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Abstract. We propose a new generative model for topic segmentation
based on Latent Dirichlet Allocation. The task is to divide a document
into a sequence of topically coherent segments, while preserving long
topic change-points (coherency) and keeping short topic segments from
getting merged (saliency). Most of the existing models either fuse topic
segments by keywords or focus on modeling word co-occurrence pat-
terns without merging. They can hardly achieve both coherency and
saliency since many words have high uncertainties in topic assignments
due to their polysemous nature. To solve this problem, we introduce
topic-specific co-occurrence of word pairs within contexts in modeling, to
generate more coherent segments and alleviate the influence of irrelevant
words on topic assignment. We also design an optimization algorithm to
eliminate redundant items in the generated topic segments. Experimen-
tal results show that our proposal produces significant improvements in
both topic coherence and topic segmentation.

1 Introduction

Topic segmentation is the task of dividing a document into a sequence of topically
coherent segments [19]. Specifically, besides the topic distribution, the order
of topic segments is also an essential part of document semantic information
[18]. Even with the same topic distribution, different orders might represent
different or even opposite standpoints. For example, a commentary at the end
often determines the guidance of the public opinion, such as the coverage of
politics, in particular, election campaigns [6,12]. The challenge of this task is
to ensure both the coherency and the saliency of the topic segments, where the
coherency refers to keeping long topic segments without being split, while the
saliency reserving short topic segments without being absorbed with longer ones.

Conventional topic modeling, such as Latent Dirichlet Allocation (LDA) [5],
has made significant progress in various specific applications by handling sparse
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high dimensional features and finding latent semantic relationships [14,27]. Nev-
ertheless, the “bag of words” based models are unable to capture the order of
topics within each document. A simple solution is to consider the physical struc-
ture [2] (e.g., sentences and paragraphs) of each document and use a Hidden
Markov Model (HMM) structure [4,9,21,23,24] or predefine a common canoni-
cal topic ordering to model the order of topics [8]. However, in recent decades,
massive document data are continuously generated in various forms (e.g., news
and postings) and from multiple modes (e.g., voice and video). The above models
cannot handle these documents with no physical structure information.

Another way is to use high-frequency words as keywords of topics [22]. Detect-
ing and utilizing keywords on the topic assignments improve the coherency of
topic segments, especially in documents with well-proportioned topic distribu-
tion and sufficient keywords. However, relying heavily on extracted keywords
limits the saliency of topic segments. For example, for a document with an
uneven topic distribution, extracting enough keywords for all the segments is
difficult. As a result, less proportionate topic segments are likely to be absorbed
by topic segments with higher proportions, due to insufficient keywords.

The fundamental reason for the limited saliency and coherency is that the
topic assignment of each word is highly uncertain. Most words can represent
multiple topics, due to their polysemy. The distributional hypothesis [20], which
states that words in similar contexts have similar meanings, is one of the primary
theories used to quantify the meaning of words according to their context (e.g.,
Word2vec [11]). Inspired by it, we assume that the topic of each word in a
document is related to its context, that is, similar contexts correspond to similar
topics. Intuitively, even if a word can be assigned to multiple topics, given its
context, we can assign a corresponding topic more certainly. For example, the
word “Liverpool” can belong to a topic of sports, geography or art, etc. However,
if we combine it to the words in its context (e.g., “Liverpool” & “football” or
“Liverpool” & “Beatles”), the assignment is much clearer.

In this paper, we propose a new generative model, Context-Aware Latent
Dirichlet Allocation (C-LDA), for document segmentation. In the topic assign-
ment, we consider both the topic distributions and the topic-specific occurrence
of word pairs in contexts. Our model enjoys two substantial merits over the
state-of-the-art methods: (1) a word is generated by both the document-specific
topic distribution and the topic distribution associated with each word and its
context; (2) it is independent of physical structures.

