®

Check for
updates

Reversible Languages and Incremental
State Saving in Optimistic Parallel
Discrete Event Simulation

Markus Schordan'(®), Tomas Oppelstrup!, Michael Kirkedal Thomsen?,
and Robert Gliick?

! Lawrence Livermore National Laboratory, Livermore, USA
{schordanl, oppelstrup2}@llnl.gov
2 University of Copenhagen, Copenhagen, Denmark
m.kirkedal@di.ku.dk, glueck@acm.org

Abstract. Optimistic parallel discrete event simulation (PDES)
requires to do a distributed rollback if conflicts are detected during a
simulation due to the massively parallel optimistic execution approach.
When a rollback of a simulation is performed each node that is deter-
mined to be in a wrong state must be restored to one of its previous
states. This can be achieved through reverse computation or by restor-
ing a previous checkpoint. In this paper we investigate and compare both
approaches, reverse computation and a variant of checkpointing, incre-
mental state saving (also called incremental checkpointing), to restore a
previous program state as part of an optimistic parallel discrete event
simulation. We present a benchmark model that is specifically designed
for evaluating the performance of approaches to reversibility in PDES.
Our benchmarking model has mathematical properties that allow to tune
the amount of arithmetic operations relative to the amount of memory
operations. These tuning opportunities are the basis for our systematic
performance evaluation.

1 Introduction

Discrete event simulation (DES) is a simulation paradigm suitable for systems
whose states are modeled as changing discontinuously and irregularly at discrete
moments of simulation time. State changes occur at simulation times that are cal-
culated dynamically rather than determined statically as typical in time-stepped
simulations. Most irregular systems whose behavior is not describable by contin-
uous equations and do not happen to be suitable for simple time-stepped mod-
els are candidates for DES. Efficient parallel discrete event simulation (PDES)
is much more complicated than the sequential version. There are two broad
approaches to resolving the PDES synchronization issue, called conservative
and optimistic [1]. Recently Omelchenko and Karimabadi have developed an
asynchronous flux-conserving DES technique for physical simulations [2]. Their
preemptive event processing approach to parallel synchronization complements
© The Author(s) 2020

I. Ulidowski et al. (Eds.): RC 2020, LNCS 12070, pp. 187-207, 2020.
https://doi.org/10.1007/978-3-030-47361-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47361-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-47361-7_9

188 M. Schordan et al.

standard optimistic and conservative strategies for PDES. In this paper we will
discuss optimistic PDES, which requires reversibility, in more detail.

In particular, we will focus on PDES using the Time Warp optimistic synchro-
nization method [3]. The optimistic classification of Time Warp implies that it
employs speculative execution to enable parallelism. In order to allow roll-backs
needed to resolve incorrect speculation, the original formulation of Time Warp
utilized checkpointing of the entire system state. This can be very wasteful, so in
recent years reverse computation has become a key concept in optimistic paral-
lel discrete event simulation [4,5], as it allows one to reduce the overhead in the
forward execution in comparison to checkpointing and, thus, improve the per-
formance. Fundamentally, there are two ways to achieve reversibility: (1) incre-
mental state saving and (2) reverse execution. Incremental state saving (also
called incremental checkpointing in [5]) is a well-established approach, which
has the advantage that only a few language constructs need to be augmented to
establish reversibility of an arbitrary piece of code. However, it (often) results
in a high runtime overhead as any checkpointing is a memory-heavy method.
Reverse execution is based on the idea that for many programs there exists an
inverse program that can uncompute all results of the (forward) computed pro-
gram. The inverse program can be achieved either through implementation of
reverse code from a given forward code, or by implementing the program in a
reversible programming language that offers the capability to automatically gen-
erate the inverse program: the imperative reversible language Janus [6] has such
functionality.®

In this paper we systematically evaluate the generation of forward and reverse
C++ code from Janus code (Sect.4) as well as automatically generated code
based on incremental state saving (Sect.5). We also discuss the differences in
methodology, whether a model code is written in a “destructive” language such
as C/C++ or in the reversible language Janus, and its applications when imple-
menting (and debugging) a model for PDES.

For this purpose and in order to validate the simulator and also check cor-
rectness of generated code, we have developed a new discrete event benchmark
model that can be scaled in various dimensions. For execution of our model
codes we use the ROSS general purpose discrete event simulator. Our new dis-
crete event benchmark model is similar to the classic PHOLD benchmark model,
but includes some extra state variables and computations that aid in detecting
simulation errors. In our new model each event involves non-commutative matrix
algebra, and the matrix that results from the simulation of the model serves as
a checksum or hash of the simulation, and is sensitive to the order of events.
The size of this matrix can be controlled by the user, as can the number of bits
in its elements. This new benchmark is particularly useful for debugging simu-
lations that are computed with the Time Warp Algorithm as its mathematical
properties allow for checking of various assertions.

In our new model we can also tune the amount of arithmetic operations rel-
ative to the amount of memory modifying operations. This enables a systematic

! Online Janus interpreter at https://topps.diku.dk/pirc/?id=janus.

https://topps.diku.dk/pirc/?id=janus

Reversible Languages and Incremental State Saving in PDES 189

comparison of hand-written reverse code with multiple approaches of automati-
cally generated reverse code and code instrumented for incremental state saving.

In our performance evaluation we use several different versions of the model
code: (1) the original forward code with hand written reverse code, (2) Back-
stroke instrumented code to perform incremental state saving [7], and (3) Janus
generated code for forward /reverse functions.

The forward/reverse code generated from Janus is particularly interesting
because it allows to get forward code with no memory overhead and in some
cases no runtime overhead, whereas for instrumented code one can only try to
reduce the runtime and memory overhead in the forward code.

