 are exploitable by CSI iff their intersection

(the context) is non-empty α1 ∩ α2 6= ∅. An exploitable cluster is expressible by a

single CPT-tree leaf. Conversely, if the intersection of the instantiations is empty,then

the cluster is not expressible by a single CPT-tree leaf since the conditions for context-

specific independence are not met as it requires a non-empty context.

Consider, the clusters Q3 in the CPT shown in Figure 3.7. It groups 3 CPDs cor-

responding to the instantiations: (x = x0, y = y1, w = w1), (x = x1, y = y0, w = w1),

and (x = x1, y = y1, w = w0). It can be observed that the intersection of these

instantiations is an empty set.

x0 ∩ x1 ∩ x1 ∪ y1 ∩ y0 ∩ y1 ∪ w1 ∩ w1 ∩ w0 = ∅

Thus, the cluster would not be exploitable by CSI. The number of clusters ob-

tained by the clustering algorithm is consequently a lower-bound on the number of

parameters when the NAT CPT is approximated by a CSI model. We resolve this

issue by splitting such clusters into the largest compatible sub-clusters possible.
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3.3.3 Splitting Clusters to Ensure Exploitability

The algorithm Split takes a set of clusters Ψ that may or may not be exploitable,

and returns a set of exploitable clusters Ψ′. The set of input clusters Ψ is typically

obtained from the Cluster algorithm.

Algorithm 3.2: Split(Ψ)

1 λ = a queue initialized to Ψ;

2 Ψ′ = empty set of clusters [];

3

4 while λ is non−empty,

5 Qi = pop front of queue;

6 if Qi is of size 1, add Qi to Ψ′ and continue;

7 if intersection of all instantiations in Qi 6= ∅,

8 add Qi to Ψ′ and continue;

9 vi = most frequent variable value held by instantiations in Qi;

10 R = all instantiations in Qi where vi is assigned;

11 S = all instantiations in Qi where vi is not assigned;

12 add R to Ψ′ and append S to λ;

13 }

14 return Ψ′;

The Split algorithm works as follows. On line 1, we initialize a queue λ holding

all clusters in Ψ. The order of clusters inserted into the queue is immaterial. On line

2, we initialize an empty set of clusters Ψ′ to hold all exploitable clusters.

On line 4, we enter the main loop that continues looping until the queue is empty.

On line 5, we pop the front of the queue to obtain the current cluster Qi that will be

tested. On lines 6 and 7, we check if a splitting is unnecessary. This consists of two

tests: (i) if the cluster Qi contains 1 instantiation, then it is said to be exploitable.

(ii) If all instantiations in the cluster Qi are exploitable such that their intersection

50



is non-empty. If either of these tests are positive, then we add the cluster to the set

of exploitable clusters Ψ′ and continue to the next iteration. If both tests fail, we

proceed to the splitting on lines 9 through 12.

The splitting first consists of identifying the most frequent value of all variables

across the instantiations in the cluster. Let the most frequent value across all variables

be the value vi assigned to variable v. We then partition the instantiations in the

cluster Qi into 2 segments: R and S. The segment R contains all instantiations where

v = vi and S contains all instantiations where v 6= vi. We then add R to the set of

exploitable clusters Ψ′ and append S to the queue λ. The algorithm continues on to

the next cluster in the queue.

We demonstrate the algorithm on the clustered CPT shown in Figure 3.7. We

begin by initializing λ to the set of clusters:

{

{(x = x0, y = y0, w = w0)},

{(x = x1, y = y1, w = w1)},

{(x = x0, y = y1, w = w1), (x = x1, y = y0, w = w1), (x = x1, y = y1, w = w0)},

{(x = x0, y = y0, w = w1), (x = x0, y = y1, w = w0), (x = x1, y = y0, w = w0)}

}

We initialize the exploitable clusters set Ψ′ to an empty set. For the 1st iteration,

we pop the following cluster:

{(x = x0, y = y0, w = w0)}

We then test if the cluster contains 1 instantiation. Since this test passes, we

add Qi to the set of exploitable clusters Ψ′ and proceed to the next iteration.
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The 2nd iteration pops the following cluster from the queue:

{(x = x1, y = y1, w = w1)}

Since it also contains 1 instantiation, it is added to the set of exploitable clusters Ψ′.

The 3rd iteration pops the following cluster from the queue:

{(x = x0, y = y1, w = w1), (x = x1, y = y0, w = w1), (x = x1, y = y1, w = w0)}

We then test if the cluster contains 1 instantiation. This test fails since the

cluster contains 3 instantiations. We then test if the entire cluster is exploitable.

x0 ∩ x1 ∩ x1 ∪ y1 ∩ y0 ∩ y1 ∪ w1 ∩ w1 ∩ w0 = ∅

The intersection of all assignments in Qi is an empty set. Hence, the conditional

on line 7 fails as the cluster is not exploitable and must be split. We then identify the

most frequent value held by instantiations. Table 3.1 shows the result of recording

the frequency of each value in Qi.

vi Count of vi in Qi

x1 2

y1 2

w1 2

x0 1

y0 1

w0 1

Table 3.1: Frequency of values in 3rd iteration’s cluster.

In this case, there is a 3-way tie for the most frequent value of 2. We settle the

tie by arbitrarily selecting one value — x1. We note that it is critical to select one

maximum frequency value, not multiple. Selecting multiple values will not maximize

the size of splits and will result in sub-optimal clusters. For example, selecting x1

by itself has 2 matching instantiations but selecting x1 ∧ w1 has only 1 matching

instantiation.
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Next, we partition the cluster into two segments R and S. The segment R

contains all instantiations where x = x1:

{(x = x1, y = y0, w = w1), (x = x1, y = y1, w = w0)}

The segment S contains all instantiations where x 6= x1:

{(x = x0, y = y1, w = w1)}

The segment R is now exploitable and can be added to the set of exploitable

clusters Ψ′, while the segment S may not be exploitable and is appended to the

queue λ in order for further testing and splitting if needed.

The 4th iteration pops the following cluster from the queue:

{(x = x0, y = y0, w = w1), (x = x0, y = y1, w = w0), (x = x1, y = y0, w = w0)}

This cluster fails the tests on lines 5 and 6 as the cluster is not a single instantiation

nor is the cluster’s intersection an empty set:

x0 ∩ x0 ∩ x1 ∪ y0 ∩ y1 ∩ y0 ∪ w1 ∩ w0 ∩ w0 = ∅

We then proceed to the identification of the most frequent value as shown in Ta-

ble 3.2.

vi Count of vi in Qi

x0 2

y0 2

w0 2

x1 1

y1 1

w1 1

Table 3.2: Frequency of values in 4th iteration’s cluster.

In this case, there is a 3-way tie for the most frequent value of 2. We settle the

tie by arbitrarily selecting one value — x0. Next, we partition the cluster into two
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segments R and S. The segment R contains all instantiations where x = x0:

{(x = x0, y = y0, w = w1), (x = x0, y = y1, w = w0)}

And, the segment S contains all instantiations where x 6= x0:

{(x = x1, y = y0, w = w0)}

The segment R is now exploitable and can be added to the set of exploitable

clusters Ψ′, while the set S may not be exploitable and is appended to the queue λ

in order for further testing and splitting if needed.

The 5th iteration pops the following cluster from the queue:

{(x = x0, y = y1, w = w1)}

This cluster is of 1 instantiation and thus is added directly to set of exploitable

clusters. The 6th iteration also contains one instantiation and is added to the set

of exploitable clusters Ψ′. The 5th and 6th iterations popped clusters that were ap-

pended to the queue by the R/S partitioning performed in the 3rd and 4th iterations,

respectively.

The CPT shown in Figure 3.8 shows the final clustered CPT such that each

cluster is exploitable. The CPT contains 6 instantiations, which is an increase of 2

instantiations (printed in red) relative to the initial clustering shown in Figure 3.7.

3.3.4 Extending Clustering to Multi-valued Variables

The clustering algorithm outlined by the Cluster algorithm is restricted to bi-

nary variables. In this section, we discuss how the clustering approach may be ex-

tended to multi-valued variables. This is achieved by building the test up from binary

variables to ternary, and finally to the general variables. While we did not perform
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P (z|x, y, w)

Clust. x y w z0 z1
Q1 x0 y0 w0 1 0

Q2 x1 y1 w1 0.936 0.064

Q3 x1 y0 w1 0.844 0.156

Q3 x1 y1 w0 0.84 0.16

Q4 x0 y0 w1 0.61 0.39

Q4 x0 y1 w0 0.6 0.4

Q5 x0 y1 w1 0.836 0.164

Q6 x1 y0 w0 0.59 0.41

Figure 3.8: CPT of P (z|x, y, w) and its clusters after splitting all unexploitable clus-

ters. The newly added clusters that were introduced by the splitting in order to make

all clusters exploitable are printed in red.

experiments with this extension due to time constraints, the general case was imple-

mented in Java to verify correctnesss.

