
Learning Multigraph Node Embeddings
Using Guided Lévy Flights

Aman Roy1(B), Vinayak Kumar1, Debdoot Mukherjee2,
and Tanmoy Chakraborty1

1 Department of CSE, IIIT-Delhi, New Delhi, India
{aman16011,vinayakk,tanmoy}@iiitd.ac.in

2 ShareChat, Bengaluru, India
debdoot@sharechat.co

Abstract. Learning efficient representation of graphs has recently been
studied extensively for simple networks to facilitate various downstream
applications. In this paper, we deal with a more generalized graph struc-
ture, called multigraph (multiple edges of different types connecting a pair
of nodes) and propose Multigraph2Vec, a random walk based framework
for learning multigraph network representation. Multigraph2Vec sam-
ples a heterogeneous neighborhood structure for each node by preserving
the inter-layer interactions. It employs Lévy flight random walk strategy,
which allows the random walker to travel across multiple layers and reach
far-off nodes in a single step. The transition probabilities are learned in
a supervised fashion as a function of node attributes (metadata based
and/or network structure based). We compare Multigraph2Vec with four
state-of-the-art baselines after suitably adopting to our setting on four
datasets. Multigraph2Vec outperforms others in the task of link predic-
tion, by beating the best baseline with 5.977% higher AUC score; while
in the multi-class node classification task, it beats the best baseline with
5.28% higher accuracy. We also deployed Multigraph2Vec for friend rec-
ommendation on Hike Messenger.

Keywords: Representation learning · Social networks · Guided Lévy
flight

1 Introduction

Representation learning of networks has gained considerable attention in recent
times [6,7,10,13,18,19,21,22]. The goal of this body of research is to learn a low
dimensional, dense representation for each node in a network while preserving
structural information about the neighborhood of the node. These embeddings

The research was done when A. Roy and D. Mukherjee were a part of Hike Messenger
(https://hike.in). The project was partially supported by SERB (Ramanujan fellowship
and ECR/2017/00l691) and the Infosys Centre of AI, IIIT Delhi, India.
A. Roy and V. Kumar—Equal Contribution.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 524–537, 2020.
https://doi.org/10.1007/978-3-030-47426-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_41&domain=pdf
https://hike.in
https://doi.org/10.1007/978-3-030-47426-3_41

Learning Multigraph Node Embeddings Using Guided Lévy Flights 525

can then be used in a variety of downstream social network tasks such as link
prediction, node clustering, multi-label classification of nodes, etc.

Majority of the research in network embedding are on networks where nodes
share a single form of relationship. However, most real-world networks are multi-
graphs as multifaceted relationships are quite common between nodes. This is
known as the multiplexity property [23] in social networks. For instance, a pair
of users on a social network can be related through friendship, messaging, etc.
In a scientific network, researchers can share a link by virtue of being co-authors
on a paper or by citing each other’s works. A high quality representation of a
node in a multigraph should not only capture information about its neighboring
nodes but also encode the relationships that exist with its neighbors. Hence,
network embedding methods built for homogeneous networks must be extended
to characterize the rich context present in multiple types of edges.

In this paper, we propose a novel method, called Multigraph2Vec which is a
random walk based node embedding method for multigraph. It employs a novel
context sampling strategy, followed by the Skip-gram model to generate node
embeddings. The employed random walker uses a novel strategy, called Lévy
flight [8] to traverse through any node (without requiring an edge to traverse
between nodes) in a single step, with its transition probabilities learned in a
supervised fashion. Multigraph2Vec preserves multi-relational interaction among
nodes via generating an (edge-)heterogeneous context.

We show the efficiency of Multigraph2Vec via two downstream tasks - link
prediction and multi-class node classification. In the former task, Multigraph2Vec
outperforms several baselines – it beats the best baseline by 5.977% higher
AUC score (averaged over all datasets and all layers). In the latter task, Multi-
graph2Vec outperforms the best baseline by 5.28% higher classification accuracy.
We also deployed Multigraph2Vec for friend recommendation on Hike app.

In short, our major contributions are threefold:

– We propose Multigraph2Vec, a novel multigraph embedding technique that
samples the neighborhood for each node via a “Lévy flight” random walk
strategy, and learns the random walk transition probabilities in a supervised
fashion, rather than treating them as hyperparameters.

– We perform a comprehensive analysis to show the superiority of Multi-
graph2Vec.

– We deployed Multigraph2Vec on a real-world system for friend recommenda-
tion.

For the purpose of reproducible research, we have made the codes and the
datasets public at [20].