To the best of our knowledge this is the very first runtime comparison of the
two approaches to reversible computation: generating reverse code and incre-
mental state saving. In the optimistic PDES setting incremental state saving is
suitable because optimistic PDES follows the Forward-Reverse-Commit (FRC)
paradigm. In that paradigm, after an event has been executed in the forward
direction, it can either be reversed (e.g. in the case it was incorrect to run it
forward in the first place), or committed (when it has been proved that it was
a correct event). When an event is committed its associated data is no longer
needed, which allows to dispose recorded traces with every commit. In this paper
we also investigate whether the combination of both the reversible language and
incremental checkpointing approaches can be beneficial.

After giving a brief overview of PDES in Sect. 2, we describe our benchmark
model and its properties in Sect. 3. In Sect. 4 we describe the reversible language
Janus and how we generated forward /reverse function from Janus code. In Sect. 5
we briefly describe what source code transformations are applied to code to sup-
port incremental state saving with the Forward-Reverse-Commit paradigm. In
Sect. 6 we describe the discrete event simulator that we use for optimistic par-
allel discrete event simulation and some adaptations that we implemented to
better support the Forward-Reverse-Commit paradigm. The performance evalu-
ation results are presented in Sect. 7. In Sect. 8 we discuss previous work that is
related to our evaluated approaches and in Sect.9 we discuss conclusions from
the observed performance results.

2 Optimistic Parallel Discrete Event Simulation (PDES)

In this section we give a brief overview of PDES. A more detailed overview can be
found in our previous work [7]. The general approach is to divide the simulation
and its state into semi-independent units called LPs (logical processes) that
can execute concurrently and communicate asynchronously, each maintaining
its own state. A simulated event generally triggers a state change in one LP and
affects only that LP’s state. Any event may schedule other events to happen in
the future of the current LP’s simulation time. Events scheduled for other LPs
must be transmitted to them as event messages with a timestamp indicating the
simulation time when the event happens. Arriving event messages get enqueued
in the event queues of the receiving LPs in increasing time stamp order. The LP
has to allocate enough memory to store these queues.

190 M. Schordan et al.

Every LP must execute all of its events in strictly non-decreasing timestamp
order irrespective of the order in which events may arrive or what timestamps
they may carry. This poses a synchronization problem.

In contrast to optimistic PDES, conservative synchronization in conservative
PDES uses conventional process blocking primitives along with extra knowledge
about the simulation model (called lookahead information) to prevent the exe-
cution from ever getting into a situation in which an event message arrives at
an LP with a timestamp in its past. Conservative synchronization is limited to
models with static communication graphs.

Optimistic synchronization, by contrast, employs speculative execution to
allow dynamic communication graphs and exposure of more parallelism. As a
result, there is the danger of a causality violation when an LP that is behind in
simulation time, e.g. at t1, sends an event message with a (future) timestamp
to > t; that arrives at a receiver that has already simulated to time t35 > t5 due
to its optimistic execution. In that case the receiver has already simulated past
the simulation time when it should have executed the event at ¢y, but it would
be incorrect to execute events out of order because this may produce different
results. Whenever that occurs, the simulator needs to roll back the LP from t3
to the state it was in at time t5, cancel all event messages the LP had sent after
to, execute the arriving event, and then re-execute forward from time to to t3
and beyond. All event executions are therefore speculative or provisional, and
are subject to rollback if the simulator detects a local causality conflict.

Each LP computes its local virtual time (LVT) based on the time stamps of
event messages it receives. Because of rollbacks the LVT can also be reset to an
earlier point in time. The global virtual time (GVT) is defined to be the minimum
of all of the LVTs. Several algorithms exist to compute an estimate of the GVT
during the simulation. Any events with time stamps older than GVT can be
committed because it is guaranteed that they never need to be reversed. For
more detail see [3,5]. That events are committed once they are older than GVT,
allows to delete all information that may have been stored to enable reversibility.
This commit operation is the same that we also use for incremental state saving,
described in Sect. 5, to dispose recorded execution traces of memory modifying
operations.

3 PDES Model Benchmark

In order to validate the simulator and also check the correctness of automatically
generated code suitable for reversible computation, we have developed a new
discrete event benchmark model. It is similar to the classic PHOLD benchmark
model, but includes some extra state variables and computations which aid in
detecting simulation errors. The state of each LP contains two square matrices:
an accumulation matrix A, and a transformation matrix T, each of size n X n,
where n is an integer constant chosen by the user. Each event message contains
the transformation matrix of the sender, and upon execution of an event the
receiving LP multiplies its accumulation matrix to the right with the received

Reversible Languages and Incremental State Saving in PDES 191

transformation matrix. When an event is executed the receiving LP schedules
a new event for a randomly selected LP at an exponentially distributed time
delay.

At the end of the simulation, the matrices of all LP’s are multiplied together,
in LP ID (rank) order. The resulting matrix is the output of the simulation. Since
matrix multiplication is in general non-commutative, the output depends on the
individual events being executed in the correct order. The output serves as a
check sum or hash of the simulation, and its size can be controlled by choosing
the matrix size and the number of bits in the matrix elements.

The kernel of the event execution is a matrix multiplication, which (in the
conventional implementation that we use) takes O(n?) arithmetic operations
for n x n matrices. Reverse computation involves calculating a matrix inverse
(or solving a matrix equation A’ = A x T for A), which also requires O(n?)
arithmetic operations. Each event or event message contains an n x n matrix
and requires n? words of storage, and the same amount of data to be transmitted
if communicated over a network. For bench-marking studies we can tune the ratio
of arithmetic operations to memory/communication needs. This ratio is O(n) for
n X n matrices. We want to emphasize that this model is perfectly reversible,
in the sense that no extra state besides the event itself is needed to undo the
forward event: We simply invert the matrix in the event message and multiply
the accumulation matrix to the right with this inverse.