Binary Case

Consider the CPT P (x|y, z) with variables x, y, z over the domains dom(x) =

{x0, x1}, dom(y) = {y0, y1}, dom(z) = {z0, z1}, respectively. Suppose, we would

like to know if the CPT encodes the CSI interaction IC(x; z|y = y0). This can be

determined by performing the following test:

P (x0|y0, z0) = P (x0|y0, z1)

In plain language, we must test that P (x0|y0, z) is the same for both possible

values of z: z = z0 and z = z1.

Figure 3.9 presents an example CPT specifying P (x|y, z) where x, y, z are all

binary variables. The CPT exhibits the CSI interaction as P (x = x0|y = y0, z = zi) =

0.3 where i = 0, 1. It is also observed that testing for P (x = x1|y = y0, z = zi) = 0.7

is redundant, given that we have established x0 and that the CPDs must sum to 1.
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y z x = x0 x = x1
y0 z0 0.3 0.7

y0 z1 0.3 0.7

y1 z0 0.1 0.9

y1 z1 0.2 0.8

Figure 3.9: Example CPT with three binary variables

Ternary Case

Now, suppose we extend the domains of all variables to ternary: dom(x) =

{x0, x1, x2}, dom(y) = {y0, y1, y2} and dom(z) = {z0, z1, z2}. To determine if the

same CSI interaction IC(x; z|y = y0) is exhibited by the CPT, we now must perform

the following tests:

P (x = x0|y = y0, z = z0) = P (x = x0|y = y0, z = z1) = P (x = x0|y = y0, z = z2)

and

P (x = x1|y = y0, z = z0) = P (x = x1|y = y0, z = z1) = P (x = x1|y = y0, z = z2)

Hence, the number of tests required to establish CSI has increased, making the

conditions for CSI more stringent. In other words, testing for CSI with binary vari-

ables requires only 1 condition to be met, but testing for CSI with ternary variables

requires 6 conditions to be met. Note, we do not have to test P (x = x2|y = y0, z = zi)

since all CPDs sum to 1. To demonstrate the ternary case, consider the example CPT

shown in Figure 3.10.

In the above CPT, we can see that CSI interaction holds as P (x = x0|y = y0, z =

zi) = 0.3 and P (x = x1|y = y0, z = zi) = 0.5 where i = 0, 1. It is also observed that

testing for P (x = x2|y = y0, z = zi) = 0.2 is redundant, given that we have already

established x0 and x1 and know that the CPDs must sum to 1.
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y z x = x0 x = x1 x = x2
y0 z0 0.3 0.5 0.2

y0 z1 0.3 0.5 0.2

y0 z2 0.3 0.5 0.2

y1 z0 0.1 0.2 0.7

y1 z1 0.2 0.6 0.2

y1 z2 0.3 0.4 0.3

y2 z0 0.4 0.5 0.1

y2 z1 0.6 0.1 0.3

y2 z2 0.7 0.1 0.2

Figure 3.10: Example CPT with three ternary variables

General Case

To generalize the test for context-specific independence, let the domain of x be

of size m, and let the domain of z be of size n. We then will have m× n tests of the

form:

P (x = x0|y = y0, z = z0) = · · · = P (x = x0|y = y0, z = zn−1)

P (x = x1|y = y0, z = z0) = · · · = P (x = x1|y = y0, z = zn−1)

. . .

P (x = xm−1|y = y0, z = z0) = · · · = P (x = xm−1|y = y0, z = zn−1)

In order for CSI to hold, the above expression must hold for all values of x, z

from 0 to m− 1 and 0 to n− 1, respectively.

3.4 Evaluating Expression of CSI Models as NAT Models

Theoretically, if the NAT model were able to encode a CSI CPT, then it should

be able to exactly model every CSI CPT and require the same or fewer parameters
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than a CSI representation. Hence, in this section, we conduct an experiment to find

counterexamples to demonstrate by contradiction that there exists CSI models, which

cannot be encoded by the NAT model exactly.

3.4.1 Pre-processing: Adding CSI to an Existing CPT

In this section, we outline the method used to randomly generate CPT-trees that

exhibit the same CSI interaction but encode different CPTs over the same BN family

topology. This method is needed because we wish to identify repeatable counterex-

amples of CSI models that cannot be encoded by a NAT model. Hence, it is necessary

to demonstrate that some CSI interaction(s) are not expressible by a NAT model over

a sufficiently wide range of CPTs.

Unfortunately, naively randomly generating CPT-trees has no guarantee to en-

code the same CSI interaction. This can be mitigated by adding CSI interactions to

a randomly generated CPT, denoted P ∗, over the same variables. Initially, P ∗ would

not encode any CSI interactions. Our method modifies the CPDs in P ∗ affected by

the CSI interaction, while leaving the non-affected CPDs unchanged. This results in

a randomly generated CPT exhibiting the same CSI interaction, but with different

values.

Consider, the randomly generated binary-valued CPT P (z|x, y, w) in the left

pane of Figure 3.11 and the CSI interaction IC(z;w|y, x = x1) from Section 3.2. To

generate a new CPT P ∗ from the CPT P and the CSI interaction I, we must assign

the same probability for each distinct combination of (y, z) when x = x0.

We begin by duplicating P as P ∗. For each distinct (y, z) combination denoted

(y′, z′), we retrieve a probability ρ from P such that P (z = z′|x = x1, y = y′, w)

where w is arbitrarily assigned. Then, for each instantiation in P ∗ that satisfies

the combination (y = y′, z = z′), we replace the probability corresponding to that

instantiation with ρ. This ensures that all instantiations of a (y′, z′) combination have

the same value.
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P (z|x, y, w)

x y w z0 z1
x0 y0 w0 0.3 0.7

x0 y0 w1 0.5 0.5

x0 y1 w0 0.8 0.2

x0 y1 w1 0.1 0.9

x1 y0 w0 0.6 0.4

x1 y0 w1 0.4 0.6

x1 y1 w0 0.7 0.3

x1 y1 w1 0.2 0.8

P (z|x, y, w)

x y w z0 z1
x0 y0 w0 0.3 0.7

x0 y0 w1 0.5 0.5

x0 y1 w0 0.8 0.2

x0 y1 w1 0.1 0.9

x1 y0 w0 0.6 0.4

x1 y0 w1 0.6 0.4

x1 y1 w0 0.7 0.3

x1 y1 w1 0.7 0.3

Figure 3.11: Left: Initial randomly generated CPT for P (z|x, y, w) where all variables

are binary. Right: CPT P ∗(z|x, y, w) after incorporating IC(z;w|y, x = x1). Each

distinct combination of (y, z) when x = x1 is printed in a different colour.

The right pane of Figure 3.11 shows the resultant CPT. Each combination is

printed in a different colour. For the (y = y0, z = z0) combination that is printed in

red, we assigned a value of 0.6. For the (y = y0, z = z1) combination that is printed in

green, we assigned a value of 0.4. For the (y = y1, z = z0) combination that is printed

in purple, we assigned a value of 0.7. Lastly, for the (y = y1, z = z1) combination

that is printed in orange, we assigned a value of 0.3.

3.4.2 Experimental Setup

The objective of this experiment is to identify CSI models that cannot be encoded

by NAT models. We simulated a batch of 100 randomly CPTs. Each CPT had a child

variable v dependent on 5 parent variables q, r, s, t, u. All variables have a domain

size of 5.

We specified 3 CSI interactions to evaluate. Each CSI interaction imparts a

varying amount of duplication in a CPT. The CSI interactions are as follows:

1. Ic(v; t, u | q = q1, r = r2, s ∈ {s3, s4})

v is contextually independent of t and u when q = q1, r = r2, s ∈ {s3, s4}.

59



2. Ic(v; r, s, t, u | q = q1)

v is contextually independent of r, s, t, u when q = q1.

3. Ic(v; r, s, t, u | q ∈ {q1, q2, q3, q4})

v is contextually independent of r, s, t, u when q ∈ {q1, q2, q3, q4}.

For each CPT P in the batch, we created three copies P1, P2, P3. Using the pre-

processing outlined in Section 3.4.1, CSI interaction 1 is added to P1, CSI interaction

2 is added to P2, and CSI interaction 3 is added to P3. Thus, we create 4×100 = 400

total source CPTs. We then compress each CPT into a NAT model. The accuracy

of the compressions were evaluated and compared per CSI interaction. Results are

presented in the next section.