2 Related Work

Document segmentation has long been studied in various topic models [4,8,9,21,
23,24], such as segHMM [4] and Bayesseg [9]. The traditional methods mainly
rely on the document physical structure, which refers to the text-spans in each
document, such as sentences or paragraphs [2]. They basically assume that words
in the same text-span share the same topic or topic distribution. They conduct
segmentation by introducing HMM structure in their topic models and mod-
eling dependencies between consecutive text-spans. However, these approaches
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are unable to handle data with no structural information, which significantly
limits their applicability. Moreover, in most cases, topics might evolve in long
paragraphs or sections, and thus a text-span might contain multiple topics.

Recent studies have been focusing on physical structure-independent segmen-
tation [1,7,22,25]. Topic Keyword Model (TKM) [22] is a topic model based on
keywords and their contexts. Its main weakness lies in handling short topic seg-
ments, which are likely to be absorbed by long topic segments due to their small
number of keywords. Biterm Topic Model (BTM) [7] learns topics by modeling
the generation of word co-occurrence patterns, which improves the sensitivity of
the discovery of phrases in short text data. On the basis of the former, Bursty
Biterm Topic Model (BBTM) introduces a new variable to discover bursty top-
ics1 [25]. These phrase-level topic modeling methods can achieve good results
in discovering word co-occurrence patterns in individual short documents and
require no physical structure information. However, high-frequency phrases only
make up a tiny proportion of the corpus, which limits their ability to generate
coherent topics in topic segmentation tasks. The main difference from our model
is that they consider all distinct word pairs of each fixed-size window, while
we focus on the topic-specific word pairs, which only concern the target word
in the corresponding context. Copula LDA with Segmentation (SegLDA) [1] is
an LDA-based model which automatically segments documents into topically
coherent sequences of words. SegLDA predefines segments for each document
before modeling. For each word in a segment, a topic is assigned either from the
segment-specific topic distribution or the document-specific topic distribution.
These distributions differentiate the main topics of a document from potential
segment-specific topics, which improves the saliency of short segments. However,
the two distributions are independent. Specifically, in the former distribution, a
topic assignment depends only on the words within the segment, which leads to
a loss of much context information in the original document.

In addition, context information is also utilized in other topic models to
solve various specific problems in document semantic analysis [16,26], such as
Contextual Topic Model (CTM) [26] and Contextual Latent Dirichlet Alloca-
tion (Contextual-LDA) [16]. CTM considers the dependencies of topics between
each sentence in document summarization while Contextual-LDA uses the topic
position of each physical structure-based segment for key information detection.
Different from them, we focus on solving the problem of topic segmentation by
considering topic-specific word pairs in contexts.

3 Context-Aware Topic Modeling

3.1 Context Word Pairs-Topic Distribution

For conventional LDA and its extended models, topic assignment for each word
mostly relies on topic distribution and word distribution. Although the constraints

1 In their study [25], a topic is considered to be bursty in a time slice if it is heavily
discussed, but not in most of the other slices.
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Fig. 1. Schematic illustration of topic assignment for word “Liverpool” with and with-
out considering its context words (respectively labeled by red and blue). We see that
if “Liverpool” co-occurs with word “football” in the same context, it is more likely to
be assigned to the topic of “sports”, while “geography” if co-occurs with “population”.
(Color figure online)

of topic distribution can alleviate the uncertainty in the topic assignment, it is still
insufficient to handle documents containing multiple main topics. For example, a
document on the study of modern football and the geographical distribution of
England, should at least belong to two topics (geography and sports). We study
the topic assignment of the word “Liverpool” in a specific location and consider its
3 related topics: sports, geography, and art. As shown in Fig. 1, for traditional topic
models, although the topic distribution reduces the probability of being assigned
to the topic of “art”, there is still a large uncertainty between “sports” and “geogra-
phy”. However, by considering the frequency of co-occurrence of context words on
various topics, this uncertainty can be further reduced, which also coincides with
the distributional hypothesis.