We let the matrix elements be of a standard unsigned integral data type
(e.g. 8, 16, 32, or 64 bits). For each of these types, the standard computer
multiplication, addition, and subtraction perform arithmetic in an associated
finite integer ring; Z,. where k is the number of bits in the data type, e.g.
k € {8,16,32,64}. In these finite rings, all odd numbers have an inverse, and so
half of the numbers in each ring can be used as denominators in division.

In this chapter we are interested in comparing different approaches to gen-
erate reversal of events to support roll-back. One of these approaches is reverse
computation. In order for reverse computation to be applicable, events execution
need to be reversible. To guarantee that, we select the transformation matrices to
be non-singular over the integer ring of their elements. To simplify the expression
of reversible multiplication, we additionally pick the transformation matrices so
that Gaussian elimination can be completed successfully without pivoting.

3.1 Ring Inverses and Non-singular Matrices

The C++ language provides us with addition, subtraction, and multiplication in
the relevant integer rings. We also need a division, which can be implemented as
multiplication with the inverse. In order to find a ring inverse, we can use Euclid’s
extended algorithm. To be specific, we use the following implementation:

The function in Listing 1.1 returns the inverse of b if b is invertible in Zyx,
otherwise it returns zero. We have the relation b =1 mod 2 = bxintinv(b) = b.

192 M. Schordan et al.

myuint intinv(myuint b) {

// Find inverse in integer ring of Z_{2"k}, where k is

// the number of bits in the myuint data type. It is

// expected that myuint is an unsigned integer type.

myuint t0 =0,t = 1,q,r;

myuint a =0; // Want initial a to be 2"k, which can not be
// represented, so we use the lower order bits,
// i.e. a =0.

if(b <= 1) return b;
a= (~a)/b; // Surrogate for 2"k div b, where ’div’
// 1s standard integer division (/). Unless
// b is a power of 2, 2"k div b == (2"k-1) div b.
if(bxg+b = =0) return 0; // Catches when b is power of 2.
r = a - gxb;

while(r > 0) {
const myuint temp = t0 -gxt;

t0 = t;

t = temp;

a= b;

b= r;

g= a/b;

r = a - gxb;
}
if(b== 1) return t;
else return 0;

}

Listing 1.1. Computation of inverse in Zy.

One might initially worry that it can be hard to find non-singular matri-
ces over Zsk. It turns out that a significant fraction of such matrices where
the elements are picked from a uniformly random distribution are non-singular.
We can determine this as follows. First, a matrix is non-singular if and only
if Gaussian elimination with row pivoting can be completed successfully. We
note that since we work with a finite set of numbers (ring), there is no need
to worry about stability — all calculations are exact and there are no round-off
errors. Let M be an n xn matrix with elements independently selected uniformly
from Zor, where k > 0 is an integer. To perform Gaussian elimination on a M
we first need to find a pivot element p in the first row. Any invertible element
will do. The probability that we find one is 1 — (%)n Assume p is in column
j. Now swap column j and column 1. For all rows r and for all columns ¢ in
M, set M!.= M,.— M,1p~'M;.. Gaussian elimination proceeds by recursively
performing elimination of the submatrix S of M’ resulting from removing its
first row and first column. For » > 1 and ¢ > 1, the parity (oddness) of M/,
is swapped if M, M. is odd, and unchanged otherwise. The parity of M, is

Reversible Languages and Incremental State Saving in PDES 193

uniformly random, and the parity of M, M. is independent of M,... Therefore
the parity of M), is also uniformly random, since an independent flip does not

change the distribution. By induction, the probability of finding a pivot ele-

ment in S is 1 — (%)nil, and carrying out the recursion to the end, yields the

probability of M being non-singular to be

n 1 n
H <1 — (2> > ~ 0.288788
=1

This means that a little bit over one quarter of all uniformly random matrices
over Zo, are non-singular. Therefore we can find suitable ones relatively effi-
ciently by trial and error. Further, in order to create matrices for which we can
do Gaussian elimination without pivoting, we pick a non-singular matrix 7', and
then permute the columns in the schedule dictated by the pivot columns given
by computing Gaussian elimination with row pivoting on (a copy of) T

4 Forward/Backward Code from Reversible Programs

The defining property of reversible programming languages is their forward and
backward determinism, that is, in each computation state not only the successor
state is uniquely defined, but also the predecessor state [8]. The computation
is information preserving. In contrast, mainstream (irreversible) programming
languages, such as C, are forward, but not backward deterministic.

In a reversible imperative programming language, such as Janus, every assign-
ment statement is non-destructive, that is a reversible update, such as x -= e,
where variable x may not occur in expression e on the right side (e.g., x -= x
is not backward deterministic). In case of an assignment to an array element, for
example a[i,Jj] -= alk, 1], a runtime check ensures that i # k or j # 1.

All control-flow statements, such as conditionals and loops, are equipped with
assertions, in one way or another, to ensure their backward determinism. The
variant of Janus used for the programs in this paper has a two-way deterministic
loop iterate i = el to e2; s; end, where neither the index variable i
nor the variables occurring in expressions el and e2, defining the start- and
end-values of i, may be modified in the body statement s, which is executed
once per iteration. Hence, the number of iterations is known before and after the
loop.

An advantage of reversible programming languages is that their programs
do not require instrumentation to restore a previous computation state from
the current state, which is usually necessary in irreversible languages. Backward
determinism opens new opportunities for program development because a pro-
cedure p cannot only be called by a usual call p, but its inverse semantics can
be invoked by an uncall p. Forward and backward execution of a procedure
are equally efficient, thus is makes no difference which direction is implemented
in a program, which therefore is usually the one that is easier to write. We will
make use of this possibility to reuse code by uncalling a procedure.

194 M. Schordan et al.

procedure crout(int LDU[|[], int n)
iterate int j =0 to n-1

iterate int i =j ton-1

iterate int k =0 to j-1
LDU[i][j] -= LDU[i|[k] * LDU[X]|[]]

end

end

iterate int i = j+1 ton-1
iterate int k =0 to j-1

LDU[j][i] -= LDU[j][k] * LDU[k]|[1]
end
uncall mult(LDU[]][i], LDU[3][3])
end

end

Listing 1.2. Janus implementation of the Crout matrix decomposition.