2 Related Work

In this section, we present a brief literature survey of the embedding methods
developed for different types of networks.

526 A. Roy et al.

Homogeneous Network Embedding: Representation learning for homoge-
neous networks has been studied extensively. DeepWalk [18] follows Skip-gram
model [15], a two phase algorithm for learning node embedding. Node2Vec [7]
employs a second order random walk governed by two parameters that control
the breadth first search and depth first search nature of the random walker.
LINE [21] learns the node embedding by preserving a certain measure of prox-
imity among the nodes. Matrix factorization approaches such as spectral clus-
tering [22] perform eigen decomposition on the normalized Laplacian matrix of a
graph. Another body of work is built on Graph Convolutional Networks (GCN).
[4] developed a variant of GCN based on spectral graph theory. [9] performed
convolution in graph domain by aggregating information of neighboring nodes.
[1] parameterized the context distribution function and used softmax attention
to learn the importance of kth hop neighbors. Graph generative networks, on the
other hand, aim to generate structures from data.

Heterogeneous Network Embedding: A heterogeneous information network
(HIN) consists of multiple types of edges and nodes with only one edge connect-
ing any two nodes. Metapath2vec [6] samples a heterogeneous context for a node
using random walks guided by the predefined metapaths (a path consisting of a
specific sequence of relationships/edge-types). [5] used the content and the link
structure to generate important cues for creating a unified feature representation
of the underlying network.

Multidimensional Network Embedding: Despite its profound relevance
in real-world scenario, limited attempts have been made to address multi-
layer/multidimensional embedding, compared to the vast amount of literature
on simple graphs. MNE [25] generates a d-dimensional layer-specific embedding
for each node by combining its d-dimensional base embedding (which remains
common across layers), a transformation matrix (which is learned for each layer)
and an s-dimensional auxiliary layer-specific embedding (s � d). [14] consid-
ered all the immediate neighbors (in each layer) of a node as its context and
then employed a specific Skip-gram with a softmax taking into consideration
node categories and layer information to obtain the embeddings for each node.
PMNE [13] extends Node2Vec by introducing another parameter that allows
the random walker to traverse across layers while sampling the context for each
node. It does not learn this parameter, rather tunes it manually.

3 Problem Statement

Definition 1 (Multigraph). It is defined as a directed graph (directed, for the
sake of generalization) G = (V,E,L), where V is the set of vertices, L is the set
of edge types and E is the set of triplets (vi, vj , l) representing an edge of type l
directed from node vi to vj, where vi, vj ∈ V and l ∈ L. There can be multiple
edges of different types between any two vertices.

Figure 1(a) shows a toy example of a multigraph. Nodes are assumed to be
of same type. For the sake of better representation, we unfold a multigraph to a
multidimensional network as shown in Fig. 1(b).

Learning Multigraph Node Embeddings Using Guided Lévy Flights 527

Fig. 1. (a) A toy example of a multigraph representing a social network (e.g, Facebook)
where nodes are users, and they are connected via at most three types of edges (red:
friend, blue: follower, green: chat). It is not necessary that all pairs of nodes are always
connected by three different edges. For example, nodes C and E are connected by only
friendship link. But they do not follow each other and do not chat. (b) Each edge type
mentioned in Fig (a) forms a layer/dimension in the corresponding multidimensional
network. Node set remains same across layers, and each layer is homogeneous in terms of
the edge type. (c) Illustration of the modified Lévy flight strategy on a multidimensional
network. The figure shows the different elementary steps that the random walker can
adopt. (Color figure onilne)

Definition 2 (Multidimensional Network). It can be defined as a mul-
tilayer network1 G = (V,E,L) having |L| layers or dimensions. V denotes
a set of N unique nodes. A node vi ∈ V in layer l ∈ L is denoted by vl

i,
1 ≤ i ≤ N ; 1 ≤ l ≤ |L|. Each edge El

i,j ∈ E is a tuple (vi, vj , l) represent-
ing an edge of type l emanating from node vl

i to node vl
j, where vi, vj ∈ V .

Essentially, G consists of a total of |V | × |L| number of nodes. For simplicity,
we assume that all nodes in V are present in all the layers. If a node is absent
in a layer (i.e. no edge of type l connects to that node), we add the node as an
isolated node in that layer.

Definition 3 (Problem Statement). Given a multigraph G = (V,E,L),
our aim is to learn a low dimensional representation (embedding) for each node
vi ∈ V , i.e., Xi ∈ RD, where D � |V |.