Therefore, in our model, we give each word w a context window of length L
and define a set of words within the window as context words cw. For the topic
assignment of w, we consider the topics of word pairs bw which consist of w and
cw. bw is defined as:

bw � {(w,w′)|w′ ∈ cw}.

Following LDA [5], we also assume that the topic distribution λw of all the
sets of word pairs follows a Dirichlet distribution and name it Context Word
Pairs-Topic Distribution (CWTD):

λw ∼ Dir(γ).

λw depends on the topic distribution of the word pairs of bw in all other doc-
uments. By the definition of Dirichlet distribution [15], the expectation can be
calculated as:

EDir(γ )(λw,k) =
nbw

k,−(d,l) + γk
∑K

s=1(n
bw

s,−(d,l) + γs)
, (1)



Context-Aware Latent Dirichlet Allocation for Topic Segmentation 479

Fig. 2. Graphical model for Context-Aware LDA.

where nbw

s,−(d,l) is the total number of word pairs which are in bw and belong to
topic k in all documents without containing the lth word of document d. In topic
assignment, we reorganize the topic distribution θd of a document based on the
context of each word and name the reorganized topic distribution as Context-
Aware Topic Distribution (CTD), denoted by πd,w. Therefore, the topic Zd,w

for word w in d follows a Categorical distribution which is from the Dirich-
let distribution πd,w with the prior of both the topic distribution θd and the
CWTD λw:

πd,w ∼ Dir(θd + λw), Zd,w ∼ Cat(πd,w).

3.2 Context-Aware Latent Dirichlet Allocation

As Fig. 2 shows, we introduce four variables πd,w, λw, w′ and γ based on tradi-
tional LDA, where πd,w represents the CTD for word w in document d, λw is
the corresponding CWTD with prior of γ and w′ refers to a context word of w.
Besides, θd represents the topic distribution of document d with prior α and φk

is the word distribution of topic k with prior β. For a dataset of D documents
with a vocabulary of size V and latent topics indexed in {1, ...,K}, C-LDA is
associated to the following generative model.

1. Generate the word-topic distribution φk for each topic k: φk ∼ Dir(β).
2. For each document d:

(a) Generate the topic-word distribution θd of document d: θd ∼ Dir(α).
(b) For each word w in d (index by l):

i. Get context word pairs bw and generate the CWTD λw based on
Eq. (1): λw ∼ Dir(γ).

ii. Generate the CTD πd,w of word w according to θd and λw: πd,w ∼
Dir(λw + θd).

iii. Choose a topic Zd,l assignment according to πd,w: Zd,l ∼ Cat(πd,w).
iv. Generate wd,l based on the topic Zd,l and φk: wd,l ∼ Cat(φZd,l

).

The topic distribution and the context words are combined to further reduce the
uncertainty of the topic assignment. As we explain in Sect. 3.4, this reduction
ensures a high probability that consecutive words are assigned to the same topic.
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Algorithm 1: Gibbs sampling algorithm
Input: A set D of documents with length Nd (d ∈ D); number of iterations

Niter; number of topics K
Output: For each document d ∈ D, topic distribution θd; for each topic k,

word distribution φk (1 ≤ k ≤ K); word co-occurrence matrix Λ
1 Initialize topic assignments randomly for all words in D
2 for iteration = 1 to Niter do
3 for d = 1 to |D| do
4 for l = 1 to Nd do
5 Generate a topic Zd,l from Pd,l according to Eq. (2).

6 Update θd, φk and Λ

7 return φk for each topic k, θd for each document d and Λ.