Translation from Janus to C++. Reversible programs can be translated to a
mainstream (irreversible) programming language, which in this paper is C++.
Usually, this requires the implementation of additional runtime checks in the
target program to preserve the semantics of the source program. Assuming that
the source program is correct and only applied to values for which it is well
defined, the runtime checks in the target program can be turned off. The trans-
lation of Janus into C++ which we use for the benchmarks is straightforward,
e.g., iterate is translated into a £or-loop, and no further optimizations are
performed by the Janus-to-C+-+ translator.

Only the translation of an uncall p requires an unconventional step in the
translator, namely first the program inversion of procedure p into its inverse
procedure p-inv, both p and p-inv written in Janus, followed by the trans-
lation of p-inv into the target language and the replacement of every uncall
p by the functionally equivalent call p-inv. The target program then con-
tains the C++ implementation of p and its inverse p-inv. Program inversion
is straightforward in a reversible language (cf. [6]), e.g., a reversible assignment
x -= e is inverted to x += e and a statement sequence is inverted to the
reversed sequence of its inverted statements.

As a non-trivial example, Listing 1.2 shows the Janus implementation of the
Crout algorithm for LDU matrix decomposition. The translation from Janus
into C++ for the forward code is straightforward, and a uncall mult in Janus
becomes a call to mult-inv in C++. To illustrate the generated inverted code,
its C++ translation can be found in Listing 1.3. The iteration is translated into
nested for-loops and the reversible assignment in Janus requires only a minor
adaptation to the C++ syntax. In the C++ listing the mult (a, b) is effectively
a standard integer product a := a x b with appropriate assertions that it can be
inverted, i.e. the inverse of b exists. mult-inv uses intinv from Listing 1.1 to
compute the ring inverse.

Reversible Languages and Incremental State Saving in PDES 195

template<typename myuint>
void crout_inv(myuint *LDU, int &n) {
for(int j=n-1; j!= 0+0-1; j+=0-1){
for (inti=n-1;4i!= §+1+0-1; i+=0-1){
mult(LDU[j*n+i], LDU[j*n+3]);
for (intk=3-1; k!= 0+0-1; k+=0-1) {
LDU[j#n+1| += LDU[j*n+k]| * LDU[k*n+1];

}
for(inti=n-1; il!= §+0-1; i+=0-1){
for (intk=3-1; k!= 0+0-1; k+= 0-1) {
LDU[i#n+3] += LDU[i*n+k] * LDU[k*n+3];
}

Listing 1.3. Reverse code of C++ translation of Listing 1.2.

procedure matrix_mult(int A[|[], int B[|[], int n)

call crout(B, n) // In-place LDU decomposition of B
call multLD(A, B,n) // A := A«LD in place
call multU(A, B,n) // A := AxU in place

uncall crout(B,n) // Revert LDU decomposition to recover B

Listing 1.4. Janus implementation of matrix multiplication.

Matriz Multiplication in Janus. A conventional matrix-matrix multiplication
needs temporary storage, and the individual steps are not reversible. Since a
reversible language requires each operation to be reversible we need a different
approach. One approach is to use LU or LDU decomposition, which can be
performed in place, and is step-wise reversible. Multiplication with the resulting
triangular matrices can also be done in-place and step-wise reversible. In the
approach here, to compute A := A x B, we perform the Crout algorithm for
LDU decomposition, B = L x D x U in place, then the sequence A := A x L,
A:=Ax D, A:= A xU. Finally we reverse the LDU decomposition in place,
to recover the original input B. For a Janus implementation of the in-place
matrix multiplication, see Listing 1.4. The code for multiplication with triangular
matrices is shown in Listing 1.5. This approach needs no temporary storage and is
step-wise reversible. The price for this reversibility and in-place operation is more
arithmetic operations than a standard matrix product by a factor of about 5/3
(for sufficiently large n, say n > 10). In the full implementation, we used a local
temporary variable to reduce the number of calls to the ring-inverse function
for speed optimization, since it is much more costly than a multiplication or
addition. This does not change any of the reversibility features.

196 M. Schordan et al.

procedure multLD(int A[|[], int LDU[|[], int n)
iterate int 1 =0 ton-1
iterate int j =0 ton-1
call mult(a[]][i], LDU[i][i])
iterate int k =i+l ton-1
Al3l[1] += LoUlK][i] * A[3][X]
end
end
end

procedure multU(int A[][], int LDU[][], int n)
iterate int i =n-1by -1 to 0
iterate int j =0 ton-1
iterate int k=0 to i-1
al3ll1] += LoUlK][i] * Al3][X]
end
end
end

Listing 1.5. Janus implementation of in-place multiplication with triangular matrices.
multLD (A, LDU) computes A := Ax(LD) and multU (A, LDU) computes A := AxU.

5 Automatic Generation of Reversible Code
for the Forward-Reverse-Commit Paradigm

In the forward-reverse-commit (FRC) paradigm [5] the original code is trans-
formed such that during its forward execution it stores all information required
to reverse all effects of the forward execution and restore the previous state of
the program, or commit (possibly deferred) operations at a later point in time.
Hence, we add the history of the computation to each saved state, which is usu-
ally called a Landauer’s embedding. In both reverse and commit functions the
additional information stored in the forward code is eventually disposed. Before
that the reverse function uses the stored data to undo all memory modifying
operations, in the commit function performs the deferred memory deallocation.

We generate transformed forward code to implement incremental state sav-
ing. The idea is to only store information about what changes in the program
state because of a state transition, not the entire state. This approach is also
briefly described in [5] for the programming language C (called “incremental
check pointing” by the author). After performing a forward execution of the
transformed program followed by a corresponding reverse operation, the pro-
gram is restored to its original state, i.e. the exact same state as the original
program was before performing any operation. Therefore, the execution of a for-
ward function and a reverse operation is equivalent to executing no code (i.e. a
n0-0p).

