
Simulation and Design of Quantum
Circuits

Alwin Zulehner and Robert Wille(B)

Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

Abstract. Currently, there is an ongoing “race” to build the first prac-
tically useful quantum computer that provides substantial speed-ups for
certain problems compared to conventional computers. In addition to
the development of such devices, this also requires the development of
automated tools and methods that provide assistance in the simulation
and design of corresponding applications. Otherwise, a situation might
be reached where we have powerful quantum computers but hardly any
proper means to actually use them. This work provides an overview of
corresponding solutions for the task of quantum circuit simulation, the
task of quantum circuit design, as well as corresponding mapping tasks.
The covered solutions utilise expertise on efficient data structures and
algorithms gained in the design of conventional circuits and systems over
the last decades. While the respective descriptions are kept brief and
mainly convey the general ideas, references to further readings are pro-
vided for a more detailed treatment.

1 Introduction

In quantum computing, so-called quantum bits (i.e., qubits) serve as elementary
information unit, which—in contrast to conventional bits—can not only be in
one of its two orthogonal basis states (denoted |0〉 and |1〉 using Dirac notation),
but also in superposition (i.e., a linear combination) of both [1]. Together with
further quantum-physical phenomena such as entanglement (the state of a qubit
might be influenced by the state of other qubits), this allows that the pure
state of a quantum system composed of n qubits may represent a superposition
of 2n basis states and corresponding complex amplitudes—resulting in higher
information density and computational power.

Well-known initial representatives of quantum algorithms following this pow-
erful computation paradigm are Grover’s search algorithm [2] and Shor’s algo-
rithm for integer factorisation in polynomial time [3]—both allowing to sig-
nificantly outperform conventional machines. Recently, the application area of
quantum algorithms has significantly broadened and provides efficient methods
in areas like chemistry, solving systems of linear equations, physics simulations,
machine learning, and many more [4–6].

These developments are also triggered by the fact that quantum computers
are reaching feasibility since “big players” such as IBM, Google, Microsoft, and
c© The Author(s) 2020
I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 60–82, 2020.
https://doi.org/10.1007/978-3-030-47361-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_3

Simulation and Design of Quantum Circuits 61

Intel as well as specialised startups such as Rigetti and IonQ have entered this
research field and are heavily investing in it [7–11]. In 2017, this led to the first
quantum computers that are publicly available through cloud access by IBM.
Since then, their machines have been used by more than 100,000 users, who have
run more than 6.5 million experiments thus far. Recently, IBM followed with the
presentation of their prototype towards a quantum computer for commercial use
(a stand-alone quantum computer to be operated outside of their labs)—the
IBM Q System One presented in January 2019 at CES [12].

Since currently available quantum computers are still limited in the number of
qubits, gate fidelity, as well as coherence time, they are classified as Noisy Inter-
mediate Scale Quantum (NISQ [5]) devices that will only be able to successfully
run some of the quantum algorithms outlined above (due to their limitations). In
fact, unveiling the full potential of quantum computing requires—besides further
reduction of error rates and improvement of coherence time—error-correcting
codes where each logical qubit in a computation is realised by several (up to sev-
eral hundreds) of physical qubits—eventually resulting in fault-tolerant devices
that are capable of conducting very deep computations on a large number of
qubits and with perfect accuracy [13,14].

In addition to these accomplishments and prospects, also the development
of automated tools and methods that provide assistance in the simulation and
design of corresponding applications is required. In this regard, the task of quan-
tum circuit simulation, the task of quantum circuit design, as well as correspond-
ing mapping tasks are important. Since modelling (arbitrary) quantum states
on conventional machines requires exponential overhead and many design prob-
lems are of exponential nature, straightforward solutions for these tasks will not
scale to relevant problem sizes. Hence, clever data-structures and algorithms are
required that allow for efficient solutions (at least) in certain cases. Otherwise, we
are approaching a situation where we might have powerful quantum computers
but hardly any proper means to actually use them.

This work provides an overview on solutions which have been developed
for these tasks and utilise expertise on efficient data structures and algorithms
gained in the design automation community over the last decades for conven-
tional circuits and systems. To this end, the simulation of quantum circuits,
their design, as well as technology mapping (compiling) are covered and dis-
cussed from a design automation perspective. The reviewed solutions often yield
improvements of several orders of magnitude compared to the current state of
the art (regarding runtime and corresponding design objectives)—showing the
tremendous available potential.

The overview is thereby structured as follows: First, Sect. 2 provides a back-
ground on quantum computing. Afterwards, Sect. 3, Sect. 4, and Sect. 5 sketch
the developed methods for the considered design tasks, i.e., quantum-circuit
simulation, the design of Boolean components occurring in quantum algorithms,
as well as mapping quantum circuits to real hardware (including references to
further reading for a more detailed treatment). Finally, Sect. 6 concludes the
paper.

62 A. Zulehner and R. Wille

2 Background on Quantum Computing

Quantum computations operate on qubits—two-level quantum systems that can
be combined into n-qubit systems. The state of a qubit is given by a linear
combination (i.e., a superposition) of these basis states |ϕ〉 = α0 · |0〉 + α1 · |1〉,
where the complex amplitudes α0 and α1 satisfy α0α

∗
0 + α1α

∗
1 = 1.

The joint state of n qubits (also denoted as the system’s wave function)
is contained in the tensor product of n two-dimensional Hilbert spaces—the 2n-
dimensional Hilbert space spanned by the basis |0〉 , . . . , |2n − 1〉. Hence, a super-
position of all computational basis states may need up to 2n complex-valued
parameters—appearing as the amplitudes of the unit-norm state vector.

Definition 1. Consider a quantum system composed of n qubits. Then, all pos-
sible states of the system are of the form

|ϕ〉 =
∑

x∈{0,1}n

αx · |x〉 , where
∑

x∈{0,1}n

αxα∗
x = 1 and αx ∈ C.

The state |ϕ〉 can be also represented by a column vector ϕ = [ϕi] with 0 ≤ i < 2n

and ϕi = αx, where nat(x) = i.

Quantum states cannot be directly observed. To extract (partial) informa-
tion from quantum states in the form of conventional bits, one performs a mea-
surement operation. In contrast to conventional computers, this measurement
modifies the quantum state. In the process of measurement, the quantum state
non-deterministically collapses to one of these basis states where the probability
of each outcome reflects the proximity to the respective basis state. More pre-
cisely, measuring a one-qubit state α0 · |0〉 + α1 · |1〉 (with α0α

∗
0 + α1α

∗
1 = 1)

changes the state to |0〉 or |1〉 with probabilities α0α
∗
0 and α1α

∗
1, respectively.

Example 1. Consider a quantum system composed of n = 3 qubits q0, q1, and
q2 that assumes the state |ϕ〉 = |q0q1q2〉 = 1

2 · |010〉+ 1
2 · |100〉− 1√

2
· |110〉. Then,

the state vector of the system is given by

ϕ =
[
0, 0,

1
2
, 0,

1
2
, 0,− 1√

2
, 0

]T

.