3.4.3 Experimental Results

The results of this experiment are presented in Table 3.3. The CSI interactions

(column 1) are ordered from the least amount of space reduction to the greatest

amount of space reduction. The number of parameters for the CSI model and NAT

model are presented in columns 2 and 3 respectively. The average Kullback-Leibler

and Euclidean distances between the NAT and source CPTs are shown in columns

4 and 5.

CSI Statement #Src Param #NAT Param KL ED

No CSI 12,500 80 0.738 0.219

Ic(v; t, u | q = q1, r = r2, s ∈ {s3, s4}) 12,304 80 0.710 0.214

Ic(v; r, s, t, u | q = q1) 10,004 80 0.692 0.210

Ic(v; r, s, t, u | q ∈ {q1, q2, q3, q4}) 2,504 80 0.501 0.176

Table 3.3: Summary of experiments when representing CSI CPTs as NAT models.

It is observed that CSI CPTs take more than 30 times the space of the resultant

NAT models. These representational savings are significant, but come at the price of

an approximation error. While the approximation error decreases when the number
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of CSI parameters decreases, these results suggest that NAT models generally cannot

encode CSI CPTs exactly.

3.5 Evaluating Expression of NAT CPTs as CSI Models

Conversely, we now empirically demonstrate that NAT models cannot be effi-

ciently and exactly encoded as CSI models. The approach of this section will be

similar to the above as we will conduct an experiment to identify NAT CPT coun-

terexamples that cannot be encoded by a CSI CPT.

3.5.1 Experimental Setup

The experiment is conducted on 100 generated NAT CPTs, each over a CPT of

5 parent variables. All variables are binary, with 32 parameters per CPT. Each NAT

CPT is clustered with a distance bound of δ = 0.02 and split as needed.

3.5.2 Experimental Results

The results are plotted in Figure 3.12. Each bar counts the number of NAT CPTs

that produced a particular number of clusters. It can be observed that all CPT-trees

need at least 17 parameters, while the NAT CPT only requires 5 parameters.

Figure 3.12: Experiment results on representing NAT CPTs as CSI models.

Since we weakened the requirements for a CPT to exhibit CSI, there is now a
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modelling error associated with the CSI representation. Each cluster can be identi-

fied by a centroid, which is computed as the mean of the cluster’s member values. To

evaluate the error, we expand the clusters into a tabular CPT where each instantia-

tion is specified by the centroid containing the instantiation. We then calculate the

Euclidean distance between the source CPT and the CPT generated by expanding

the clustering results. In Figure 3.12, each bar is labelled by its average modelling

error on the top and the standard deviation below it.

Overall, the CSI representation is not able to encode the NAT CPT exactly

and efficiently. If exactness is required, we demonstrated by definition that a CSI

representation is unable to encode a NAT CPT with no duplicated probabilities effi-

ciently. If exactness is not required, we applied clustering to determine the number

of parameters required to express the NAT CPT as a CPT-tree. The results of clus-

tering demonstrated that the CSI representation not only introduces an error but

also requires a greater number of parameters to encode the CPT. These findings

in combination with Section 3.4 suggest that the NAT and CSI representations are

orthogonal.
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Chapter 4

Formalizing CPT-tree Transformation

In this chapter, a CPT-tree transformation algorithm is designed. The idea

for CSI transformation was first introduced in Boutillier et al. [3] through a simple

binary example. However, to the best of our knowledge, no general algorithm has

been formalized. We aim to fill this gap by generalizing network transformation to

multi-valued variables and formalizing the process through a suite of algorithms.

The chapter is laid out as follows: Section 4.1 extends CPT-tree arcs to be set-

valued. Section 4.2 describes the general algorithm by pseudocode and a running

example. Section 4.3 demonstrates the exactness of a source family’s CPT compared

to a transformed family’s CPT. Lastly, Section 4.4 discusses a property of CPT-trees

that affects the efficiency of inference.

4.1 Set-valued CPT-tree Edges

In this section, we extend the CPT-tree representation to support set-valued

edges. Recall that, in a CPT-tree as specified by [3], each outgoing edge in a CPT-

tree is labelled by a path that the variable holds, and that a path from the root to

each leaf labels a single context in the CPT. For example, in Figure 4.1, the edge

from u to the leftmost v node is labelled by the value u0. The leftmost leaf node with

the label z(0.8) is reached by the context (u = u0, v = v0, w = w0). While this idea

is suitable for binary trees, it does not extend to multi-valued trees.

Figure 4.1 specifies P (z|u, v, w) where u is ternary and all other variables are

binary. In this example, it can be observed that the left sub-tree rooted at v and
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u

v v

w w

z(0.8) z(0.1) z(0.8) z(0.1)

z(0.6)

z(0.4)

z(0.6)

u0 u1 u2

v0 v1

w1w0

v0 v1

w1w0

Figure 4.1: CPT-tree with single-value arcs specifying P (z|u, v, w) where u is ternary

and all other variables are binary.

the right sub-tree rooted at v are identical. Yet, the CPT-tree does not exploit this

interaction due to fact that each arc can only be labelled by a single value. The

importance of this limitation grows as the number of variables grow resulting in the

possibility of a greater number of duplicate sub-trees.

u

v

w

z(0.8) z(0.1)

z(0.4)

z(0.6)

u0,u2 u1

v0 v1

w1w0

Figure 4.2: CPT-tree with set-value arcs specifying P (z|u, v, w) where u is ternary

and all other variables are binary.

In this work, we generalize arcs of CPT-trees to support set-valued edges. A set-

valued notation allows for each outgoing from a node n to be labelled by a subset of

the values in dom(n). For example, the left-most edge connecting u to v in Figure 4.2

is labeled by a set of values {u0, u2} in dom(u). This allows for the 2 identical sub-trees

to be consolidated into a single sub-tree.
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A byproduct of introducing the set-valued notation is that a path from the root

to a leaf no longer encodes a single context. Instead, the the path from the root

to a leaf encodes a set of contexts. In Figure 4.2, all paths from the root node to

a leaf node with the set-valued edge specify 2 contexts. For example, the leftmost

leaf node labelled as z(0.8) is reached by 2 contexts: (u = u0, v = v0, w = w0) and

(u = u2, v = v0, w = w0).

It is noted that the single-value notation is a special case of the set-valued no-

tation. The set-value notation expresses single values by a singleton. For instance,

the single-value notation would label the rightmost edge connecting u to v as u1. By

contrast, the set-valued notation would express the same edge label as {u1}. We omit

all braces in figures with no ambiguity for readability.

4.2 Algorithm Suite

Network transformation is a method to transfer the structure of the CPT-tree

to BN that preserves the context-specifies independencies encoded in the CPT-tree.

This is achieved by swapping the child variable x of a BN family with a new structure,

composed entirely of auxiliary variables, with the exception of x and its parents π(x).

In this section, we introduce the suite of algorithms for CSI transformation. The

suite of algorithms consists of three algorithms: generation of the BN segment to en-

code the CSI interaction, assignment of CPTs, and generation of switch CPTs. Each

algorithm is discussed individually in Sections 4.2.1, 4.2.2, and 4.2.3, respectively.

4.2.1 Generate BN Segment to Encode CSI Interaction

The first algorithm SetDagSeg accepts a CPT-tree T over a variable x and par-

ents π(x) and generates a BN segment with a single leaf x that encodes the CSI

interaction.

The transformation is applied from top-to-bottom of the CPT-tree. Let each
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node of the CPT-tree be assigned a level, corresponding to the depth of the node

from the root. For example, the root is level 0, the children of the root are level 1, the

grandchildren of the root are level 2 and so forth. Thus, we apply the transformation

is driven in the CPT-tree from level 0 onwards.

Figure 4.3: (a) A BN family. (b) CPT-tree for the family.

Let each node n in the CPT-tree have a path. The path, path(n) indicates the

branches taken from the root node to the node n. Each branch is indicated by a

variable-value pair: the label of the node indicates the variable and the label of the

arc indicates the values assigned to the variable. For instance, in Figure 4.3, the

left-most node in the CPT-tree which is labelled b(0.1, 0.6) can be reached by the

path q = q0, s = s0.