4 Multigraph2Vec

We propose Multigraph2Vec, which is essentially a Skip-gram model with a novel
neighborhood (context) sampling strategy for multigraphs. Algorithm1 shows
the pseudocode of Multigraph2Vec.

4.1 Skip-Gram Model

Skip-gram [16] has been utilised for learning node embeddings in multiple stud-
ies [6,7,25] by treating networks as documents and nodes as words. In order to
1 Multilayer network is a stacked representation of multiple single layers. Multidimen-

sional network is a special type of multilayer network which is edge-homogeneous
i.e., each layer represents a particular type of relationship among nodes.

528 A. Roy et al.

obtain embedding for a target node vi, it maximizes the log likelihood of observ-
ing its neighborhood structure N(vi) conditioned on its latent node embedding
vector Xi, i.e.,

arg max
X

∑

vi∈V

log p(N(vi)|Xi) (1)

where, Xi represents the ith row (D dimensional embedding vector for node vi)
of an N × D embedding matrix X. The neighborhood structure N(vi) for vi is
the result of a specific neighborhood sampling strategy, and its member nodes
are the context nodes for vi. The likelihood of observing neighborhood structure
N(vi) for node vi can be expressed as follows,

p(N(vi)|Xi) =
∏

nj∈N(vi)

p(nj |Xi) =
∏

nj∈N(vi)

e(Xj ·Xi)

N∑
n=1

e(Xn·Xi)
(2)

The log likelihood of Eq. 2 becomes

log(p(nj |Xi)) = log(e(Xj ·Xi)) − log(
N∑

n=1

eXn·Xi) (3)

The second term in Eq. 3 is computationally expensive for large networks
and is thus approximated using negative sampling [16].

log(p(nj |Xi)) = log(σ(Xj · Xi)) +
M∑

m=1

log(σ(−Xm · Xi)) (4)

where, σ(x) = 1
1+exp(−x) , and M is the negative sample size. After plugging in

this approximation, the final objective function takes the following form:

arg max
X

∑

vi∈V

∑

nj∈N(vi)

(log(σ(Xj · Xi)) +
M∑

m=1

log(σ(−Xm · Xi))) (5)

The above objective function can be optimized using Stochastic Gradient
Descent (SGD) algorithm.

4.2 Neighborhood Sampling in Multigraph2Vec

We propose a novel neighborhood sampling strategy. We allow our random
walker to jump to nodes that can be separated by any number of hops from
the current node. We employ a random walk process, called ‘Lévy flight’ [8]. It
does not require a direct edge between current and target nodes; thus it can hop
over very large distance and visit far-off nodes effectively taking a ‘flight’ rather
than a ‘walk’ within a single hop. Moreover, its ability to switch across lay-
ers preserves inter-layer interactions and thus produces an (edge-)heterogeneous
context (see Fig. 1(c)).

Learning Multigraph Node Embeddings Using Guided Lévy Flights 529

Such a random walker, if used in an unsupervised fashion (for example, by
letting it hop to any node from the current node with equal probability), can gen-
erate arbitrary contexts. This can be detrimental for the downstream prediction
tasks. Thus, it is necessary to guide it in a principled fashion. In order to do this,
we make its transition probabilities as a function of linear weighted combination
of node attributes (which can be metadata/network-property based or a combi-
nation of two) and learn these weights subject to certain constraints, essentially
converting the random walk guidance problem into a constrained optimization
problem.

Random Walk in Multigraph2Vec: We modify the Lévy flight strategy in
two ways. Firstly, our random walker at any step has only two possible steps to
adopt as shown in Fig. 1(c). Secondly, the transition probabilities are a param-
eterized function of node attributes. It is calculated by taking inner product of
weight vector with node-pair feature vector and then passing it through a non-
linear function (in our case, sigmoid function), which maps it between 0 and 1.
Formally, Lévy flight random walk strategy for multidimensional networks can
be defined as follows.

Given that the random walker is currently at node ct = vl
i, the probability

of hopping to node ct+1 = vl
′

j is given by:

P (ct+1 = vl
′

j |ct = vl
i) =

⎧
⎪⎪⎨

⎪⎪⎩

f(φi,j
l)

Z l = l
′
, i �= j

f(φi

ll
′)

Z l �= l
′
, i = j

0 l �= l
′
, i �= j

where, φi,j
l = βᵀ

l ψvl
iv

l
j

and φi
ll′ = βᵀ

ll′
ψ

vl
iv

l
′

i

.