Measuring the system yields basis states |010〉, |100〉, and |110〉 with probabilities
1
4 ,

1
4 , and 1

2 , respectively. Measuring only qubit q0 collapses q0 into basis state
|0〉 and |1〉 with probabilities 1

4 and 1
4 + 1

2 = 3
4 , respectively—changing the state

of the system either to |ϕ′〉 = |010〉 or to |ϕ′′〉 = 1√
3

· |100〉 −
√

2
3 · |110〉.

Aside from measurements, quantum computers apply quantum operations
to a fixed set of qubits, altering the joint state of the qubits in a reversible
fashion. These operations are described by unitary matrices of size 2n × 2n.
Simple quantum operations (also denoted gates) are defined over one or two
qubits only. Mathematically speaking, the resulting 2n × 2n matrix can then

Simulation and Design of Quantum Circuits 63

be computed as the Kronecker product of the matrix representing the gate’s
operation and a large identity matrix.

Commonly used quantum gates for generating a superposition (the
Hadamard operation H), inverting a quantum state (X), and applying phase
shifts by −1 (Z), are respectively defined as

H = 1√
2

[
1 1
1 −1

]
, NOT = X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

Two-qubit gates can couple pairs of qubits and are represented by 4 × 4
unitary matrices. By applying arbitrary two-qubit gates to different pairs of
qubits, it is possible to effect any 2n-dimensional unitary, i.e., attain universal
quantum computation (each quantum functionality can be realised with those
gates). It is common to allow a variety of one-qubit gates but limit two-qubit
gates, e.g., to CNOT gates:

CNOT =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ .

The two-qubit CNOT gate can also be defined by its action |x y〉 �→ |x x ⊕ y〉,
where ⊕ represents the exclusive-or (XOR) operation, the unmodified qubit x is
called control, and the other bit is called target.

Quantum circuits [1] are used as proper description means for a finite
sequence of “small” gates that cumulatively enact some unitary operator U and,
given an initial state |ϕ〉 (which is usually the basis state |0 . . . 0〉), produce a
final state vector |ϕ′〉 = |Uϕ〉. Hence, a quantum gate does not represent a phys-
ical entity (like in the conventional realm), rather an operation that is applied
to a set of qubits.

Definition 2. In quantum circuits, the qubits are vertically aligned in a circuit
diagram, and the time axis (read from left to right) is represented by a horizontal
line for each qubit. Boxes on the time axis of a qubit (or enclosing several qubits)
indicate gates to be applied.1 Note that measurement also counts as quantum
operation in this context. Control qubits are indicated by • and are connected to
the controlled operations by a single line.

Example 2. Figure 1 shows a quantum circuit. The circuit contains two qubits,
q0 and q1, which are both initialised with basis state |0〉. First, a Hadamard
operation is applied to qubit q0, which is represented by a box labelled H. Then,
a CNOT operation is conducted, where q0 is the control qubit (denoted by •)
and q1 is the target qubit (denoted by ⊕). Eventually, qubit q0 is measured as
indicated by the meter symbol.

When two gates are applied on the same qubits in sequence, the result-
ing operation is represented by the matrix product of gate matrices. When an

1 Note that an X gate may also be denoted by ⊕.

64 A. Zulehner and R. Wille

Fig. 1. Quantum circuit.

m-qubit gate A and an n-qubit gate B are applied in parallel (on different
qubits), the resulting operation is represented by the Kronecker product A ⊗ B
of two matrices.

Example 3. Consider again the quantum circuit shown in Fig. 1. The resulting
state |ϕ′〉 (before measurement) is determined by multiplying the respective uni-
tary matrices to the state vector. Since the Hadamard gate shall only affect q0,
the Kronecker product of H and the identity matrix I2 is formed, i.e.,

H ⊗ I2 =
1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
=

1√
2

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥⎥⎦ .

Then, |ϕ′〉 is determined by

|ϕ′〉 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ · 1√
2

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ =
1√
2

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ .

As can be seen, the two gates entangle the qubits q0 and q1—generating a so-called
Bell state |ϕ′〉 = 1√

2
(|00〉 + |11〉). Measuring qubit q0 collapses its superposition

into one of the two basis states. Since q0 and q1 are entangled, q1 collapses to
the same basis state.

3 Quantum-Circuit Simulation

Since physical realisations of quantum computers are limited in their availability,
their number of qubits, their gate fidelity, and coherence time, quantum-circuit
simulators running on conventional machines are required for many tasks. From
a user’s perspective, possible applications (or at least their prototypes) for quan-
tum computers are usually first evaluated through simulators that serve as tem-
porary substitute. Moreover, simulation can be adapted to circuit equivalence-
checking and other functional verification tasks useful for circuit designers [15–
17]. Simulation also plays an important role for designers of quantum systems,
e.g., to foster the development of error-correcting codes. Besides that, the urgent
need of verifying quantum hardware might be conducted (at least some of the
required verification tasks) by comparing runs on these machines to simulation

Simulation and Design of Quantum Circuits 65

outcome [18,19]. Ultimately, quantum-circuit simulation capabilities provide an
estimate on quantum supremacy [18] as well as to identify classes of circuits
where no quantum speed-up is reachable (i.e., in case these circuits can be sim-
ulated efficiently on a conventional machine). In all these scenarios, simulators
may give additional insights since, e.g., the precise amplitudes of a quantum
state are explicitly determined (while they are not observable in a real quantum
computer).

However, quantum-circuit simulation in general constitutes a computation-
ally very complex task since each quantum gate and each quantum state is
eventually represented by a unitary matrix or state vector that grows exponen-
tially with the number of qubits. In fact, each quantum operation applied to a
quantum state composed of n qubits requires multiplying a 2n × 2n-dimensional
matrix with a 2n-dimensional vector.2 This constitutes a serious bottleneck,
which prevents the simulation of many quantum applications and, by this, the
evaluation of their potential. In fact, the array-like representation of the state
vector in current state-of-the-art simulators limits the number of qubits to be
simulated to approximately 30 on a modern computer (and to 50 when consid-
ering supercomputers with petabytes of distributed memory) [20].