3.3 Parameter Estimation

We use Gibbs sampling [10] to estimate parameters. In our sampling procedure,
we need to calculate the conditional probability of topic assignment Pd,l,k =
P (Zd,l = k|Wd,l,Zd,−(d,l),W

′
d,l,α,β,γ) for each word, where Wd,l represents

the lth word in d. Zd,−(d,l) refers to the topic assignments for all words in d
except for word Wd,l. W ′

d,l are the context words of Wd,l. The result of Pd,l,k is
computed as follow (See Appendix A in Supplementary for detailed derivation):

Pd,l,k ∝
[

(nbw

k,−(d,i) + γt) + (nd,k,−(d,l) + αk)
]

nt
k,−(d,l) + βt

∑V
f=1(n

f
k,−(d,l) + βf )

, (2)

where nd,k,−(d,l) is the number of words in d which belongs to topic k without
Wd,l, nt

k,−(d,l) represents the number of word t of topic k without Wd,l. Compared
with the conditional probability of traditional topic models, such as LDA (as
Eq. (3)), we see the difference is the probability of topic k for each word, which is
affected by the frequency of its context word pairs on topic k in other documents.

P ′
d,l,k ∝(nd,k,−(d,l) + αk)

nt
k,−(d,l) + βt

∑V
f=1(n

f
k,−(d,l) + βf )

. (3)

According to Eq. (2), we obtain the conditional probabilities of topic assign-
ment Pd,l,k of each word in document d, so as to compute their corresponding
topic distribution Pd,l. Our sampling algorithm is shown in Algorithm1. The
word co-occurrence matrix Λ recording the number of word pairs in each topic
is utilized to compute λ, where the first two dimensions of Λ are all the unique
words and the third dimension records the accumulated shared topic counts.

3.4 Topic Coherency Ratio

To further study how C-LDA affects the coherency and saliency in modeling, we
calculate the joint probability of consecutive words which share the same topic
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in two cases: with and without considering context word pairs. For consecutive
words Wd,i:j from Wi to Wj in document d, we denote the joint probability
of sharing topic k by P (Wd,i:j , k) in the former case and the one in the latter
case by P ′(Wd,i:j , k). Taking their logarithms and computing their ratios as
well as removing constant terms, we obtain the result as shown in Eq. (4). We
retain the fraction of the right-hand side and name it Topic Coherency Ratio
(TCR) as Eq. (5), denoted by Rt (See Appendix B in Supplementary for detailed
derivation).

log P (Wd,i:j , k)
log P ′(Wd,i:j , k)

∝ 1 +

∑
w∈Wd,i:j

log nbw

k,−Wd,i:j∑
w∈Wd,i:j

log nw
k,−Wd,i:j

(4)

Rt(Wd,i:j , k) �
∑

w∈Wd,i:j
log nbw

k,−Wd,i:j∑
w∈Wd,i:j

log nw
k,−Wd,i:j

. (5)

For a set of consecutive words, the TCR is a ratio of occurrence number in
the same topic between the context word pairs and words. The ratio ranges from
[0, 1] and reflects the intensity of coherency for a set of consecutive words2. A
higher ratio corresponds to a stronger coherency. By Eq. (4), we see P (Wd,i:j , k)
is always greater than P ′(Wd,i:j , k), which proves that C-LDA is more likely to
generate coherent topic segments than other conventional topic models, including
LDA and most of its extended versions3. For short segments consisting of a tiny
proportion of words in a document, they can still be assigned to the topic k with
a higher probability than others if they contain frequent word pairs in topic k.
Thus C-LDA ensures both better coherency and saliency in topic segmentation.

Since the number K of topics is a given empirical value, it is inevitable to
generate redundant topic segments in each document. Although we might be able
to specify a good K value beforehand, the difference in the number of topics con-
tained in each document also leads to the inevitability of generating redundant
segments. Therefore, merging redundant segments with frequent ones is indis-
pensable, where the key is to judge whether the resulting segment has a higher
coherency than the original ones. The TCR is a coherency measurement based
on the ratio of word pairs and words instead of relying solely on their frequen-
cies. This property ensures the coherency of segments are independent of their
lengths; thus, we design a TCR based Redundant Topic Merging (RTM) algo-
rithm to optimize the generated topic segments. The steps of RTM are: for each
topic segment, we consider three cases: (1) merging with the previous segment;
(2) merging with the next segment; (3) non-merging. For these three cases, the
TCRs are calculated separately and the case with the highest ratio is selected.
We repeat the above steps until the number of segments stays unchanged.