We demonstrate SetDagSeg through an example using the BN and CPT-tree

pictured in Figure 4.3. Variables b,r,s are ternary while the variable q is binary. The

algorithm begins with an empty graph G consisting of the nodes x and π(x). There

are no connections between any of the nodes. This is shown in Figure 4.4. The

current path is initialized to {} and the child node b is labelled as b{}.

q r
s

b{}

Figure 4.4: Initialization of Algorithm 4.1
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Algorithm 4.1: SetDagSeg(T)

1 initialize empty graph G with nodes {x} ∪ π(x)};

2 denote r the root of T by p;

3 set path(p) = {};

4 label x in G as xpath(p);

5

6 for level L = 0 to max level in T,

7 for each node t in T at level L with path(t),

8 find node v in G that is labelled xpath(t);

9 add arc t→ v in G

10 if each child of t in T is a leaf, continue;

11 refer to t as a multiplexer;

12 denote partition of dom(t) by arcs outgoing from t as {sd1, ..., sdm};

13 for i=1 to u,

14 add new node y to G with domain dom(x) and label it x{path(t),t∈sdi};

15 add arc y → v in G;

16 return G;

For the first level L = 0 in the CPT-tree T , the only node at that level is the

root node q (t in the algorithm). The algorithm identifies a node labelled b{} (v in

the algorithm). An arc is then added from node q to the node b{}. We then check

if each child of q is a leaf. Since this test is negative, we continue processing the

iteration. We now can identify q as a multiplexer node, since it has children and not

all children are leaves. We then partition the domain of q into two segments, since

the node q in the CPT-tree has two children. The first segment is {q0} while the

second segment is {q1}. For each segments, we create a new auxiliary node (y in the

algorithm) labelled bq=q0 and bq=q1 , respectively. Both auxiliary nodes are added to

the segment as parents of b{} (or equivalently, siblings of q). The first iteration, shown

67



in Figure 4.5, is now complete and we can move onto discussing the second level.

q

rs

b{}

bq=q0 bq=q1

Figure 4.5: BN segment after transforming the root node of the CPT-tree.

The second level L = 1 in the CPT-tree T consists of two nodes. We will discuss

each node individually.

The left-most node in the second level L = 1 is a special node because all of

its children are leaves (ACAL). Decomposing the node will not yield any savings as

there are no further CSI interactions. The iteration for the left-most node s begins

by identifying node bq=q0 as node v and adds an arc from s to bq=q0 . We then check if

each child of s in the CPT-tree is a leaf. Since this test is positive, the algorithm will

skip the decomposition by continuing to the next node. This is shown in Figure 4.6.

q

rs

b{}

bq=q0 bq=q1

Figure 4.6: BN segment after skipping the decomposition of the left-most node in the

second level of the CPT-tree, bq=q0, s as all of bq=q0’s children are leaves.

The right-most node in the second level L = 1 of the CPT-tree is also node

s. This iteration begins by identifying its parent in the CPT-tree (v) as bq=q1 . It

then adds an arc from s to bq=q1 . Since node s in the CPT-tree has one non-leaf

child, it fails the test on line 10 and we continue processing the iteration. We then
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partition the ternary domain of s into two segments {s0} and {s1, s2}, by the values

assigned to the arcs of the outgoing edges from s. We then create two new nodes in

the BN segment with the labels bq=q1,s=s0 and bq=q1,s∈{s1,s2}, respectively. Each newly

introduced node is added as a parent of of bq=q1 . This is shown in Figure 4.7.

q

r
s

b{}

bq=q0 bq=q1

bq=q1,s=s0

bq=q1,s∈{s1,s2}

Figure 4.7: BN segment after the decomposition of the right-most node in the second

level, bq=q1 as all of bq=q0 ’s children are leaves.

Lastly, the third level L = 2 of the CPT-tree consists of r. Similar to the left-most

node in the CPT-tree, this node consists of all leaf children rendering a decomposi-

tion redundant. The algorithm adds an arc from r to bq=q1,s=s0 This concludes the

generation of the BN segment.

q

r
s

b{}

bq=q0 bq=q1

bq=q1,s=s0

bq=q1,s∈{s1,s2}

In summary, we can classify the auxiliary nodes introduced by the SetDagSeg

algorithm into the following three types:

• ACAL Nodes : These nodes are created when the CPT-tree node has all leaf

children. They are added in line 14 and never processed after by the test on

line 7. Hence, they remain roots (e.g., bq=q1;s2∈{s1;s2}).

• Multiplexer Nodes : These nodes are created when the CPT-tree has at least
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one non-leaf child. They are processed on line 7 as v and by the for loop on

line 13 (e.g., b{} and bq=q1).

• Outer Nodes : These nodes are created when the CPT-tree node is a leaf. They

are the remaining nodes that are processed in line 7 as v, passed the test in

line 7, and skipped the for loop in line 13 (e.g., bq=q0 and bq=q1;s=s0).

Each type of node has a different method to assign the CPT. We discuss each of

these in detail next.

4.2.2 Assignment of CPTs to Generated BN Segment

Given a child variable x, its parents π(x), a CPT-tree T and a transformed BN

segment, the second algorithm AssignCPT iterates through each non-parent node in

G and assigns the appropriate CPT based on the type of node.

Algorithm 4.2: AssignCpt(x, π(x), T, G)

1 for each node v in G,

2 if v ∈ π(x), continue;

3 if v is Outer Node with path(v),

4 traverse path(v) in T to leaf t;

5 retrieve CPD parameters at t and assign the CPD to v;

6 else if v is ACAL with path(v),

7 traverse path(v) in T to node t;

8 for each child z of t in T, retrieve CPD parameters at z;

9 assemble the CPDs into CPT and assign to v;

10 else, // v is Multiplexer

11 denote the unique parent of v from π(x) by y;

12 call SetSwitchCpt(v, y, T, G) and assign the CPT returned to v;

13 return G;
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We demonstrate the AssignCpt algorithm by applying it to the BN segment pictured

in Figure 4.7

For Outer Nodes, the CPT is retrieved directly from the CPT-tree. For instance,

in Figure 4.7, the node bq=q1,s∈s1,s2’s CPT is assigned by following the path (bq=q1 , s ∈

{s1, s2}) in the CPT-tree to the leaf node. The label of the leaf node represents a CPD

encoded by its parameters. Figure 4.8 presents the CPD for the node bq=q1,s∈s1,s2.

b = b0 b = b1 b = b2
0.7 0.2 0.1

Figure 4.8: CPT for Outer Node bq=q1,s∈s1,s2

For ACAL nodes, the CPT is assembled from the CPT-tree node’s children.

Consider, the node bq=q0 in Figure 4.7. Follow the path q = q0 in the CPT-tree

Figure 4.7 to a node t. Each child of t is a leaf that specifies a CPD for when s = si

where i ∈ {0, 1, 2}. Assembling all CPDs together results in the CPT presented in

Figure 4.9.

s b = b0 b = b1 b = b2
s0 0.1 0.6 0.3

s1 0.4 0.1 0.5

s2 0.3 0.6 0.1

Figure 4.9: CPT for ACAL Node bq=q0

For Multiplexer nodes, the first parent y is from π(x) and is identified on line 11 of

AssignCpt. The other parents are all auxiliary. The CPT for node v is deterministic.

In the next section, we discuss how the CPT is generated.
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4.2.3 Generate Multiplexer CPT

The last algorithm generates the multiplexer CPT. Given a a multiplexer, child

variable v, a parent y that v is switching on, a CPT-tree T and a transformed BN

segment G, the SetSwitchCpt algorithm assigns a deterministic CPT that switches

based on the value of v, according to a specified deterministic distribution.

We first demonstrate the deterministic distribution by way of an example. Con-

sider the CPT for the multiplexer node v = b{} with its parent y = q. The CPT for

P (b{} = bi | q, bq=q0, bq=q1) where i = 0..2 is determined as follows:

bi =


1 if q = q0 ∧ bq=q0 = bi

1 if q = q1 ∧ bq=q1 = bi

0 otherwise

In plain language, for a given configuration, (q, bq=q0, bq=q1), we match the value

qi assigned to q with the auxiliary variable whose path includes the assignment q = qi.

We take the value of that auxiliary variable as the observed value (value of 1), with the

other states in b being unobserved (value of 0). Algorithm 4.3 shown below formalizes

the above for all configurations of a generic multiplexer node v and parent y.