This section presents a complementary simulation approach that aims for
overcoming this memory bottleneck (based on [21]). To this end, dedicated Deci-
sion Diagrams (DDs) are developed, which reduce the memory requirements by
representing redundancies in the occurring vectors and matrices by means of
shared nodes. This allows gaining significant improvements compared to straight-
forward realisations (relying on array-like representations) in many cases—often
reducing the simulation time from several hours or days to seconds or minutes.3

3.1 General Idea

The general idea of the presented complementary approach is to exploit redun-
dancies in the 2n-dimensional vectors representing quantum states. To this end,
decision diagram techniques (similar to those from the conventional realm) are
employed. More precisely, a given state vector with entries being complex num-
bers is decomposed into sub-vectors. To this end, consider a quantum system
with qubits q0, q1, . . . qn−1, whereby without loss of generality q0 represents the
most significant qubit. Then, the first 2n−1 entries of the corresponding state
vector represent the amplitudes for the basis states with q0 set to |0〉; the other
entries represent the amplitudes for states with q0 set to |1〉. This decomposition
is represented in a decision diagram structure by a node labelled q0 and two
successors leading to nodes representing the sub-vectors. The sub-vectors are

2 Note that different simulation approaches exist that do not compute the complete
final state vector, and that it is usually not necessary to represent the exponentially
large matrix explicitly. However, this does not decrease the exponential complexity.

3 Note that previous DD-based simulators (e.g., QuIDDPro [22]) did not get estab-
lished due to their limited applicability (i.e., they provide improvements in rather
few cases).

66 A. Zulehner and R. Wille

recursively decomposed further until vectors of size 1 (i.e., a complex number)
result. This eventually represents the amplitude αi for the basis state and is
given by a terminal node. During these decompositions, equivalent sub-vectors
are represented by the same node—allowing for sharing and, hence, a reduction
of the memory complexity. An example illustrates the idea.

Example 4. Consider a quantum system with n = 3 qubits situated in a state
given by the following vector:

ϕ =
[
0, 0,

1
2
, 0,

1
2
, 0,− 1√

2
, 0

]T

.

Applying the decompositions described above yields a decision diagram as shown
in Fig. 2a. The left (right) outgoing edge of each node labelled qi points to a node
representing the sub-vector with all amplitudes for the basis states with qi set to
|0〉 (|1〉). Following a path from the root to the terminal node yields the respective
entry. For example, following the path highlighted bold in Fig. 2a provides the
amplitude for the basis state with q0 = |1〉 (right edge), q1 = |1〉 (right edge),
and q2 = |0〉 (left edge), i.e., − 1√

2
which is exactly the amplitude for basis state

|110〉 (seventh entry in the vector). Since some sub-vectors are equal (e.g.,
[
1
2 , 0

]T

represented by the left node labelled q2), sharing is possible.

However, even more sharing is possible since sub-vectors often differ in a
common factor only. This is additionally exploited in the proposed representation
by denoting common factors of amplitudes as weights attached to the edges of the
decision diagram. Then, the value of an amplitude for a basis state is determined
by following the path from the root to the terminal, and additionally multiplying
the weights of the edges along this path. Again, an example illustrates the idea.

Example 4 (continued). As can be seen, the sub-vectors represented by the

nodes labelled q2 (i.e.,
[
1
2 , 0

]T and
[
− 1√

2
, 0

]T
) differ in a common factor only.

In the decision diagram shown in Fig. 2b, both sub-trees are merged. This
is possible since the corresponding value of the amplitudes is now determined
not by the terminals, but the weights on the respective paths. As an example,
consider again the path highlighted bold representing the amplitude for the basis
state |110〉. Since this path includes the weights 1

2 , 1, −√
2, and 1, an amplitude

of 1
2 · 1 · (−√

2) · 1 = − 1√
2

results.

Note that, of course, various possibilities exist to factorise an amplitude.
Hence, a normalisation is applied which assumes the left edge to inherit a weight
of 1. More precisely, the weights wl and wr of the left and right edge are both
divided by wl and this common factor is propagated upwards to the parents of
the node. If wl = 0, the node is normalised by propagating wr upwards to the
parents of the node.

The idea used for representing state vectors by means of DDs can be extended
to also represent unitary matrices. Here, each DD-node has four successors that

Simulation and Design of Quantum Circuits 67

Fig. 2. DD-based representation of state vectors.

represent the four quadrants of the sub-matrix. Having description means for
state vectors and unitary matrices (describing the functionality of gates) it is
left to provide algorithms for matrix-vector multiplication as well as for mea-
surement. Fortunately, all these operations can be directly employed on the DDs
and without the need of explicitly representing the underlying exponentially
large entities. For further details we refer to [21].

3.2 Resulting Approaches

Following the general idea outlined above leads to a simulation approach that
scales polynomially with the size of the DD representing the state vector. Since
the DD often remains rather compact, significant improvements can be observed
compared to straightforward Schrödinger-style simulators as well as to previous
DD-based simulators in many cases—even though these techniques have been
heavily optimised over the last decade and utilise multiple CPU-cores to reduce
simulation time (while the proposed approach utilises a single core only). More
precisely, the approach proposed in [21] is capable of (1) simulating quantum
computations for more qubits than before, (2) in significantly less run-time, and
(3) on a regular Desktop machine.

For further details on the basic ideas and required algorithms of the DD-
based simulator we refer to [21,23]. Moreover, [21] shows that for many cases,
the simulation time can be reduced from several days to just a few seconds
or minutes. This initial version of a DD-based simulator did not only lead to
a significant improvement compared to the current state of the art, but has
also received significant acknowledgement by the community—triggering further
optimisations as done for array-based Schrödinger-style simulators for more than
a decade.

Using DDs for representing occurring vectors and matrices, the complexity of
multiplications depends on the size (i.e, the number of nodes) of the respective
operands in DD-based simulation. Together with the fact that the DDs for the
usually considered gate matrices are linear in size (with respect to the number

68 A. Zulehner and R. Wille

of qubits), this implies that it might be beneficial to combine gate operations
before applying them to the state vector. In [24], strategies are described for com-
bining operations that allow improving the initial version of the proposed DD-
based simulator significantly—up to several orders of magnitude when exploiting
application-specific knowledge.

Enormous improvements compared to the state of the art as described above
obviously require an efficient implementation of the underlying DD-package—
especially for handling the occurring complex numbers. By providing such
techniques—in joint consideration of implementation techniques for decision dia-
grams in the conventional domain developed decades ago—the development of a
powerful DD-package for the quantum domain was leveraged in [25]. The eval-
uation conducted in [25] showed that complex numbers can be handled much
more efficiently than in previous implementations and that decision diagrams
for established quantum functionality is constructed in significantly less run-
time (up to several orders of magnitude). Presumably, this performance boost
can be easily passed to DD-based methods for other design automation tasks like
synthesis [26,27] or verification [15–17], just by incorporating this new package.

Since handling complex numbers is crucial in DDs for quantum computa-
tion (especially when occurring as edge weights), the resulting trade-off between
accuracy and compactness has been thoroughly discussed and evaluated in [28].
Since this trade-off requires fine-tuning of parameters on a case-by-case basis
and might still yield useless results, an algebraic decision diagram is proposed
in [28] to overcome this issue. The proposed algebraic representation guarantees
perfect accuracy while remaining compact (all redundancies that are actually
present are detected)—with moderate overhead in many cases.