2 For the words in Wd,i:j belonging to topic k, if and only if they all occur as context
word pairs of topic k in all the documents, the TCR gets the maximum value 1,
while it gets the minimum value 0 if and only if none of them occurs in a context.

3 The fraction on the right-hand side is always positive.
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4 Experiments

We evaluate our model by a series of experiments. Results were obtained with
eight-fold cross-validation on a machine with Intel i9 processor and 128 GB mem-
ory. The hyper-parameters (α,β,γ) were all fixed to 0.05.

We tested our model on three standard datasets4 (Wikicities (Wici),
Cellphones Reviews (Cell) and Wikielements (Wiel)) and three extended
datasets based on the former three. Wikicities contains Wikipedia articles
about the world 100 largest cities by population, Cellphones Reviews contains
100 cellphone reviews and Wikielements contains 118 English Wikipedia arti-
cles about chemical elements. Labeled topic segments of the 3 standard datasets
are all of the similar lengths (about 3000 words per document) and uniformly dis-
tributed; thus, to simulate the cases of more diverse topic structures, we increase
their original total number of documents to 2000 and generated various sizes of
topic segments for each document. The detailed generating steps for a document
are: (1) select the number of segments based on a uniform distribution from
10 to 50; (2) for each segment, set its length from a uniform distribution of 10
to 100 and randomly assign it to a topic from the topic labels; (3) choose sen-
tences of the corresponding assigned topics from the labeled documents to fill
the segments until all segments are loaded.

We compare C-LDA (available on Github5) against four topic models: LDA
[5], BTM [7], TKM [22] and SegLDA [1]. BTM is a topic model based on word
co-occurrence modeling. TKM is a method to generate coherent topics by con-
sidering the influence of keywords on their contexts. SegLDA is a LDA-extended
model for topic segmentation by introducing an independent topic distribution
for each predefined segment.

We use Normalized Point-wise Mutual Information (NPMI)6 to measure the
topic coherence scores [17]. It assumes that a topic is more coherent if the most
probable words in the topic co-occur more frequently in the corpus [13]. NPMI
scores are in [−1, 1] and a higher value indicates that the topic distributions are
semantically more coherent. The performances of topic segmentation is evaluated
with two metrics: PK7 and Window Diff (WD)8. They both refer to error rates
which are calculated by comparing the inferred segmentation with the gold-
standard (ground truth) for each window based on moving a sliding window
over the document. Lower scores refer to better segmentation performance.
4 http://groups.csail.mit.edu/rbg/code/mallows/.
5 https://github.com/liliverpool/C-LDA.git.
6 NPMI(k) =

∑
1≤i<j≤T

1
− logP (wi,wj)

log
P (wi,wj)

P (wi)P (wj)
, where P (wi, wj) and P (wi) are

the occurrence probabilities of word pair (wi, wj) and word wi, respectively.
7 Pk(ref, hyp) = P (false|refer, hyp, same, k)P (same|refer, k)+P (miss|refer, hyp, diff, k)

P (diff|refer, k), where “refer” is the ground truth and “hyp” is the generated seg-
ments. k is usually the half of the average gold-standard segment size (k = 15 in our
experiments). More details are in [3].

8 WD(ref, hyp) = 1
N−k

∑N−k
i=1 (|b(refi, refi+k)−b(hypi, hypi+k)| > 0), where b(i, j) rep-

resents the number of boundaries between positions i and j in the text and N is the
number of sentences in the document [17].

http://groups.csail.mit.edu/rbg/code/mallows/
https://github.com/liliverpool/C-LDA.git
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(a) Standard Datasets (c) Wici (e) Wiel (g) Cell

(b) Extended Datasets (d) Wici+ (f) Wiel+ (h) Cell+

Fig. 3. NPMIs of different L values (a–b) and different topic numbers k (c–h).