Reversible Languages and Incremental State Saving in PDES 197

After performing a forward execution of the transformed program followed
by a commit operation, the program is in the exact same state as executing
the original program. Therefore, the execution of a forward function and its
corresponding commit operation performs the same changes to the program
state as the execution of the original function.

This transformation can also be considered to turn the program into a trans-
actional program, where each execution step can be reversed (undone) or com-
mitted after which it cannot be reversed since all information necessary to reverse
it is disposed by the commit operation. This is an important aspect when
performing long running discrete event simulations: the forward-commit pairs
ensures that no additional memory is consumed after a commit has been per-
formed. As we shall see, the optimistic parallel discrete event simulation ensures
that such a point in time at which all events can be committed up to a certain
point in the past, can always be computed during the simulation.

In [9] we have shown how this approach can be extended to address C++
without templates. In [10] we have applied this approach to all of C++98, includ-
ing templates and in [7] we have shown that this approach is general enough to
be applied to C++11 standard containers and algorithms.

Our approach to generating reversible forward code introduces one additional
function call, an instrumentation, for each memory modifying operation. Mem-
ory modifying operations are destructive assignments and memory allocation and
deallocation. We only instrument operations of built-in types. For user-defined
types either the existing user-provided assignment operator is instrumented (like
any other code), or we generate a reversible default assignment operator if it is
not user-provided. This is sufficient to cover all forms of memory modifying
operations — of built-in types as well as user-defined types — because our run-
time library that is linked with the instrumented code performs all necessary
book-keeping at run-time. In particular, it also contains C+-+11 compile-time
predicates. Those predicates check whether a provided type is a built-in type
or a user-defined type and handle assignments of user-defined types (e.g. entire
structs) as fall-through cases because they are handled component-wise by the
respective overloaded assignment operator (which is either user-provided and
automatically instrumented or generated). For a formal definition of the seman-
tics of the instrumentations we refer the reader to [7].

We have implemented our approach in a tool called Backstroke? as source-to-
source transformation based on the compiler infrastructure ROSE?. The Back-
stroke compiler for generating reversible programs from C++ was released to
the public in March 2017 (version 2.1.0). This was the first public release of
Backstroke V2 using incremental state saving.

2 https://github.com/LLNL/backstroke.
3 https:/ /www.rosecompiler.org.

https://github.com/LLNL/backstroke
https://www.rosecompiler.org

198 M. Schordan et al.

template<typename myuint>
void matmul(int nmyuint Af],myuint B[],myuint AB[]) {
for(int i =0; i<n; i++) {
for(int j =0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {
s = s + Alixn+k|*Blkxn+j];
}
AB[i*n+]] = s;
}
}
}

Listing 1.6. Original C++ Matrix Multiplication Code Fragment from the Bench-
mark.

template<typename myuint>
void matmul(int nmyuint Af],myuint B[|,myuint AB[|) {
for(int i =0; i<n; i++)
for(int j =0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {
(xpdes::avpushT(s)) = s +A[isn+k|*B[k*n+j];
}

(xpdes::avpushT(AB[ixn+]])) = s;

}

Listing 1.7. Backstroke Generated Reversible C++ Forward Code (non-optimized).

5.1 Backstroke Instrumented Code

Three variants of the matrix multiplication are shown: (1) the original C++
code in Listing 1.6 for the matrix multiplication, (2) the non-optimized Back-
stroke generated code in Listing 1.7, and (3) the optimized Backstroke generated
code in Listing 1.8. Backstroke’s optimization detects local variables and ensures
that direct accesses to local variables are not instrumented because those never
need to be restored since memory for local variables is reserved on the run-
time stack. Backstroke instrumented code records memory modifications only
for heap allocated data since only this data persists across event function calls.
In the presence of pointers the accesses to memory locations on the stack may be
instrumented, but a runtime check in the Backstroke library ensures that only
heap allocated data is stored.

This runtime check is always performed in the xpdes: :avpush function
because due to pointer aliasing, in general it is not known at compile time where

Reversible Languages and Incremental State Saving in PDES 199

template<typename myuint >
void matmul(int nmyuint Af],myuint B[,myuint AB[]) {
for(int i =0; i<n; i++) {
for(int j =0; j<n; j++) {
myuint s = 0;
for(int k = 0; k<n; k++) {
s = s + A[lixn+k|*B[kxn+j];
}

} (xpdes::avpushT(AB[i*n+]])) = s;

}
}

Listing 1.8. Backstroke Generated Reversible C++ Forward Code (automatically
optimized).

the data that a pointer is referring to may be allocated. This check is performed
based on the memory addresses of the argument passed to avpush and the stack
boundaries determined as part of the initialization of the Backstroke runtime
library.

In the presented model only C++ assignments are instrumented because no
memory allocation happens in the event functions. The memory for the matrices
is allocated in the initialization of the simulation, i.e. in the initialization function
for each LP.

The avpush function passes a reference to the memory section denoted by
the respective expression as argument and stores a pair of the address (of the
denoted memory location) and the value at that address in a queue in the Back-
stroke runtime library. It returns the very same address such that the code can
execute as usual and perform the write access. Consequently, avpush always
stores the old value before the assignment happens. When a previous state needs
to be restored, the reverse function simply iterates over all those address-value
pairs stored by the avpush function and restores the memory locations at those
addresses to the stored value. The avpush functions are strictly typed, and
restoration follows in exact reverse order, which is important in case a mem-
ory location is written more than once or any forms of aliasing occur. For more
details on the instrumentation functions we refer the reader to [7].