All the endeavours listed above have been implemented in C/C++ and
made publicly available at http://iic.jku.at/eda/research/quantum simulation.
Besides that, a stand-alone version of the developed DD-package is available
at http://iic.jku.at/eda/research/quantum dd. Together with the significant
improvements gained compared to the state of the art, this did not only result
in acknowledgement inside the academic community, but also received interest
from big players in the field. More precisely, the developed simulation approach
has been acknowledged with a Google Research Faculty Award and has recently
been officially integrated into IBM’s SDK Qiskit. This further emphasises the
potential of DD-based design methods in the quantum domain—hopefully lead-
ing to as powerful DD-based methods as taken for granted in the conventional
domain today. Questions on whether hybrid approaches are possible or whether
concurrent approaches as well as approximation schemes can be exploited remain
open issues for future work. First results towards these questions are provided
in [29,30].

4 Design of Boolean Components for Quantum Circuits

Estimating resource requirements of quantum algorithms (i.e., the number of
required qubits and run-time on quantum computers), their simulation, or their

http://iic.jku.at/eda/research/quantum_simulation
http://iic.jku.at/eda/research/quantum_dd

Simulation and Design of Quantum Circuits 69

execution on real hardware requires compiling quantum algorithms containing
high-level operations (e.g., modular exponentiation in Shor’s algorithm) into
quantum circuits composed of elementary gates available on the considered tar-
get architecture. Thereby, quantum circuits composed of gates with multiple
control qubits (multiple-controlled qubit gates) are usually considered since they
(1) describe a rather low-level but still technology independent description of the
algorithm, (2) can be directly handled by most simulators, and (3) are usually
utilised as input for technology mapping algorithms (which will be covered in
the next section).

For the “quantum part” of an algorithm, a decomposition into multiple-
controlled qubit gates is usually inherently given by the algorithm, by using
common building blocks like a Quantum Fourier Transform (QFT [31]), or
determined by hand. However, this is different for large Boolean components
that are contained in many quantum algorithms, e.g., the modular exponentia-
tion in Shor’s algorithm for integer factorisation [3] or a Boolean description of
the database that is queried in Grover’s algorithm [2].

Even though the functionality of the Boolean components can be described
in the conventional domain, corresponding design methods cannot be utilised
since the inherent reversibility of quantum computations has to be considered.
In fact, determining circuits composed of reversible gates only, requires dedi-
cated reversible-circuit synthesis approaches. To manage the complex function-
ality of Boolean components, they are usually split into several (non-)reversible
parts [32]. However, these resulting non-reversible sub-functions have to be
embedded into reversible ones to ensure the desired unique mapping from inputs
to outputs—a task that can either be conducted explicitly or implicitly. This
embedding process requires adding several so-called ancillary qubits, which shall
be kept as small as possible since qubits are a highly limited resource. Besides
that, T-count and T-depth of the synthesised reversible circuits serve as cost
metric to compare different approaches that yield circuits with an equal (or at
least a close-to equal) number of qubits.

This section focuses on the functional design flow for synthesising Boolean
components (where the reversible function resulting from an explicit embed-
ding step is passed to synthesis algorithm) since it yields circuits with a mod-
erate number of qubits (often the minimum). Investigating this problem from
a design automation perspective allows developing efficient methods utilising
the decision diagrams introduced in the context of simulation (cf. Sect. 3) [33–
35]. However, there is even more (yet) unused potential that allows synthesis-
ing cheaper circuits, yields better scalability, and even reduces the number of
required qubits below what is currently considered as the minimum (for certain
cases)—significantly improving the current state of the art.

4.1 One-Pass Design of Reversible Circuits

Despite using efficient description means like DDs for functional synthesis, the
currently established design flow still suffers from the need to conduct embedding

70 A. Zulehner and R. Wille

and actual synthesis separately—a major drawback that prohibits the exploita-
tion of a huge degree of freedom since embedding is not necessarily conducted
in a fashion, which suits the following synthesis step. To overcome this draw-
back, the work [36,37] introduced a completely new design flow that combines
functional synthesis and the embedding to a one-pass design flow. This generic
flow is not bound to a certain functional synthesis approach and—for the first
time—exploits the available degree of freedom to significantly increase scalabil-
ity and to reduce the costs of the synthesised circuit while keeping the number
of required qubits at the minimum.

In the established flow, an individual step is required that embeds the
non-reversible function to be synthesised into a reversible one. Thereby, k =

log2 μ(p1)� further so-called garbage outputs are added (assuming that the
most frequent output pattern p1 occurs μ(p1) times) and the additional rows
and columns of the truth table are assigned such that a unique mapping from
inputs and outputs results [33]. Passing a non-reversible function directly to a
functional reversible-circuit synthesis approach will fail, since several input com-
binations shall be mapped to the same output combination. This can be avoided
in two ways:

– Following the exact solution guarantees to result in a circuit requiring the
minimum number of qubits. The general idea is to add k further variables
to the function description (e.g., a DD), but keep all additional entries in
the function don’t care—allowing to exploit the available degree of freedom
of their assignment (which does not matter as long as a reversible func-
tion results). Having these additional variables allows conducting synthesis
(almost) as usual. During synthesis, the don’t cares are inherently assigned
(1) in a way that suits best to the synthesis algorithm, and (2) such that a
reversible function results (since only reversible gates are added to the cir-
cuit).

– Following the heuristic solution does not necessarily result in a circuit requir-
ing the minimum number of qubits, but still bounded. The general idea is
to conduct synthesis without embedding. Whenever an error is encountered
during synthesis (i.e., synthesis cannot proceed due to the missing embedding
step), the function to be synthesised is modified such that the algorithms can
continue. Since this obviously results in a circuit different to the intended
one, the modifications of the function are stored on so-called buffer-lines (at
most one buffer line is required for each variable of the function). After syn-
thesis finishes, these modifications are reverted by a single CNOT gate for
each buffer line.
The advantage of the heuristic approach is that no additional variables are
added to the function description (as done in the usual functional design
flow and the exact one-pass design). Hence, this heuristic approach is even
more scalable that the exact solution since the function description remains
smaller.

Example 5. Consider a function f : IBn → IBm with n inputs and m outputs
and assume that the most frequent output pattern occurs μ(p1) times. Then,

Simulation and Design of Quantum Circuits 71

following the exact solution, the f is enriched by k =
log2 μ(p1)� further outputs
to make all output patterns distinguishable. Hence, the synthesis is conducted on
a function with max(n,m + k) variables—like in the established design flow.
However, the additional entries in the truth table remain don’t care initially and
are assigned 0 or 1 during synthesis as suitable.

Instead, the heuristic solution conducts synthesis directly on f and, hence
max(n,m) variables. The modifications made to f during synthesis require at
most min(n,m) buffer lines—resulting in a quantum circuit with at most n + m
qubits.