4.1 Topic Coherence

Firstly, we calculated NPMIs of C-LDA under different window sizes L (from 1
to 30) with topic number K = 100. The results are shown in Fig. 3(a–b). We
see that, in both standard and extended datasets, NPMIs increase sharply until
around L = 10 then begin to decline. Moreover, we see there is a sharp decline
in the extended datasets when L > 15. This might be because of their more
complex topic structures and longer window sizes are more likely to contain
irrelevant content. Therefore, we set L = 10 in the rest of our experiments.

The results of NPMIs (with K = 50, 100, 200) for all baseline models are
shown in Fig. 3(c–h). We see that C-LDA shows the best results on all six
datasets and more significant improvements in data sets with more complex
topic structures (Wici+, Wile+, Cell+), which proves the validity of our model
for generating coherent topics. A possible reason is that C-LDA combines the
frequency of context word pairs for each topic in modeling, while the other mod-
els (such as TKM) either consider only the words frequency in each topic or the
frequency of all word pairs in individual documents (such as BTM). Moreover,
semantic expressions in a document are usually coherent and segmented, e.g.,
paragraphs and sections, thus, considering the context in a topic assignment can
clarify the semantics of the word, so as to reduce the risk of splitting a coherent
semantic segment.

4.2 Topic Segmentation

The results in topics of K = 50 and K = 100 are shown in Table 1, where the
C-LDA-R is the C-LDA with RTM optimization algorithm. We see that C-LDA
and C-LDA-R perform the best in all cases of K = 100 and dominate in most
cases when K = 50, which validates their performance for coherency and saliency
of different segments in topic segmentation tasks.

BTM aims to generate all the distinct word pairs within a fixed window given
a topic. Therefore, its effect on the topic coherency is achieved by increasing the
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Table 1. Topic segmentation results. PK and WD scores are in %. Bold fonts indicate
best scores yielded by models except for C-LDA-R and ∗ indicates the best scores
among all the models.

K Models
PK WindowDiff Time Cost (hours)

Wici.Wiel. Cell. Wici+Wiel+Cell+ Wici. Wiel. Cell. Wici+Wiel+ Cell+ Wici.Wiel.Cell.Wici+Wiel+Cell+

50

BTM 35.9 33.6 41.2 42.2 38.7 47.1 38.2 34.5 41.0 45.6 42.1 49.8 9.2 7.2 7.7 4.9 4.2 4.2
TKM 28.6 23.9 37.8 33.8 28.5 43.2 28.7 33.4 38.7 35.8 31.8 46.4 1.1∗ 0.7∗ 0.8∗ 0.4∗ 0.3∗ 0.3∗
SegLDA 26.1 22.7 35.2 30.5 27.2 38.9 27.1∗ 25.6 35.8 33.4∗ 28.3 39.3 4.5 3.1 3.3 1.7 1.4 1.5
C-LDA 25.3 22.2 35.3 29.9∗ 26.3 37.6 27.7 25.7 34.1∗ 33.7 28.2 38.1∗ 1.9 1.2 1.5 0.9 0.8 0.8
C-LDA-R24.8∗ 20.6∗ 34.9∗ 30.3 26.2∗ 37.5∗ 27.3 24.8∗ 33.5 33.8 27.9∗ 38.5 2.0 1.3 1.6 1.0 0.9 0.9