The difference of the non-optimized version to the optimized version is that
the instrumentation in the innermost loop is not necessary because it is a write
to a local variable s. In Listing 1.8 the innermost loop is not instrumented and
therefore the number of instrumentations is only executed n? times where n is
the size of the quadratic matrices. Without this optimization the Backstroke
generated code would always be slower than the Janus generated code as we
will discuss in more detail in Sect. 7. In general, accesses to memory which only
holds temporary data, not defining the state of an LP, need not be instrumented.

200 M. Schordan et al.

The more precise a static analysis is that determines this property, the more
instrumentations to temporary memory locations can be avoided.

Backstroke also offers program annotations (through pragmas) for users to
manually minimize the number of instrumentations and interface functions to
turn on/off the recording of data at runtime. For example, with this feature one
can add conditions in loops to only record data in the very first iteration, but not
in subsequent iterations that write to the same memory location. Alternatively,
one can unroll a loop and ounly instrument the first (unrolled) iteration and
exclude the remaining loop from instrumentation. Thus, with Backstroke one
can also manually optimize the recording of data.

6 ROSS Simulator

For execution of our model codes we use the ROSS general purpose discrete
event simulator, developed at RPI by C. Carothers et al. [11]. ROSS has been
developed for more than a decade. It has the capability of running simulations
both sequentially and in parallel using either the YAWNS conservative or Time
Warp optimistic mechanism. Time Warp is an optimistic approach, where each
processor employs speculative execution to process any event messages it is aware
of. Causality conflicts, such as when a previously unknown message which should
already have been processed is received, are handled through local roll back.
During roll back the effects of messages that were processed in error are undone.

In order to use Time Warp in a ROSS model, a reverse event function must
be provided, which is responsible for undoing the state changes that the forward
event function incurred for the same event.

6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

For our evaluation we are using the same ROSS implementation as in [7]. This
version offers a commit method. Whenever an event is committed (during fossil
collection) a commit function is called for the corresponding LP with the event as
an argument. This is a time when non-reversible functions such as file I/O can be
called safely. In particular, this is very useful for Backstroke, since commit time
is the earliest known moment at which the state saved by the Backstroke instru-
mented forward code can be released, and memory deallocated by the forward
event can be returned to the system. In addition to the commit methods, we
extended ROSS to support a C+-+ class for the simulation time data structure,
as opposed to the default double data type for representing time. This allows
the sender to encode additional bits in the message timestamp to help with tie
breaking of events.

7 Evaluation

We have evaluated the performance of three different implementations for the
forward and reverse code of the matrix mode: Original code with hand written

10°

- -
o o
e)

Event time (ms)
=
o

107

102

Fraction of event time

Reversible Languages and Incremental State

Saving in PDES

Relative event time

1 Sk
2 5 10 20 40 80 160320640

Matrix size

——

Originall

—%v— Backstroke
——

Janus

2 5 10 20 40 80 160 320 640
Matrix size
‘ = setu
Forwar
— Commi t

2 5 10 20 40 80
Matrix size

160

320

640

201

Fig.1. Top: Performance of original, Backstroke, and Janus versions of the matrix
model code. The graph shows the execution time per event for the three approaches.
The inset shows execution time relative to the original code. Bottom: The time for the
event function for the Backstroke code separated into event setup time, forward event
time, and commit time costs.

reverse code, forward code implemented in Janus with reverse code generated
by the Janus compiler, and forward code instrumented by Backstroke. For these
performance evaluations we used the Backstroke code with local variable opti-

mization.

202 M. Schordan et al.

First we focus on forward event code, which consists of three phases: event
setup, forward computation, and commit. It is only the Backstroke instrumented
code that has any significant work to perform in the setup and commit phases.
We ran the matrix model sequentially using 8000 LP’s and running up to 20
time units.

Figure 1 shows the matrix model performance as a function of matrix size for
the four different reverse code approaches. The upper panel shows total event
execution time, while the lower panel shows the relative cost of the three event
execution phases for the Backstroke instrumented code.

The standard procedure, which we employ in the original code, for multi-
plying two n x n matrices performs n® multiplications and additions, and thus
in general the execution time for an event should scale as O(n?) for sufficiently
large n.

The Janus code must perform an LU factorization before carrying out the
multiplications, and undo the factorization after the multiplication is complete.
The total number of operations is about g times as many as for the standard
procedure. We can thus expect the Janus code to be almost twice as slow as the
original code for large matrices. For very small matrices the number of operations
of the Janus implementation is similar to the original code.

The Backstroke instrumented code with local variable optimization instru-
ments 2n? memory operations (n? for the matrix multiplication, and another n?
for copying the result into the destination memory). Since there are O(n?) arith-
metic operations, we expect the Backstroke instrumented code to incur negligible
overhead for sufficiently large matrices.

We performed the runs using matrix sizes ranging from 2 to 640. The sim-
ulations were run on an cluster with Infiniband interconnect and 2.6GHz Intel
Xeon E5-2670 cpus, 16 cores per node. We used the GNU g++ compiler with
version 4.9.3, and the “-O3” optimization switches.

In the evaluation results we see that Janus performs best for small matrix
sizes, whereas the Backstroke generated incremental state saving code performs
better the larger the matrix size becomes, with a cross-over point at the size of a
matrix size of 20 and for a matrix size of 640 the performance becomes almost the
same as the non-instrumented version of the original forward code. The reason
is that the Backstroke generated code only instruments those memory modifica-
tions that actually change the state of the simulation, i.e. elements in the matrix,
whereas the computation of the intermediate results is not instrumented. This
optimization is straightforward because this corresponds to not instrumenting
accesses to local (stack-allocated) variables. Since optimistic PDES follows the
forward-reverse-commit paradigm the trace only grows to a certain size, until the
commit function is invoked by the simulator. The simulator guarantees that this
happens in reasonable time intervals. The non-monotonic performance behavior
for small matrices in Backstroke, and for intermediate size matrices in Janus (see
inset in Fig. 1), is likely due to simulator and timing overhead, and cache effects,
respectively.