The evaluations provided in [36] show the advantages of the one-pass design
flow (which can be also applied to other functional synthesis approaches) com-
pared to the conventional two-stage design flow. Besides substantial speedups
compared to the state-of-the-art design flow, the T-count is reduced by sev-
eral orders of magnitude in most cases—clearly outperforming the currently
established functional design flow for reversible circuits where embedding and
synthesis are conducted separately. For further details, we refer to [36].

4.2 Exploiting Coding Techniques

The proposed one-pass design flow can be enriched with the idea of exploiting
coding techniques in order to reduce the number of variables that have to be
considered during synthesis [38].4 This idea is based on the fact, that the output
patterns in non-reversible functions are not uniformly distributed—leading to
a situation where some patterns require many additional outputs while others
require only a few. Hence, several garbage outputs are required only for cer-
tain output patters. Avoiding this overhead provides significant potential for
improving synthesis. In fact, employing a variable-length code allows realising
any non-reversible function with a single ancillary qubit only—allowing conduct-
ing synthesis on significantly fewer variables than before [39]. The key idea is
to represent frequently occurring output patterns (which require more garbage
outputs) with a smaller number of variables. Vice versa, less frequently occur-
ring patterns (which require less garbage outputs) are represented with a larger
number of variables. In other words, coding techniques are utilised in order to
encode the desired function with a variable-length code in which the length of
the code word for an output pattern pi is indirectly proportional to the number
μ(pi) of times the pattern occurs. An example illustrates that.

Example 6. Consider the Boolean function shown in Table 1a and its distri-
bution of the output patterns as shown in Table 1b. Following, e.g., the exact
one-pass design flow outlined above results in a function with 5 inputs/outputs
since the most frequent output pattern p1 = 010 occurs four times and, thus,
requires two garbage outputs. However, using a variable-length code as shown in

4 Note that exploiting coding techniques is also possible in the original design flow
composed of an embedding and a synthesis step.

72 A. Zulehner and R. Wille

Table 1. Variable-length encoding for one-pass design.

(a) Orig. function

x0 x1 x2 y0 y1 y2
0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 0 0 1

(b) Output patterns

i pi µ(pi)
1 010 4
2 100 2
3 001 1
4 011 1
5 000 0
6 101 0
7 110 0
8 111 0

(c) Encoding

i pi c(pi)
1 010 0 - -
2 100 1 0 -
3 001 1 1 0
4 011 1 1 1

(d) Encoded function

x0 x1 x2 y0 y1 y2
0 0 0 0 - -
0 0 1 0 - -
0 1 0 1 0 -
0 1 1 1 0 -
1 0 0 1 1 1
1 0 1 0 - -
1 1 0 0 - -
1 1 1 1 1 0

Table 1c allows reducing the number of required qubits. There, the most frequent
output pattern is encoded by c(p1) = 0. Since this pattern requires two garbage
outputs, in total 1+2 = 3 outputs are required.5 The second most frequent output
pattern p2 = 100 is encoded by c(p2) = 10. Since this pattern occurs only twice,
one garbage output is required—again resulting in 2 + 1 = 3 outputs. The pat-
terns p3 and p4 are encoded by c(p3) = 110 and c(p4) = 111, respectively. Here,
no garbage outputs are required. The remaining patterns (p5 to p8) do not have
to be encoded, since they never occur. Overall, this yields an (encoded) reversible
function which embeds f as shown in Table 1d and is composed of a total of 3
inputs/outputs only—two qubits fewer than without using coding.

The code is computed by generating a Pseudo-Huffman tree: Starting with
terminal nodes—one for each output pattern with μ(pi) > 0 (no code has to be
assigned to output patterns that do not occur)—with attached weights repre-
senting the number of respectively required garbage outputs (i.e.,
log2 μ(pi)�),
the Pseudo-Huffman tree is then generated by repeatedly combining the two
nodes a and b with the smallest attached weights w(a) and w(b) to a new node c
with weight w(c) = max(w(a), w(b)) + 1 until a single node results. The weight
of such a node w(c) then gives the number of outputs required to represent
all combined output patterns uniquely, i.e., one additional variable is required
(aside from max(w(a), w(b))) to distinguish between a and b.

Example 7. Consider the distribution of the output patterns as shown in
Table 1b. Determining the Pseudo-Huffman code starts with the nodes v1, v2, v3,
and v4—one for each output pattern pi with μ(pi) > 0. These nodes are shown
at the bottom of Fig. 3. The weights are drawn inside the respective nodes. The
weight of node v1 is w1 = k1 = 2, because output pattern p1 = 010 requires two
garbage outputs. The weights of the nodes representing p2, p3, and p4 are 1, 0,
and 0, respectively. In a first step, the nodes v3 and v4 (both have weight 0) are
combined. The resulting node v5 has a weight of w5 = max(0, 0) + 1 = 1. Next,
the two nodes with weight 1 (i.e., v2 and v5) are combined. The resulting node

5 The garbage outputs are represented by a dash, since they represent don’t care values
(as long as it is ensured that the resulting function is reversible).

Simulation and Design of Quantum Circuits 73

Fig. 3. Huffman tree for the function from Table 1a.

v6 has a weight of w6 = max(1, 1) + 1 = 2. Finally, the two remaining nodes
are combined to a new node v7 with weight w7 = max(2, 2) + 1 = 3—eventually
resulting in the tree shown in Fig. 3.

After generating the Pseudo-Huffman tree, the overall number of variables
that are required to realise the encoded function is given by the weight of the
root node of the tree. The resulting code is inherently given by the structure of
the Pseudo-Huffman tree. In fact, each path from the root node to a leaf node
represents a code word, where taking the left (right) edge implies a 0 (1).

Example 7 (continued). Since the root node has a weight of 3, three variables
are required to realise the encoded function (without encoding, max(3, 3 + 2) = 5
variables would be required). The path from the root node to the leaf node v2
(which represents output pattern p2) traverses the right edge of the root node v7
as well as the left edge of v6. Consequently, c(p2) = 10 encodes p2 = 100. Since v2
has weight w2 = 1, one output is used as garbage output in this case. Accordingly,
code words for all other output patterns are determined—eventually resulting in
the code shown in Table 1c. Dashes again represent don’t cares.

Following this idea, at most n + 1 qubits—instead of max(n,m +

log2 μ(p1)�)—are required to embed any non-reversible function with n inputs.
Concerning the design of Boolean components contained in quantum algo-
rithms, the encoded outputs can be handled (1) locally where decoders are
required for each sub-component that again increase the number of qubits to
max(n,m +
log2 μ(p1)�), or (2) globally where subsequent components that are
capable of handling encoded inputs allow remaining at n + 1 qubits.

Incorporating the idea of utilising coding techniques into the one-pass design
flow introduced above unveils even more potential. In fact, it allows exploiting an
even larger degree of freedom since the values of the garbage outputs are basically
don’t care (except the restriction that a reversible function has to be realised)—
while still guaranteeing to synthesise a circuit that uses the minimum number
of qubits (or even below that minimum if no decoding is required afterwards).
This degree of freedom allows for synthesising circuits with significantly smaller
T-count [38].