Algorithm 4.3: SetSwitchCpt(v,y,T,G)

1 initialize CPT P (v|y, u1, ..., uk) where {y, u1, ..., uk} is parent set of v in G;

2 for each assignment (v = v′, y = y′, u1 = u′1, ..., uk = u′k),

3 find ui in {u1, .., uk} whose path label = (path(v), y ∈ sdi) and y′ ∈ sdi;

4 if v′ = u′i, P (v′|y′, u′1, ..., u′k) = 1;

5 else, P (v′|y′, u′1, ..., u′k) = 0;

6 return P (v|y, u1, ..., uk);

The resulting multiplexer node for b{} is shown in Figure 4.10.
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q bq=q0 bq=q1 b0 b1 b2
q0 b0 b0 1 0 0

q0 b0 b1 1 0 0

q0 b0 b2 1 0 0

q0 b1 b0 0 1 0

q0 b1 b1 0 1 0

q0 b1 b2 0 1 0

q0 b2 b0 0 0 1

q0 b2 b1 0 0 1

q0 b2 b2 0 0 1

q1 b0 b0 1 0 0

q1 b0 b1 0 1 0

q1 b0 b2 0 0 1

q1 b1 b0 1 0 0

q1 b1 b1 0 1 0

q1 b1 b2 0 0 1

q1 b2 b0 1 0 0

q1 b2 b1 0 1 0

q1 b2 b2 0 0 1

Figure 4.10: CPT for Multiplexer node b{}
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4.3 Demonstration of Exactness

In this section, we demonstrate the exactness of the network transformation by

demonstrating the resulting marginals of a transformed segment and the original

family are exact. To simplify presentation, we introduce a new example, consisting

of three binary variables: u, v, and z. In Figure 4.11, panel (a) presents the BN,

panel (b) shows the CPT-tree and panel (c) is the BN segment generated from the

CPT-tree. Panels (d) through (f) show the CPTs for each auxiliary node introduced

by the transformation.

We aim to demonstrate that P (z|u, v) is equivalent to the transformed BN seg-

ment P (z{}, zu=u0 , zu=u1|u, v).

P (z|u, v) =
∑

zu=u0 ,zu=u1

P (z{}, zu=u0 , zu=u1 |u, v) (4.1)

The chain rule for two random probabilistic events i and j states that P (i, j) =

P (j|i)× P (i). We can apply this rule to the above equation to separate the product

into multiple parts.

=
∑

zu=u0 ,zu=u1

P (z{}|zu=u0 , zu=u1 , u, v)× P (zu=u0|zu=u1 , u, v)× P (zu=u1|u, v)

Using contextual independence, we know that zu=u0 is only dependent on v and

zu=u1 is contextually independent of u and v. We also know that the variable u cannot

hold both u = u0 and u = u1 at once. Thus, their auxiliary variables zu=u0 and zu=u1

are independent of each other. This allows us to omit the terms have no effect on the

resulting probabilities.

=
∑

zu=u0 ,zu=u1

P (z{}|zu=u0 , zu=u1 , u)× P (zu=u0|v)× P (zu=u1)

Given a configuration of (z{}, u, v), we can now compute the probability of that

74



configuration by expanding the sum and then substituting the values in to each vari-

able in the sum.

= P (z{}|zu=u0 = z0, zu=u1 = z0, u)× P (zu=u0 = z0|v)× P (zu=u1 = z0)

+ P (z{}|zu=u0 = z0, zu=u1 = z1, u)× P (zu=u0 = z0|v)× P (zu=u1 = z1)

+ P (z{}|zu=u0 = z1, zu=u1 = z0, u)× P (zu=u0 = z1|v)× P (zu=u1 = z0)

+ P (z{}|zu=u0 = z1, zu=u1 = z1, u)× P (zu=u0 = z1|v)× P (zu=u1 = z1)

By example, consider the configuration (z{} = z0, u = u1, v = v0). We can

substitute z{} with z0, u with u1 and v with v0 in the above equation and then replace

each term with the values from the CPTs shown in Figure 4.11 panels d through f.

Note, that the multiplexer CPT will zero-out the entries that include zu=u0 = z0.

P (z{} = z0|u = u1, v = v0) = 1× 0.9× 0.2

+ 1× 0.9× 0.8

+ 0× 0.1× 0.2

+ 0× 0.1× 0.8

= 0.9

Repeating this process for each (z{}, u, v) configuration yields the same CPT over

the original BN. Hence, the resulting marginals are identical.
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u0
u

v

z(0.9) z(0.4)

z(0.2)
u v

z v0

u1

v1

z{}

u zu=u0 zu=u1

v

(a) (b) (c)

(d)

P (zu=u1 = z0) P (zu=u1 = z1)

0.2 0.8

(e)

P (zu=u0|v)

v z0 z1
v0 0.9 0.1

v1 0.4 0.6

(f)

P (z{}|u, zu=u0 , zu=u1)
u zu=u0 zu=u1 z = z0 z = z1
u0 z0 z0 1 0

u0 z0 z1 1 0

u0 z1 z0 0 1

u0 z1 z1 0 1

u1 z0 z0 1 0

u1 z0 z1 0 1

u1 z1 z0 1 0

u1 z1 z1 0 1

(g)

P (z|u, v)

u v z = z0 z = z1
u0 v0 0.9 0.1

u0 v1 0.4 0.6

u1 v0 0.2 0.8

u1 v1 0.2 0.8

Figure 4.11: (a) BN family with three binary variables u, v, z. (b) CPT-tree with one

CSI interaction: z is contextually independent of v when u = u1. (c) Transformed

network incorporating the CSI of (b). (d-f) CPTs for each auxiliary node in (c).

(g) CPT obtained by normalizing CPT-tree.
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4.4 Dependence on Variable Duplications

4.4.1 General Information on Variable Duplications

The efficiency of the CSI transformation algorithm is dependent on the num-

ber of variable duplications that occur in the CPT-tree. Before demonstrating the

dependence, it is first necessary to specify the number of variable duplications on a

CPT-tree.

Number of Duplicate Variables Given a CPT-tree for a child node z and the

set of parents π(z), we specify the number of duplicated variables as the number of

non-leaf nodes in the CPT-tree minus the number of parents |π(z)|.

In Figure 4.12, we present 3 possible CPT-trees for the same BN family P (z|x,w, y).

All variables are binary. Each CPT-tree has a different number of variable duplica-

tions: Panel (a) has 0 duplications, panel (b) has 1 duplication, and panel (c) has 3

duplications.

w

x

y

z(…) z(…)

z(…)

z(…)

x0 x1

w0 w1

y0 y1

w

x

y

z(…) z(…)

z(…)

x0 x1

w0 w1

y0 y1

w

z(…)

z(…)

w

x

y

z(…) z(…)

z(…)

x0 x1

w0 w1

y0 y1

w

y

z(…) z(…)

y0
y0

w0

w1

(a) (b) (c)

y

z(…)

z(…)

y1

y1

Figure 4.12: Three possible CPT-trees for the same BN family P (z|x,w, y). (a)

CPT-tree with 0 duplicated variables. (b) CPT-tree with 1 duplicated variable. (c)

CPT-tree with 3 duplications.

Applying network transformation on a CPT-tree with duplicated variables induce

loops in the resultant BN segment, which increases the treewidth of the junction tree.
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A loop is a cycle in the directed acyclic graph of a BN if the directions of edges are

ignored. A junction tree with a larger tree width decreases inference efficiency. By

contrast, applying network transformation on a CPT-tree with no duplicated variables

results in no loops in the the resultant BN segment.

4.4.2 Loop Demonstration

To demonstrate the impact of duplicated variables, we apply the transformation

on the CPT-trees shown in panels (a) and (c), and then compile the resultant BN

segments into junction trees.

x zx=x0 zx=x1

z{}

wzx=x0,w=w0 zx=x0,w=w1

y

{x,z{}, zx=x0, zx=x1}

{w, zx=x0, 

zx=x0,w=w0,  

zx=x0,w=w1}

{y,zx=x0,w=w0}

(a) (b)

Figure 4.13: (a) Transformed BN segment from CPT-tree with 0 loops in Fig-

ure 4.12 (a). (b) Junction tree for BN in panel (a). Separator labels are omitted

for readability.

For the CPT-tree with 1 duplicated variable in Figure 4.12, we show the trans-

formed BN segment in panel (a) and the resulting junction tree in panel (b) of Fig-

ure 4.13. We observe there are no loops in the BN segment. With no loops, the

resulting junction tree has a treewidth of size 3.

For the CPT-tree with 3 duplicated variables in Figure 4.12, we show the trans-

formed BN segment in panel (a) and the resulting junction tree in panel (b) of Fig-

ure 4.14. The duplicated variables result in several loops in the transformed segment,

such as {z{}, zx=x1 , w, zx=x0}, leading to a junction tree with a treewidth of size 4.
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x zx=x0 zx=x1

z{}

wzx=x0,w=w0 zx=x0,w=w1

y

zx=x1,w=w0 zx=x1,w=w1

{y, zx=x0,w=w1, 

zx=x1,w=w0, 

zx=x1,w=w1}

{w, zx=x0,w=w1, 

zx=x1, zx=x1,w=w0, 
zx=x1,w=w1}

{w, zx=x0, 
zx=x0,w=w1, 

zx=x1}

{x, z, 
zx=x0, zx=x1}

{w, zx=x0, 
zx=x0,w=w0, 
zx=x0,w=w1}(a) (b)

Figure 4.14: (a) Transformed BN segment from CPT-tree with 3 loops in Fig-

ure 4.12 (c). (b) Junction tree for BN in panel (a). Separator labels are omitted

for readability.