Reversible Languages and Incremental State Saving in PDES 203

The advantage of Janus generated forward/reverse code is that it does not
need to store any additional data since the Janus implementation of the forward
code is reversible. Saving memory is useful particularly in Time Warp simu-
lations, since the amount of memory available dictates how much speculation
can be performed. A challenge to implementing an algorithm in Janus is that it
requires to writing assertions at the end of constructs that enable reverse exe-
cution to take the right execution path (i.e. reverse conditionals). In addition,
reversibility may require algorithms that use inherently more operations than
the most efficient ones available in traditional non-reversible computing.

8 Related Work

Jefferson started the subject of rollback-based synchronization in 1984 [3]. The
paper discusses rollback implemented by restoring a snapshot of an old state,
but today we are interested in using reverse computation and/or incremental
state saving for that purpose. Also, that paper is written as if discrete event
simulation is one of several applications of virtual time, but in fact it was then
and is now the primary application. Although the term “virtual time” is used,
you can safely read it as “simulation time”.

In 1999 Carothers et al. published the first paper [4], that suggests using
reverse computation instead of snapshot restoration as the mechanism for roll-
back, but it does not contemplate using a reversible language. It is written in
terms of very simple and conventional programming constructs (C-like rather
than C++ -like) and instrumenting the forward code to store near minimal
trace information to allow rollback of side effects by reverse computation.

Barnes et al. demonstrated in 2013 [12], how important reverse computation
can be in a practical application area. The fastest and most parallel discrete event
simulation benchmark ever executed was done at LLNL on one of the world’s
largest supercomputers using reverse computation as its rollback method for
synchronization. The reverse code was hand-generated, and methodologically
we know that this is unsustainable. For practical applications we need a way
of automatically generating reverse code from forward code, and this is what
we address with the work presented in this paper - to have a tool available,
Backstroke (version 2), for generating reverse code that can be applied to the
full C++ language.

Kalyan Perumalla and Alfred Park discuss the use of Reverse Computation
for scalable fault tolerant computations [13]. The paper is limited in a number of
ways, but they make a fundamental point, which is that Reverse Computation
can be used to recover from faults by mechanisms that are much faster than
check pointing mechanisms.

In [14] Justin LaPre et al. discuss reverse code generation for PDES. The
presented method is similar to one of our previous approaches in the work on
Backstroke [15] as it takes control flow into account and generates code for
computing additional information required to reconstruct the execution path
that had been taken in the forward code. The approach we evaluate in this paper

204 M. Schordan et al.

is different as it does not need to take control flow information into account.
Our initial discussion of incremental state saving was presented in [9], but was
limited to C++ without templates. In this paper we evaluate a model that is
implemented using C++ templates as well. The automatic optimization that we
evaluate was also not present in [9)].

An example for an optimistic PDES simulation with an automatically gener-
ated code using incremental state saving running thousands of LPs was published
for a Kinetic Monte-Carlo model in [10]. In this crystal grain simulation, a piece
of solid is modeled as a grid of unit elements. Each unit element represents a
microscopic piece of material, big enough to be able to exhibit a well defined
crystal orientation, but much smaller than typical grain sizes. These unit ele-
ments are commonly called spins, since the nature of grain evolution resembles
evolution of magnetic domains. In the experiment the biggest model was run
with a size of 768 x 768 spins divided into a grid of 96 x 96 = 9216 LPs with a
slow-down factor in comparison to the hand-written reverse code of 4.7 to 4.3.
In a new experiment presented in [7], the model was run at a much bigger scale
with 1536 x 1536 spins in 256 x 256 logical processes (LPs) and implemented
using C++ Standard containers and algorithms and user-defined types. After
the transformation by Backstroke the model was run for 2 time units, or a total
of 47633718 events on LLNL’s IBM BlueGene/Q supercomputer with 16 cores
per node, using up to 8192 cores. This version showed a penalty of 2.7. to 2.9 in
comparison to the hand-written reverse code.

In [16] an autonomic system is presented that can utilize both an incremental
and a full checkpointing mode. At run time both code variants are available and
the system switches between the two variants, trying to select the more efficient
checkpointing version. With our approach to incremental checkpointing we aim
to reduce the number of instrumentations based on static analysis and offer a
directive to the user for enabling or disabling the recording of data at runtime,
allowing to also manually optimize instrumented code.

In [17] an instrumentation technique is applied to relocatable object files.
Specifically, it operates on the Executable and Linkable Format (ELF). It uses
the tool Hijacker [18] to instrument the binary code to generate a cache of
disassembly information. This allows to avoid disassembly of instructions at
run time. In contrast to our approach, the reverse instructions are built on-
the-fly at runtime, and using pre-compiled tables of instructions. Similar to our
approach there is also an overhead for each instrumentation. The information
that it extracts from instructions, the target address and the size of a memory
write, is similar to our address-value pairs. Recently progress has been made also
in utilizing hardware transactional memory for further optimizing single node
performance [19].

9 Conclusion

We have presented a new benchmark model for evaluating approaches to opti-
mistic parallel discrete event simulation. We evaluated the performance of using

Reversible Languages and Incremental State Saving in PDES 205

Janus generated forward /reverse code and incremental state saving (also called
incremental checkpointing). The benchmark model has as its core operation a
matrix multiplication.

From the results for our presented benchmark model we can conclude that
depending on the matrix size either the Janus generated code or the Backstroke
generated code performs best. Therefore, an implementation could include both
codes and call the respective implementation dependent on the matrix size. If
memory consumption becomes a limiting factor, the Janus implementation could
be favored over the Backstroke implementation as well, since the Janus code does
not store any additional data.