74 A. Zulehner and R. Wille

5 Mapping Quantum Circuits to NISQ Devices

In order to use currently developed Noisy Intermediate-Scale Quantum (NISQ)
devices, the quantum algorithm to be executed has to be properly mapped to
these devices such that their underlying physical constraints are satisfied (this
is one part of the overall compilation task). To this end, it is assumed that
the considered quantum algorithm has already been translated into a quantum
circuit composed of multiple-controlled one-qubit gates. For the “quantum part”
of the algorithm, this is often inherently given (e.g., by using components for
which such translations are known) or done by hand. For the “Boolean part”
of the algorithm, a gate-level description is often gained by reversible circuit
synthesis, as discussed in the previous section.

Then, mapping quantum circuits to NISQ devices requires the consideration
of two aspects. First, the occurring gates have to be decomposed into elementary
operations provided by the target device—usually a single two-qubit gate as well
as a broader variety of one-qubit gates to gain a universal gate set. Second, the
logical qubits of the quantum circuit have to be mapped to the physical qubits
of the target device while satisfying the so-called coupling-constraints given by
the respective device. Since not all physical qubits are coupled directly with each
other (due to missing physical connections), two-qubit gates can only be applied
to selected pairs of physical qubits. Since it is usually not possible to determine
a mapping such that all coupling-constraints are satisfied throughout the whole
circuit, the mapping has to change dynamically. This is achieved by inserting
additional gates, e.g., realising SWAP operations, in order to “move” the logical
qubits to other physical ones.

While there exist several methods to address the first issue, i.e., how to
efficiently decompose multiple-controlled one-qubit gates into elementary oper-
ations (see [40,41]), there is only few work on how to efficiently satisfy the
coupling-constraints of real devices. Although there are similarities with recent
work on nearest-neighbour optimisation of quantum circuits as proposed in [42–
45], they are not applicable since simplistic architectures with 1-dimensional or
2-dimensional layouts are assumed which have a fixed coupling (all adjacent
qubits are coupled) that does not allow modelling all current NISQ devices.

This section covers the mapping of the logical qubit of a quantum circuit
to the physical ones of a NISQ device from a design automation perspective.
Thereby, IBM Q devices are considered as representatives for NISQ devices to
discuss the occurring challenges in detail, as well as to describe the proposed
solutions. IBM’s approach has been chosen, since it provides the first publicly
available quantum devices (available since 2017) that can be accessed by everyone
(not only academics) through cloud access. Moreover, their coupling-constraints
are described more flexibly than those of other companies—allowing to map
their coupling-constraints to IBM’s model as well.

Simulation and Design of Quantum Circuits 75

Fig. 4. IBM Q 16 Rueschlikon V1.0.0 (IBM QX3) [46].

5.1 Considered Problem

While one-qubit gates can be applied without limitations in IBM’s devices, the
physical architecture of the respectively developed quantum computers—usually
a linear or rectangular arrays of qubits—limits two-qubit gates to neighbouring
qubits that are connected by a superconducting bus resonator. In IBM’s devices
that use cross-resonance interaction as the basis for CNOT gates, the frequencies
of the qubits also determine the direction of the gate (i.e., determining which
qubit is the control and which is the target). The possible CNOT gates are
captured by so-called coupling maps [46], giving a very flexible description means
to specify the coupling-constraints of a certain quantum device. Figure 4 shows
the coupling map of the IBM QX3 device. Physical qubits are visualised with
nodes and a directed edge from physical qubit Qi to physical qubit Qj indicates
that a CNOT with control qubit Qi and target qubit Qj can be applied.

To satisfy the coupling-constraints, one has to map the n logical qubits
q0, q1, . . . , qn−1 of the decomposed circuit to the m ≥ n physical qubits
Q0, Q1, . . . , Qm−1 of the considered quantum device such that all coupling-
constraints given by the corresponding coupling map are satisfied. Unfortunately,
it is usually not possible to find a mapping such that the coupling-constraints are
satisfied throughout the whole circuit (this is already impossible if the number of
other qubits, a logical qubit interacts with, is larger than the maximal degree of
the coupling map). More precisely, the following problems—using CNOT (qc, qt)
to describe a CNOT gate with control qubit qc and target qubit qt, and CM to
describe the edges of the device’s coupling map—may occur:

– A CNOT gate CNOT (qc, qt) shall be applied while qc and qt are mapped
to physical qubits Qi and Qj , respectively, and (Qi, Qj) /∈ CM as well as
(Qj , Qi) /∈ CM .

– A CNOT gate CNOT (qc, qt) shall be applied while qc and qt are mapped to
physical qubits Qi and Qj , respectively, and (Qi, Qj) /∈ CM while (Qj , Qi) ∈
CM .

To overcome these problems, one strategy is to insert additional gates into
the circuit to be mapped. More precisely, to overcome the first issue, one can
insert so-called SWAP operations into the circuit that exchange of the states of
two physical qubits and, by this, “move” around the logical ones—changing the
mapping dynamically.

76 A. Zulehner and R. Wille

Example 8. Figure 5 shows the effect of a SWAP gate as well as its decom-
position into elementary gates supported by the IBM Q devices. Assume that
the logical qubits q0 and q1 are initially mapped to the physical ones Q0 and
Q1, respectively (indicated by �). Then, by applying a SWAP gate, the states of
Q0 and Q1 are exchanged—eventually yielding a mapping where q0 and q1 are
mapped to Q1 and Q0, respectively.

Fig. 5. Decomposition of a SWAP operation.

The second issue may also be solved by inserting SWAP operations. However,
it is cheaper (fewer overhead is generated) to insert four Hadamard operations
(labelled by H) as they switch the direction of the CNOT gate (i.e., they change
the target and the control qubit). This can also be observed in Fig. 5, where H
gates switch the direction of the middle CNOT in order to satisfy all coupling-
constraints given by the coupling map (assuming that only CNOTs with control
qubit Q1 and target qubit Q0 are possible).

However, inserting additional gates in order to satisfy the coupling-
constraints drastically increases the number of operations—a significant draw-
back, which affects the fidelity of the quantum circuit since each gate has a
certain error rate. Since each SWAP operation is composed of 7 elementary
gates (cf. Fig. 5), particularly their number shall be kept as small as possible.
Accordingly, this raises the question of how to derive a proper mapping of logi-
cal qubits to physical qubits while, at the same time, minimising the number of
added SWAP and H operations—an NP-complete problem as recently proven
in [47,48].