4.4.3 Frequency of Loops

The frequency of variable duplications occurring depend on the underlying CPT

and the structure of the CPT-tree. A CPT that contains a fewer number of duplicated

CPDs will typically result in a greater number of duplications. This can be observed

by noting that a CPT with fewer duplicated CPDs will require a greater number of

parameters to encode the CPT, which generally results in a more complete CPT-

tree, ultimately leading to a greater number of variable duplications in the CPT-tree.

Conversely, a CPT with a greater number of duplicated CPDs will typically result in

a fewer number of duplications.

Additionally, there is not a unique CPT-tree for each CPT. There exist many

possible CPT-tree structures for a given CPT. Some CPT-tree structures may result

in a fewer number of variable duplications than others. Suppose, a CPT-tree is
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testing each value of a ternary variable x individually. A CPT-tree may model this

test in various ways, including a (1) multi-valued tree with singleton edges, and (2)

binary tree with set-valued edges. A CPT-tree that uses a multi-valued approach

with singleton edges, segment shown in Figure 4.15 (a), will have 3 outgoing edges

(one edge for each xi ∈ dom(x)) and 0 variable duplications. In comparison, a binary

CPT-tree, segment shown in Figure 4.15 (b), with set-valued edges will have 1 variable

duplication. This variable duplication occurs as it tests x twice: Once to partition

{x0, x1, x2} into {{x0, x2}, {x1}}, and again to partition {x0, x2} into {{x0}, {x2}}.

Hence, it is possible for a CPT-tree to express the same CPT with different amounts

of variable duplication. We evaluate the impact of varying levels of duplication on

inference runtime in Chapter 6.

x

x
…

… …

x
… … …

(a) (b)

x0 x1
x2

x2x0,x1

x0 x1

Figure 4.15: CPT-tree segments over ternary variable x. (a) Multi-valued tree with

0 duplicated variables. (b) Binary tree with multi-valued edges and 1 duplication.
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Chapter 5

Mixed NAT-CSI Bayesian Networks

This chapter outlines a BN representation modelled with both NAT and CSI

models, and an accompanying compilation method to support efficient inference. The

chapter is structured as follows: Section 5.1 details the BN representation composed

of both local models. Section 5.2 discusses the method to support efficient inference.

5.1 Representation

Causal independence models and CSI models can each be exploited to improve

space and inference efficiency in BNs. To our knowledge, no prior study has considered

inference on BNs that take advantage of both simultaneously. Combining the models

results in several issues, which we address below:

First, we note that causal independence models and CSI models both apply to

individual families in BNs. Thus, it is plausible that the models can both coexist in the

same environment, and consequently the same BN. For example, a patient’s recovery

from surgery may be dependent on whether or not they use physiotherapy, the skill

of the physiotherapist, and their use of medicine. The patient’s use of medicine

may in-turn be dependent on three medicines, which may counteract. The recovery

from surgery variable may be modelled by a CSI model while the variable indicating

the use of medicine may be modelled by a causal independence model. Hence, it is

reasonable that the CSI modelled variable (recovery from surgery) is dependent on a

NAT modelled variable (use of medicine). The coexistence may also occur in reverse

(i.e., NAT modelled variable is dependent on a CSI modelled variable), or as two
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conditionally independent variables in an environment.

Second, a suitable representation is needed for each type of local model. In this

thesis, we adopt NAT models as our causal independence model and CPT-trees as our

CSI model. The NAT model was selected due to its ability to encode both reinforcing

and undermining interactions. The CPT-tree model was selected due to its wider

support of inference methods. To avoid digressing, refer to Chapter 2 for details. We

define a BN modelled with both NAT models and CPT-trees as a mixed NAT-CSI BN.

Mixed NAT-CSI Bayesian Network (MNCBN) A MNCBN is a BN (M,G,P ),

specified in terms of the following:

• M is a set of variables.

• G is a directed acyclic graph whose nodes correspond one-to-one to members of

M . Each variable in the graph is conditionally independent of its non-descendants

given its parents.

• P is a set of CPTs partitioned into the triplet (TC,NM,CT ) where TC is a set

of tabular CPTs, NM is a set of NAT models, and CT is a set of CPT-trees.

An example MNCBN is shown in Figure 5.1. The directed acyclic graph is shown

in panel (a). All variables are ternary where each variable has the domain {s0, s1, s2}.

The MNCBN consists of 18 nodes, of which all nodes whose labels are prefixed by

v (16 in total) are modelled by tabular CPTs. The remaining 2 nodes h and g are

CPT-tree and NAT modelled, respectively. The CPT-tree is shown in panel (b) while

the NAT model is shown in panel (c).

Third, a MNCBN does not support the use of typical BN inference algorithms

due to the presence of the non-tabular local models, nor does it support the use

of an alternative processing designed for one local model on the other due to the

orthogonality of the local models. Thus, it is necessary to identify a novel approach

that supports inference on MNCBNs. We introduce a novel inference framework

designed for MNCBNs below.
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5.2 Inference Framework

In this section, we outline an framework that prepares MNCBNs for inference,

select an inference method, and demonstrate the framework on an example MNCBN.

5.2.1 Framework Outline

V15

V1

V2

h

V6

V0

V5V4

V3

V7

V8

g

V9

V14

V10 V11 V12

V13

(a)

s1

V1

V6

V5

V4

V3
h(…)

h(…) h(…)

h(…)

h(…) h(…)

V4

g+←V9
+
g+←V10

+

g+←V11
+

g+↚V12
+

g+←V8
+,V9

+,V10
+ ,V11

+ ,V12
+ ,V13

+

g+←V13
+

g+←V8
+

(b) (c)

s0
s1

s2

s0 s1
s2

s0

s1 s2

s2
s0

s1, s2
h(…)

s1
V2

h(…) h(…) h(…) h(…) h(…) h(…)
h(…)

s0 s1 s0 s2s2 s0

Figure 5.1: (a) MNCBN DAG. (b) NAT model for family of g. (c) CPT-tree over

family of h.

The inference framework for MNCBN applies an alternative processing method

that supports inference on NAT modelled families and a separate alternative pro-

cessing method on CSI modelled families. However, the choice of method is critical:
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Both methods must not conflict with each other, such that the usage of one method

precludes the usage of the other.

In this thesis, we have selected to use de-causalization for the NAT models and

network transformation for the CPT-trees. These methods do not conflict since they

both convert their respective local model into BN segments. Both methods make no

assumptions on the evidence, allowing for the evidence to be changed without re-

compilation. Both methods also support the computation of posterior probabilities

of all variables. By comparison, applying multiplicative factorization for NAT models

and a rule-based representation for CSI would conflict since neither method supports

compiling into a common structure.

The MNCBN can be converted to a standard BN: Each NAT model is de-

causalized into a BN segment that maintains computational savings. Each CSI model

is similarly network transformed into a BN segment that maintains computational

savings. Each segment is connected into the BN. To connect a BN segment into the

BN, we replace the child BN node and all parent BN nodes of the family with the

segment. We then reconnect the edges to maintain exactness: All incoming edges to

the parent nodes and all outgoing edges from the child node should be restored.

After de-causalizing, transforming, and connecting all segments, the result is a

standard BN where each local model is of tabular form, while preserving the com-

putational savings of the local models. We refer to this result as a de-causalized

and transformed BN (DTBN). The resulting DTBN is subsequently compatible with

many standard BN inference algorithms.

One thing to note is that evidence can only be specified on the observed variables.

The auxillary variables introduced by both de-causalization and network transforma-

tion are said to be unobservable. Hence, observations may only be entered on the

nodes that were in the original MNCBN, prior to the conversion into a standard BN.
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5.2.2 Producing Lazy Junction Trees from DTBNs

In this work, we make use of the Lazy Propagation algorithm due to its ability to

efficiently compute posterior probabilities of all observable variables at inference run-

time. Lazy propagation can be directly applied to a DTBN with no further changes.

Refer to Sections 2.5.4 and 2.5.5 for further details on the lazy propagation algorithm.

5.2.3 Framework Demonstration

Consider the MNCBN shown in Figure 5.1 with the DAG shown in panel (a). All

variables are ternary where each variable vi has the domain dom(vi) = {s0, s1, s2}.

The MNCBN has one CPT-tree modelled node h with its local model shown in

panel (b). The MNCBN has one NAT modelled node g with its local model shown

in panel (c).

We convert the MNCBN given in Figure 5.1 into a DTBN by de-causalizing node

g and network transforming node h. The resulting DTBN is shown in Figure 5.2.