It also could be interesting to further explore how the Janus translator can
be optimized and how this impacts the native C++ compiler. The Janus trans-
lator used in the benchmarks is non-optimizing, which means it implements
every Janus statements in the target program, even when irreversible alterna-
tives provide a faster implementation and some statements may be redundant in
C++. Depending on the architecture, locality can be exploited to improve the
runtime behavior, e.g., when translating summation iterate ... A[1,j]+=e
end the use of a temporary variable in conventional assignments is an option:
s=A[i,j]; for .. s+=e end; A[i,j]l=s;. Some optimizations are per-
formed by the native C++ compiler, others are better done by the Janus transla-
tor. Also, Janus may be extended with translator hints that allow a programmer
to mark compute-uncompute pairs, which makes it easier to determine redun-
dant statements.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC5H2-07TNA27344 and was supported by the LLNL-LDRD Program under Project No.
19-ERD-026. IM release number LLNL-BOOK-780059. The authors acknowledge the
partial support of EU COST Action 1C1405 on Reversible Computation—Extending
Horizons of Computing.

References

1. Fujimoto, R.M.: Parallel and Distribution Simulation Systems, 1st edn. Wiley, New
York (1999)

2. Omelchenko, Y., Karimabadi, H.: Hypers: A unidimensional asynchronous frame-
work for multiscale hybrid simulations. J. Comp. Phys. 231(4), 1766-1780 (2012)

3. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404-425

1985

4. E}arot)hers, C.D., Perumalla, K.S., Fujimoto, R.M.: Efficient optimistic parallel sim-
ulations using reverse computation. ACM Trans. Model. Comput. Simul. 9(3),
224-253 (1999)

5. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press Book, Boca
Raton (2013)

6. Yokoyama, T., Gliick, R.: A reversible programming language and its invertible
self-interpreter. In: Ramalingam, G., Visser, E. (eds.) Proceedings of the 2007
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, 2007, Nice, France, 15-16 January 2007, pp. 144-153. ACM (2007)

206

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Schordan et al.

. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of

reversible C++ code for optimistic parallel discrete event simulation. New Generat.
Comput. 36(3), 257-280 (2018)

. Yokoyama, T., Axelsen, H.B., Gliick, R.: Reversible flowchart languages and the

structured reversible program theorem. In: Aceto, L., Damgard, 1., Goldberg, L.A.,
Halldorsson, M.M., Ingolfsdottir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 258-270. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 22

. Schordan, M., Jefferson, D., Barnes, P., Oppelstrup, T., Quinlan, D.: Reverse code

generation for parallel discrete event simulation. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 95-110. Springer, Cham (2015). https://doi.org/
10.1007,/978-3-319-20860-2_ 6

Schordan, M., Oppelstrup, T., Jefferson, D., Barnes, Jr., P.D., Quinlan, D.: Auto-
matic generation of reversible C++ code and its performance in a scalable kinetic
Monte-Carlo application. In: Proceedings of the 2016 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation. SIGSIM-PADS 2016, pp. 111-122.
ACM (2016)

Holder, A.O., Carothers, C.D.: Analysis of time warp on a 32,768 processor IBM
Blue Gene/L supercomputer. In: Bruzzone, A., Longo, F., Piera, M.A., Aguilar,
R.M., Frydman, C. (eds.) Proceedings of the European Modeling and Simulation
Symposium (EMSS), pp. 284-292 (2008)

Barnes, Jr., P.D., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: exe-
cuting time warp on 1,966,080 cores. In: Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. SIGSIM-PADS 2013,
pp. 327-336. ACM (2013)

Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance
in large parallel systems. Cluster Comput. 17(2), 303-313 (2013). https://doi.org/
10.1007/s10586-013-0277-4

LaPre, J.M., Gonsiorowski, E.J., Carothers, C.D.: LORAIN: a step closer to the
PDES "holy grail". In: Proceedings of the 2nd ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. SIGSIM-PADS 2014, pp. 3-14. ACM (2014)
Vulov, G., Hou, C., Vuduc, R., Fujimoto, R., Quinlan, D., Jefferson, D.: The Back-
stroke framework for source level reverse computation applied to parallel discrete
event simulation. In: Proceedings of the Winter Simulation Conference. WSC 2011,
Winter Simulation Conference, pp. 2965-2979 (2011)

Pellegrini, A., Vitali, R., Quaglia, F.: Autonomic state management for optimistic
simulation platforms. IEEE Trans. Parallel Distrib. Syst. 26(6), 1560-1569 (2015)
Cingolani, D., Pellegrini, A., Quaglia, F.: Transparently mixing undo logs and
software reversibility for state recovery in optimistic PDES. In: Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
SIGSIM PADS 2015, pp. 211-222. ACM (2015)

Pellegrini, A.: Hijacker: Efficient static software instrumentation with applications
in high performance computing: poster paper. In: International Conference on High
Performance Computing and Simulation (HPCS), pp. 650-655. (2013)

Santini, E., Ianni, M., Pellegrini, A., Quaglia, F.: Hardware-transactional-memory
based speculative parallel discrete event simulation of very fine grain models. In:
IEEE 22nd International Conference on High Performance Computing (HiPC), pp.
145-154 (2015)

https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/978-3-319-20860-2_6
https://doi.org/10.1007/s10586-013-0277-4
https://doi.org/10.1007/s10586-013-0277-4

Reversible Languages and Incremental State Saving in PDES 207

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Reversible Languages and Incremental State Saving in Optimistic Parallel Discrete Event Simulation
	1 Introduction
	2 Optimistic Parallel Discrete Event Simulation (PDES)
	3 PDES Model Benchmark
	3.1 Ring Inverses and Non-singular Matrices

	4 Forward/Backward Code from Reversible Programs
	5 Automatic Generation of Reversible Code for the Forward-Reverse-Commit Paradigm
	5.1 Backstroke Instrumented Code

	6 ROSS Simulator
	6.1 Adaptations of the ROSS Simulator for the FRC Paradigm

	7 Evaluation
	8 Related Work
	9 Conclusion
	References