Example 9. Consider the quantum circuit composed of 5 CNOT gates shown in
Fig. 6a and assume that the logical qubits q0, q1, q2, q3, q4, and q5 are respectively
mapped to the physical qubits Q0, Q1, Q2, Q3, Q14, and Q15 of IBM QX3
shown in Fig. 4 on Page 16. The first gate can be directly applied, because the
coupling-constraints are satisfied. For the second gate, the direction has to be
changed because a CNOT with control qubit Q0 and target Q1 is valid, but not vice
versa. This can be accomplished by inserting Hadamard gates as shown in Fig. 6b.
For the third gate, the mapping has to change. To this end, SWAP operations
SWAP (Q1, Q2) and SWAP (Q2, Q3) are inserted to move logical qubit q1 to
become a neighbour of logical qubit q4 (see Fig. 6b). Afterwards, q1 and q4 are
mapped to the physical qubits Q3 and Q14, respectively, which allows applying the
desired CNOT gate. Following this procedure for the remaining qubits eventually
results in the circuit shown in Fig. 6b. The mapped circuit is composed of 51
elementary operations and has a depth of 36 when using a naive algorithm—a
significant overhead that motivates research on improved approaches.

Simulation and Design of Quantum Circuits 77

Fig. 6. Mapping of a quantum circuit to IBM QX3.

5.2 Existing Approaches and Results

There exist only very few algorithms that explicitly tackle the mapping problem
for IBM Q devices, and, thus, serve as alternative to IBM’s own solution provided
within its SDK Qiskit [49].6 To encourage further development in this area, IBM
even launched the IBM Qiskit Developer Challenge seeking for the best possible
solution [50]. This led to the development of several approaches that explicitly
consider design automation techniques to tackle the mapping problem.

The work [51] provides—for the first time—an exact approach (using a for-
mal description of the mapping problem that is passed to a powerful reasoning
engine) to solve the mapping problem by inserting the minimum number of
additional H and SWAP operations. By this, a lower bound on the overhead
is provided (when neglecting pre- and post-mapping optimisations), which is
required to satisfy the coupling-constraints given by the quantum hardware—
allowing to show that IBM’s own solution often exceeds the minimal overhead
by more than 100 % (even for small instances). However, the exponential nature
of the mapping problem (it has been proven to be NP-complete [47]) makes the
exact approach applicable for small instances only.

This limitation—together with the fact that IBM’s approach generates map-
ping that are far above the minimum—motivates the development of heuristic
approaches. The heuristic methods presented in [52] are heuristic solution that
utilises the A∗ search method to determine proper mappings. This allows reduc-
ing the overhead compared to Qiskit by approximately one fourth on average.7

This difference in quality is mainly because IBM’s solution randomly searches
for a mapping that satisfies the coupling-constraints—leading to a rather small
exploration of the search space so that only rather poor solutions are usually
found. In contrast, the proposed approach aims for an optimised solution by
exploring more suitable parts of the search space and additionally exploiting

6 Note that IBM’s solution randomly searches (guided by heuristics) for mappings of
the qubits at a certain point of time.

7 Note that the proposed approach has additionally been integrated into Qiskit to
allow a fair comparison by utilising the same post-mapping optimisations.

78 A. Zulehner and R. Wille

information of the circuit. More precisely, a look-ahead scheme is employed that
considers gates that are applied in the near future and, thus, allows determining
mappings which aim for a global optimum (instead of local optima) with respect
to the number of SWAP operations.

Even though this heuristic approach allows outperforming Qiskit’s mapping
algorithm, it has some scalability issues when used for mapping certain random
circuits for validating quantum computers [19], which also served as benchmarks
in the IBM Qiskit Developer Challenge (a challenge for writing the best quantum-
circuit compiler to encourage development). These circuits provide a worst-case
scenario that heavily affects the efficiency of the proposed heuristic approach.
Therefore, a dedicated approach is proposed in [53], which explicitly considers
their structure by using dedicated pre- and post-mapping optimisations. The
resulting methodology has been declared as winner of the IBM Qiskit Developer
Challenge, since it generated mapped/compiled circuits with at least 10 % lower
costs than the other submissions while generating them at least 6 times faster,
and is currently being integrated into Qiskit by researchers from IBM. Besides
that, all mapping approaches developed in context of this thesis are publicly
available at http://iic.jku.at/eda/research/ibm qx mapping.

6 Conclusion

This chapter has shown the great potential of bringing knowledge gained from
the design automation of conventional circuits and systems into the quantum
realm. More precisely, quantum-circuit simulation, the design of Boolean com-
ponents for quantum algorithms, as well as technology mapping have been con-
sidered from a design automation perspective—leading to improvements of sev-
eral orders of magnitude (with respect to runtime or other design objectives) in
many cases. For further information on the developed algorithms we refer to the
cited papers. In the future, this development shall continue on a larger scale—
eventually providing the foundation for design automation methods that accom-
plish for quantum computing what the design automation community realised
for conventional (electronic) circuits.

Acknowledgments. This work has partially been supported by the European Union
through the COST Action IC1405 and the LIT Secure and Correct System Lab funded
by the State of Upper Austria.

References

1. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information.
AAPT 70, 558 (2002)

2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing, pp. 212–219 (1996)

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

http://iic.jku.at/eda/research/ibm_qx_mapping

Simulation and Design of Quantum Circuits 79

4. Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2, 15023
(2016)

5. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

6. Coles, P.J., et al.: Quantum algorithm implementations for beginners. arXiv
preprint arXiv:1804.03719 (2018)

7. Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a supercon-
ducting quantum computing system. npj Quantum Inf. 3(1), 2 (2017)

8. Kelly, J.: A preview of Bristlecone, Google’s new quantum processor (2018).
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

9. Hsu, J.: CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy. IEEE
Spectrum Tech Talk (2018). https://spectrum.ieee.org/tech-talk/computing/
hardware/intels-49qubit-chip-aims-for-quantum-supremacy

10. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: International Conference on Rebooting Computing (ICRC),
pp. 1–6 (2016)

11. IonQ: IonQ: trapped ion quantum computing. https://ionq.co. Accessed 15 June
2019

12. Nay, C.: IBM unveils world’s first integrated quantum computing system for com-
mercial use. https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-
Integrated-Quantum-Computing-System-for-Commercial-Use. Accessed 15 June
2019

13. Horsman, C., Fowler, A.G., Devitt, S., Van Meter, R.: Surface code quantum com-
puting by lattice surgery. New J. Phys. 14(12), 123011 (2012)

14. Gottesman, D.: An introduction to quantum error correction and fault-tolerant
quantum computation. In: Quantum Information Science and Its Contributions to
Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58
(2010)

15. Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. In:
International Symposium on Nanoscale Architectures. pp. 23–28. IEEE Press
(2010)

16. Niemann, P., Wille, R., Drechsler, R.: Equivalence checking in multi-level quan-
tum systems. In: International Conference of Reversible Computation, pp. 201–215
(2014)

17. Burgholzer, L., Wille, R.: Improved DD-based equivalence checking of quantum
circuits. In: Asia and South Pacific Design Automation Conference (ASP-DAC)
(2020)

18. Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat.
Phys. 14(6), 595 (2018)

19. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Val-
idating quantum computers using randomized model circuits. arXiv preprint
arXiv:1811.12926 (2018)

20. Smelyanskiy, M., Sawaya, N.P.D., Aspuru-Guzik, A.: qHiPSTER: the quantum
high performance software testing environment. arXiv preprint arXiv:1601.07195
(2016)

21. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE
Trans. CAD Integr. Circuits Syst. 38, 848–859 (2019)

22. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Dordrecht (2009). https://doi.org/10.1007/978-90-481-3065-8

http://arxiv.org/abs/1804.03719
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
https://ionq.co
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
http://arxiv.org/abs/1811.12926
http://arxiv.org/abs/1601.07195
https://doi.org/10.1007/978-90-481-3065-8

80 A. Zulehner and R. Wille

23. Niemann, P., Zulehner, A., Wille, R., Drechsler, R.: Efficient construction of
QMDDs for irreversible, reversible, and quantum functions. In: Phillips, I.,
Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 214–231. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6 17

24. Zulehner, A., Wille, R.: Matrix-vector vs. matrix-matrix multiplication: potential
in DD-based simulation of quantum computations. In: Design, Automation and
Test in Europe, European Design and Automation Association (2019)

25. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values?
Implementing decision diagrams for quantum computation. In: International Con-
ference on CAD (2019)

26. Niemann, P., Datta, R., Wille, R.: Logic synthesis for quantum state generation.
In: International Symposium on Multi-Valued Logic, pp. 247–252. IEEE (2016)

27. Niemann, P., Wille, R., Drechsler, R.: Improved synthesis of Clifford+T quantum
functionality. In: Design, Automation and Test in Europe, pp. 597–600 (2018)

28. Zulehner, A., Niemann, P., Drechsler, R., Wille, R.: Accuracy and compactness in
decision diagrams for quantum computation. In: Design, Automation and Test in
Europe (2019)

29. Hillmich, S., Zulehner, A., Wille, R.: Concurrency in DD-based quantum circuit
simulation. In: Asia and South Pacific Design Automation Conference (ASP-DAC)
(2020)

30. Zulehner, A., Hillmich, S., Markov, I., Wille, R.: Approximation of Quantum States
Using Decision Diagrams. Asia and South Pacific Design Automation Conference
(ASP-DAC) (2020)

31. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev.
Mod. Phys. 68(3), 733 (1996)

32. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: LUT-based hierarchical
reversible logic synthesis. IEEE Trans. CAD Integr. Circuits Syst. 38, 848–859
(2018)

33. Zulehner, A., Wille, R.: Make it reversible: efficient embedding of non-reversible
functions. In: Design, Automation and Test in Europe, European Design and
Automation Association, pp. 458–463 (2017)

34. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: Asia and South Pacific
Design Automation Conference, pp. 85–92 (2012)

35. Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redun-
dancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017.
LNCS, vol. 10301, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59936-6 18

36. Zulehner, A., Wille, R.: One-pass design of reversible circuits: combining embed-
ding and synthesis for reversible logic. IEEE Trans. CAD Integr. Circuits Syst.
37(5), 996–1008 (2018)

37. Zulehner, A., Wille, R.: Skipping embedding in the design of reversible circuits. In:
International Symposium on Multi-Valued Logic, pp. 173–178. IEEE (2017)

38. Zulehner, A., Wille, R.: Exploiting coding techniques for logic synthesis of
reversible circuits. In: Asia and South Pacific Design Automation Conference, pp.
670–675. IEEE Press (2018)

39. Zulehner, A., Niemann, P., Drechsler, R., Wille, R.: One additional qubit is enough:
encoded embeddings for Boolean components in quantum circuits. In: International
Symposium on Multi-Valued Logic (2019)

https://doi.org/10.1007/978-3-319-59936-6_17
https://doi.org/10.1007/978-3-319-59936-6_18
https://doi.org/10.1007/978-3-319-59936-6_18

Simulation and Design of Quantum Circuits 81

40. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 32(6), 818–830 (2013)

41. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffoli gates. In: International Symposium on Multi-Valued Logic,
pp. 288–293. IEEE (2011)

42. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.:
Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum
circuits. In: Asia and South Pacific Design Automation Conference, pp. 292–297
(2016)

43. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conference, pp. 41–46 (2013)

44. Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, S.I.: Using πDDs for
nearest neighbor optimization of quantum circuits. In: International Conference of
Reversible Computation, pp. 181–196 (2016)

45. Zulehner, A., Gasser, S., Wille, R.: Exact global reordering for nearest neighbor
quantum circuits using A∗. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS,
vol. 10301, pp. 185–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59936-6 15

46. IBM Q team: IBM Q 16 Rueschlikon backend specification v1.0.0. https://ibm.
biz/qiskit-rueschlikon. Accessed 15 June 2019

47. Botea, A., Kishimoto, A., Marinescu, R.: On the complexity of quantum circuit
compilation. In: Symposium on Combinatorial Search (2018)

48. Siraichi, M., Dos Santos, V.F., Collange, S., Pereira, F.M.Q.: Qubit allocation. In:
International Symposium on Code Generation and Optimization (CGO), pp. 1–12
(2018)

49. Cross, A.: The IBM Q experience and QISKit open-source quantum computing
software. Bull. Am. Phys. Soc. 63(1) (2018)

50. IBM Q team: QISKit Developer Challenge. https://qx-awards.mybluemix.net/#
qiskitDeveloperChallengeAward. Accessed 15 June 2019

51. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX
architectures using the minimal number of SWAP and H operations. In: Design
Automation Conference (2019)

52. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum
circuits to the IBM QX architectures. IEEE Trans. CAD Integr. Circuits Syst. 38,
1226–1236 (2018)

53. Zulehner, A., Wille, R.: Compiling SU(4) quantum circuits to IBM QX architec-
tures. In: Asia and South Pacific Design Automation Conference, pp. 185–190.
ACM (2019)

https://doi.org/10.1007/978-3-319-59936-6_15
https://doi.org/10.1007/978-3-319-59936-6_15
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://qx-awards.mybluemix.net/#qiskitDeveloperChallengeAward
https://qx-awards.mybluemix.net/#qiskitDeveloperChallengeAward

82 A. Zulehner and R. Wille

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Simulation and Design of Quantum Circuits
	1 Introduction
	2 Background on Quantum Computing
	3 Quantum-Circuit Simulation
	3.1 General Idea
	3.2 Resulting Approaches

	4 Design of Boolean Components for Quantum Circuits
	4.1 One-Pass Design of Reversible Circuits
	4.2 Exploiting Coding Techniques

	5 Mapping Quantum Circuits to NISQ Devices
	5.1 Considered Problem
	5.2 Existing Approaches and Results

	6 Conclusion
	References