100

BTM 32.5 30.2 37.5 40.1 36.5 44.3 35.7 33.4 40.2 41.4 39.8 45.7 15.7 12.6 11.5 8.6 8.2 8.5
TKM 26.7 21.2 30.6 31.3 27.4 37.2 29.9 24.6 36.6 32.8 29.8 41.7 2.1∗ 1.5∗ 1.7∗ 0.9∗ 0.7∗ 0.8∗
SegLDA 23.2 20.4 31.3 27.4 24.1 34.8 28.5 23.9 33.5 29.8 24.6 36.3 8.8 6.5 7.6 3.1 2.4 2.6
C-LDA 22.1 19.7 29.8 25.8 23.2 31.7 27.5 22.6 32.2 27.4 24.5 33.9 4.2 3.2 3.8 2.4 2.3 2.4
C-LDA-R21.9∗ 19.2∗ 27.6∗ 24.5∗ 22.6∗ 30.4∗ 25.2∗ 21.6∗ 30.7∗ 26.8∗ 23.7∗ 32.4∗ 4.3 3.3 3.9 2.5 2.4 2.5

joint probability of each word pair and topics. The high frequent word pairs
in a corpus are of high joint probabilities. However, in a corpus, the majority
are ordinary words but not word pairs, and their topic assignments are still of
high uncertainty. Besides, the computation of all distinct word pairs significantly
increases its training time. TKM improves the coherency of topic segmentation
by considering the influence of keywords on the topic assignment of surrounding
words and cost the least time. However, short topic segments with insufficient
keywords are likely to be absorbed by long topic segments, which is a possible
reason of its low performance. In some cases of insufficient topic number (K =
50), SegLDA outperforms other methods. However, as K increased from 50 to
100, its performance growth is inferior to C-LDA. For SegLDA, the topics for
words in a segment can be assigned from the segment-specific topic distribution,
which improves the saliency of topic segments. However, assigning topics without
considering the original document can lead to a loss of context information and
degrade the accuracy of topic modeling. That is, a word is possibly assigned
to an incorrect topic even if it is not absorbed by others. C-LDA considers
both the contextual word pairs and topic distribution. Based on the reorganized
topic distribution CTD, it reduces the uncertainty of the topic assignment and
increases the joint probability of consecutive words sharing the same topic at the
expense of increasing time consumption. Moreover, comparing the results of the
original and their extended datasets, we see our method has stronger robustness
to more complex topic structures, which also leads to better applicability.

For C-LDA-R, we see that the effect of the RTM algorithm is limited in the
case when K = 50 since it is insufficient to cover all the occurred topics. When
K = 100, RTM effectively improves the performance of topic segmentation. To
further study the effect of RTM, we calculated the changes of PK and Win-
dowDiff with different numbers K of topics (from 25 to 200). The experiments
were conducted on the 3 extended datasets and the results are shown in Fig. 4.
We see the measures of both C-LDA and C-LDA-R decrease quickly with the
increase in length of K until K = 100. For C-LDA, the performance starts to
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(a) Wici+ (b) Wiel+ (b) Cell+

Fig. 4. PK and WindowDiff scores with the increase of the number K of topics in (a)
Wikicities+, (b) Wikielements+ and (c) CellphoneReviews+. The stacked part above
each bar is the improvement from RTM algorithm.

decrease around K = 150, while for C-LDA-R, it tends to saturate as K keeps on
increasing. The improvement by RTM becomes increasingly remarkable with the
increase of K, which also proves the robustness of C-LDA-R for redundant topics.
In addition, the time complexity of RTM for each document is O(L

∑
S′∈S |S′|),

where L is the context window size, S is the list of segments for a document and
|S′| represents the length of each segment S′ in S. The time consumption of the
RTM is acceptable, since L is set less than 30. Besides, the optimization process
of each document is independent, which is easy for parallelization.

5 Conclusion

We proposed a new generative model for topic segmentation. By combining
topic distribution and context word pairs-topic distribution, our model improves
the certainty of the topic assignment and ensures high coherency and saliency
in topic segmentation. Besides, we designed an optimization algorithm to merge
redundant topic segments for each document. Our experiments show that our
proposal outperforms baseline models, in terms of the segmentation scores of
PK and WD in topic segmentation. In future work, we will further optimize the
parameter estimation steps, such as reducing the size of the word co-occurrence
matrix, and use more efficient estimation methods (e.g., Variational Inference).
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