Nodes prefixed with x, y, or q are auxillary nodes introduced by the de-causalization.

Nodes prefixed with h (except the child node itself h{}) are auxillary nodes introduced

by the network transformation.

At first glance, the DTBN Figure 5.2 may appear to be more complex than the

MNCBN in Figure 5.1. The number of nodes has significantly increased — from 18

nodes in the MNCBN to 42 nodes in the DTBN. This is a result of the de-causalization

and transformation’s process, which introduce auxillary variables in order to encode

the causal independence models in a BN segment.

However, the increase in the number of nodes is offset by a decrease in the size

of the largest CPT. Since the size of the largest CPT enforces a lower bound on

the inference efficiency, it follows that a smaller maximum CPT size increases the

efficiency of inference. In the running example, if all CPTs are tabular, the MNCBN

in Figure 5.1 has a total CPT size of 4506 probabilities, where the largest CPT has a

size of 2187 probabilities. By comparison, the DTBN in Figure 5.2 has a total CPT
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size of 1603 probabilities, where the largest CPT has a size of 243. This amounts to

a 64% decrease in the total number of probabilities necessary to specify the BN.

Once the MNCBN is converted into a DTBN, the framework compiles the DTBN

in Figure 5.2 into a lazy junction tree in order to perform lazy propagation inference.

Figure 5.3 shows the lazy junction tree obtained by compiling the MNCBN if all CPTs

are tabular. The junction tree maintains a treewidth of 6. By comparison, Figure 5.4

shows the lazy junction tree obtained by compiling the DTBN. The junction tree

maintains a treewidth of 4. We evaluate the efficiency of this framework in Chapter 6.
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{g, v8, v9, v10, v11, v12, v13}

{v6, v7, v8} {v9, v10, v14}

{h, v1, v2,  v3, v4, v5, v6}

{v0, v1, v5}

{v11, v12, v15}

Figure 5.3: Lazy junction tree obtained by compiling MNCBN in Figure 5.1 (a) if all

CPTs are tabular.
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Chapter 6

Experimental Evaluation

Three experiments were conducted. The first, presented in Section 6.1, confirmed

the coexistence of NAT and CSI models in real-world BNs. The second, presented

in Section 6.2, evaluated the computational gain achieved by mixing NAT and CSI

local models. The third, presented in Section 6.3, compares effectiveness of NAT

and CSI models. The second and third experiments used the WebWeavr software

toolkit [19].

6.1 Coexistence of NAT & CSI Models in Real-World BNs

The first experiment aimed to confirm the coexistence of NAT and CSI local

models in real-world BNs. If one (or both) of the models do not exist in the real-

world, then the usefulness of this research is limited to synthetic MNCBNs. If both

models exist, then the research can be applied in practice. The existence of NAT

models in 8 real-world BNs was positively identified with reasonable inference errors

by [22], which we summarized in Section 2.7.6. In this section, we demonstrate the

existence of CSI models in real-world BNs.

6.1.1 Experimental Setup

This was achieved by testing the existence of CSI in 2 of the 8 real-world BNs

from the NAT modelling study. The BNs selected were Andes, which models a physics

tutoring system, and Win95pts, which models a printer diagnostics system [16]. The

BNs were selected because they are entirely binary-valued; the other 6 BNs from the
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NAT modelling study were multi-valued. The Andes BN was modified to remove 3

isolated nodes (nodes with no parents nor children). We denote the modified BN

as Andes–.

We apply the clustering approach discussed Section 3.3 on all families in each BN,

which has 2 or more parents. Recall, the clustering algorithm groups probabilities

into clusters based on a distance bound δ. Each cluster has a maximum inner-cluster

cluster distance of δ. Each cluster has a minimum inter-cluster distance of δ. For this

experiment, we use a distance bound of δ = 0.02.

6.1.2 Experimental Results

The clustering results are presented in Table 6.1. Column 1 indicates the BN

tested. Column 2 indicates the total number of nodes in the BN. Column 3 indicates

the total number of families processed: The number of nodes with 2 or more parents.

Column 4 indicates the maximum number of parameters per CPT over the BN.

Column 5 indicates the maximum number of clusters of all CPTs. Column 6 indicates

the total Euclidean distance of each clustered CPT from its source CPT.

BN #Node #Fam Proced Max #Par/CPT Max #Clu/CPT Eu Dist

Andes– 223 50 64 3 0

Win95pts 76 24 128 6 0.041

Table 6.1: Summary of results from clustering Andes– and Win95pts BNs.

The results confirm the existence of CSI. The Andes– BN expressed a significant

amount of CSI: With only 3 parameters, the CPT-tree representation can exactly

encode (no error) a CPT of 64 parameters. This is due to every cluster of each

CPT containing identical member values. Similarly, the Win95pts BN expressed a

significant amount of CSI with an error of 0.041. This is due to 22 of the 24 CPTs

having no error, with the remaining 2 having distances of 0.001 and 0.04.

Other studies [2, 7, 18] have also identified CSI in real-world environments, such
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as: Biological datasets, other BNs in the bnlearn repository and machine learning

datasets from the UCI repository.

Hence, the NAT and CSI models have each been identified in practice: The

NAT modelling study identified NAT models in practice. The clustering results and

the other referenced studies suggest the existence of CSI models in practice. These

independent findings have applied the same local modelling on all suitable families in

a given BN. It follows that if these models exist on all suitable families, then they also

exist on a subset of all suitable families. It is also noted that a particular BN family’s

NAT and CSI modelling error can be compared. Thus, the set of suitable families in

a BN can be partitioned into 2 disjoint subsets: The first contains all families best

modelled by a NAT model, and the second contains all families best modelled by a

CSI model. This suggests that real-world BNs may be modelled by a mixture of NAT

and CSI models.

6.2 Computational Gain of Mixing NAT & CSI

6.2.1 Experimental Setup

The objective of the second experiment was to evaluate the space complexity

by mixing NAT and CSI models. We generated mixed NAT-CSI Bayesian networks

(MNCBN) over 100 binary or ternary variables. Of the families of 2 parents or more,

50% are NAT modelled while the remaining 50% are CSI modelled. The maximum

number of parents per node is 12, with at least 2 families having exactly 12 parents.

Of the families with 12 parents, at least 1 is NAT modelled and at least 1 is CPT-tree

modelled. We generated 300 distinct MNCBNs, one for each combination of the 3

parameters:

• Number of variable duplications (k): 0, 2, 4, 7, 10

• Density beyond being singly connected (d): 5%, 10%
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• BN topology: 30 randomly generated

Each MNCBN is then converted into 4 standard BNs (encoding the same JPD)

by the following methods:

D+T De-causalizing NAT models and transforming CPT-trees

D+N De-causalizing NAT models and normalizing CPT-trees

N+T Normalizing NAT models and transforming CPT-trees

N+N Normalizing NAT models and normalizing CPT-trees

Each resultant BN is compiled for inference by lazy propagation. Each BN has

10 inference runs, each with different observations over 10 randomly selected vari-

ables. Inference runs by BNs from the same MNCBN resulted in the same posterior

marginals.

6.2.2 Experimental Results
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Figure 6.1: Comparison of inference runtimes of 4 conversion methods
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Figure 6.1 has 10 panels: 1 panel for each (k, d) combination. Each panel has 4

boxes, 1 for each conversion method (D+T, D+N, N+T, N+N). Each box represents

300 inference runs (30 topologies ×1 conversion method ×10 inference runs).

The D+T approach introduced by this thesis is highlighted in red. Runtimes

were obtained using a desktop with 2.9GHz clock speed.

It can be observed that N+N is the slowest in all (k, d) combinations, and that

both D+N and N+T improve on the N+N approach. However, the relative perfor-

mance between D+N and N+T is indiscernible. In 4 of the 10 (k, d) combinations:

(0, 5%), (7, 10%), (10, 5%), (10, 10%), D+N has a greater mean inference runtime

than N+T. In the remaining 6 combinations, N+T has a greater mean inference run-

time than D+N. This could be partly due to the presence of normalization in both

conversion methods.

Both de-causalization and network transformation tend to result in compiled

structures with a smaller maximum number of parents and treewidth. Applying nor-

malization on local models results in compiled structures with a larger maximum

number of parents and treewidth. Since the inference efficiency is bounded by the

maximum number of parents and treewidth, it is possible that the de-causalized or

transformed families admit some efficiency savings but the remaining inefficient nor-

malized families set the bounds on the inference efficiency. It follows that evaluating

the relative performance between the D+T and N+T conversion methods may be

comparing the normalization, rather than the de-causalization and transformation

approaches. The third experiment eliminates the confounding variable of normaliza-

tion to investigate the relative gain from alternative models.

Moreover, D+T is on average two orders of magnitude faster than alternatives,

which clearly demonstrates the computational advantage obtained when exploiting

both NAT and CSI in MNCBNs. Based on the same logic as above, the speedup of

the D+T conversion method suggests that the removal of normalization reduces the

bounds of inference efficiency.
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6.3 Performance of De-causalization vs. Transformation

6.3.1 Experimental Setup

The objective of the third experiment was to directly compare de-causalization

and network transformation without the added noise of normalization. In this ex-

periment, we generated BNs in two steps. First, we generated only DAGS with 200

variables each (binary or ternary). The largest number of parents per node is 12, and

each DAG has at least 4 such families. We generated 300 distinct DAGs, one for each

combination of the three parameters:

• Number of variable duplications (k): 0, 2, 4, 7, 10

• Density beyond being singly connected (d): 5%, 10%

• BN topology: 30 randomly generated

Second, a pair of Bayesian networks are created from each DAG: a NAT-modelled

Bayesian network (NMBN) and a CPT-tree modelled Bayesian network (CMBN).

The NMBN is generated by modelling all families with 2 or more parents with NAT

models. The CMBN is generated by modelling all families with 2 or more parents

with CPT-trees. Families with less than 2 parents are left as tabular CPTs. Hence,

the pair of Bayesian networks have the same DAG, but differ in JPDs.

Each NMBN is de-causalized and each CMBN is network transformed. Each

resultant BN is compiled for inference by lazy propagation. Ten inference runs are

performed on each BN with random observations over 20 randomly selected variables.

6.3.2 Experimental Results

Figure 6.2 contains two panels that compare the log10 inference runtimes of the

NMBNs against the CMBNs. The left panel shows the inference runtime with a

density beyond singly connected of 5% while the right panel shows a density beyond

95



●●●
●
●

●

●● ●
●●●●

●●

●

●
●●●
●

●
●●

●
●
●●●
●

●
●●●●
●●
●●●●
●

●●

●

●
●●
●● ●●●●

●
●●

●●●●

●● ●●●●

●
●●

●●
●●●
●
●
●●●

●

●
●
●●
●
●●●●●

●

d = 5% d = 10%

0 2 4 7 10 NA 0 2 4 7 10 NA

2

2.5

3

k

R
un

tim
e 

(m
se

c)
 in

 lo
g 1

0

Local Structure CSI NAT

Figure 6.2: Summary of inference runtimes by NMBNs and CMBNs

singly connected of 10%. Each panel contains 6 boxes: 5 black boxes and 1 blue

box. Each black box shows the inference runtime distribution of the 30 CMBNs

produced from a single (k, d) combination. Each blue box shows the inference runtime

distribution of the 30 NMBNs produced for a given d value. The black boxes are

arranged in ascending order of number of duplicated variables, such that the boxes

furthest left have the most efficient CPT-trees. The runtimes were recorded on a

desktop with a 2.9GHz clock speed.

In both panels (d = 5% and d = 10%), inference runtime of NMBNs are the

least, even compared to the most efficient CMBNs that consist of CPT-trees with no

duplicated variables (k = 0). This is observed in Figure 6.2 as the NMBN (blue box)

is below the leftmost CMBN (black box) in both panels. We note the difference in

efficiency between CMBN and NMBNs may be explained by two limitations of the

network transformation approach.

First, the number of parents of a transformation’s multiplexer node is always

greater than the number of parents of a de-causalized node. Consider a CPT-tree

transformed BN segment with one multiplexer node m that switches on the parent

node n. Assuming all arcs in the source CPT-tree are singly-valued (i.e., one parent
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value per arc), the multiplexer node m will have dom(n) + 1 parents. That is, one

parent to encode the original variable n, plus one parent to encode each state of

dom(n). In comparison, every node in a de-causalized BN segment is guaranteed

to have at most 2 parents [25]. A greater maximum number of parents generally

decreases inference efficiency.

Second, a de-causalized BN segment is guaranteed to be loop free. By contrast,

a CPT-tree with duplicated variables will induce loops, which raises the treewidth

of the transformed structure (Section 4.4). A higher treewidth generally decreases

inference efficiency. Hence, the greater maximum number of parents and the larger

treewidth suggest that NAT modelled Bayesian networks are generally more efficient

than CPT-tree modelled networks.

Furthermore, we note that larger k values in Figure 6.2 correspond to longer

inference runtimes. This confirms the expected results discussed in Section 4.4. While

a larger d value corresponds to longer inference as well, the impacts of increasing

density from 5 to 10% beyond singly connected appear to have relatively less of an

impact than increasing the k value.

In summary, we confirmed the coexistence of NAT and CSI models in real-world

BNs. Next, we demonstrated the D+T conversion method that exploits both local

models is two orders of magnitude faster than all other conversion methods. A possible

explanation for the speedup is that the D+N and N+T conversion methods, which

exploit one local model are subject to normalization on the other local model. It is

plausible that the exploitation of one local model admits some efficiency savings but

the normalized families enforce the lower bound of inference efficiency. Lastly, we

evaluated the relative performance between the de-causalization and normalization

approaches where we observed inference runtime of NAT-modelled BNs to be least,

even relative to the most efficient CPT-trees with no duplicated variables.
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Chapter 7

Conclusion

In this chapter, we summarize the key contributions of this thesis and offer some

areas for future research.

7.1 Summary of Contributions

This thesis has introduced MNCBNs, a new representation for exploiting both

CSI and causal independence in the same environment. The representation makes use

of NAT models as its causal independence model and CPT-trees as its CSI model. An

inference framework designed for this representation facilitates efficient inference by

combining de-causalization on the NAT models and network transformation on the

CPT-tree models in the MNCBN. This avoids the previous requirement normalizing

one model to an exponentially sized tabular CPT. The inference framework has been

shown to be both exact and efficient, resulting in a 2 times order of magnitude speed

up for inference tasks on low density networks.

We demonstrated the necessity of this research by confirming that neither model

was able to efficiently and exactly encode the other model. This indicates that an

inference approach designed for one model cannot be applied to the other while main-

taining exactness and efficiency.

We extended the work of Boutillier et al. [3] by formalizing the network transfor-

mation algorithm suite. This facilitates the conversion of a CPT-tree into a tabular

modelled BN segment that preserves context-specific independencies. This BN seg-

ment is then compatible with many standard BN algorithms.
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We have explored the coexistence of NAT and CSI models in real-world BNs.

This experiment combined previous work that demonstrated the existence of NAT

models on 8 real-world BNs, with our study of identifying CSI on 2 real world BNs to

positively confirm the coexistence in real-world BNs. Our study applied the clustering

algorithm on the real-world BNs to identify how many groups of values would be

needed to express the CPT. We found that both CPTs expressed a significant amount

of CSI allowing for a concise expression by a CSI representation. Other work has

also identified CSI in real-world datasets. Collectively, these studies confirm the

coexistence of NAT and CSI in real-world BNs.

Some material forming the core of this thesis has been published and presented

at the 2020 Canadian Artificial Intelligence conference [15].

7.2 Future Work

The first area of future work could explore the compression of tabular CPTs

into CPT-trees. In this work, we make use of a clustering algorithm to estimate

the number of parameters needed to specify a CPT-tree. Future work can extend

these findings by learning a CPT-tree topology from a tabular CPT. It is likely the

topology could be identified by extending common decision tree learning algorithms

to CPT-trees. It is noted that some work [18] has been conducted in this area but

its learning is restricted to binary trees with multi-valued arcs. It was demonstrated

in Section 4.4 that if a CPT-tree tests each attribute individually, this restriction

results in a greater number of variable duplications. Hence, a CPT-tree learning

algorithm supporting multi-valued trees is desired.

Building off the first area, the second area of future work could explore learning

MNCBNs from raw data. This would likely require first identifying the dependence

structure (the directed acyclic graph) then identifying the optimal local model for

each family. One possible way to identify the optimal local model for each family
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would be to compress each tabular CPT into both a NAT model and a CSI model.

The hypothetical algorithm would then evaluate the number of parameters and ap-

proximation error of the NAT and CSI models against the tabular CPT, and assign

the model which best fits the family.

The final area of future work could be to evaluate the ability of CSI to model

multi-valued NAT CPTs. In this work, we conducted experiments over binary NAT

CPTs and outlined an approach to extend clustering to larger domains. It is predicted

that clustering multi-valued NAT CPTs will identify less CSI due to the stricter

conditions that must be met for CSI to exist, relative to the clustering of binary

NAT CPTs. Further experimental evaluation over multi-valued NAT CPTs would

substantiate the prediction.
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