– f(x) is a strength function, defined as a function of a linear weighted com-
bination of node-pair features (obtained by combining the attributes of the
corresponding nodes in the node-pair). f(x) must be non-negative and differ-
entiable. We choose it to be a sigmoid function.

– Z is a normalization constant.
– ψvl

iv
l
j

is a node-pair feature vector obtained by combining the attributes of
corresponding nodes vi and vj in layer l. It is utilized for hopping to nodes
within the same layer. The node attributes can be derived from metadata
(e.g., number of papers published by an author in different research areas) or
from the network structure at layer l (e.g., degree, clustering coefficient, etc.
at layer l). The difference between the attribute vectors of the two nodes can
form the node-pair feature vector ψvl

iv
l
j
.

– ψ
vl
iv

l
′

i

is a node-pair feature vector obtained by concatenating together some

centrality measure (like degree) of node vi in layers l and l
′
. It is utilized for

hopping to same node in different layers.
– βl is a weight vector corresponding to transition probabilities in layer l.
– βll

′
is a weight vector corresponding to probability of switching from layer l

to l
′
.

530 A. Roy et al.

Learning the Transition Probability: Multigraph2Vec learns the weight
parameters β such that the random walker has a higher probability of hop-
ping to one of the “high priority nodes” (set H) than the “low priority nodes”
(set L) from the current node [3]. This hopping behavior is enforced on the ran-
dom walker w.r.t. a subset of nodes, referred to as S; each s ∈ S represents a
source node. S contains equal number of nodes from each layer sampled from the
degree distribution at the corresponding layer. The learned weights are expected
to generalize the behavior of the random walk for all the nodes in the network.

There can be multiple ways of constructing H and L sets for a given source
node s, denoted by Hs and Ls respectively. Multigraph2Vec constructs Hs by
considering proximity and attribute similarity. Considering s to be a source node
from layer l, a node vi satisfying at least one of the following three conditions
w.r.t. s is eligible to be included in Hs: (i) the distance between vi and s is less
than or equal to k in layer l, (ii) the attribute similarity between s and vi (based
on cosine similarity) is more than a certain threshold τ in layer l, (iii) if it is an
alias of s in any layer. Remaining nodes in the layer to which s belongs, comprise
the Ls set.

We use personalized PageRank scores to enforce this behavior on the random
walker. The objective function becomes:

arg min
β

||β||2 + λ1

∑

s∈S

∑

hs∈Hs,ls∈Ls

h(pls − phs
) (6)

where, h is a loss function which penalizes the objective function if PageR-
ank score of nodes in Hs becomes smaller than that of nodes in Ls. The loss
function must be continuous and differentiable. We choose it to be Wilcoxon-
Mann-Whitney (WMW) loss with width b.2

h(x) =
1

1 + exp(−x/b)

The PageRank scores are obtained from the following eigenvector equation:
pᵀ = pᵀQ, where, Q represents the random walk transition matrix and p repre-
sents the PageRank vector.

Upon Incorporating the restart probability, each element (u, v) of Q becomes:

P
′
(ct+1 = v|ct = u) = (1 − α)P (ct+1 = v|ct = u) + α1 (7)

where, α is the restart probability, i.e., the probability of hopping back to s
from any current node u. The cost function in Eq. 6 is optimized using L-BFGS
algorithm [12]. The learned weights β are chosen such that the random walker
at any current node vi hops to nodes matching the traits of nodes in Hvi

, with
a higher probability than the nodes matching the traits of Lvi

.
Finally, multiple walks are simulated starting from each node in each layer for

neighborhood sampling. While doing this, restart probabilities are not incorpo-
rated i.e., the transition probabilities P (ct+1|ct) are used (and not P

′
(ct+1|ct)).

2 Wilcoxon-Mann-Whitney loss is usually used when AUC (Area Under the ROC
curve) is maximized [24].

Learning Multigraph Node Embeddings Using Guided Lévy Flights 531

Brief Description of the Pseudocode: Algorithm 1 takes the graph G and
node attributes as inputs and returns the embedding matrix X. The function
LEARN WEIGHTS (Line 13) takes the multigraph G and number of source
nodes per layer sl as input. It first samples equal number of source nodes from
each layer uniformly at random and then constructs the H and L sets corre-
sponding to each source node. Finally it optimizes the objective function (Eq. 6)
and returns the parameter vector β. Then, the learned parameter vector β and
the graph G along with all the node-pair feature vectors for each layer are taken
as the input by the function BUILD FINAL TRANSITION MATRIX (Line 27),
and the final transition matrix Q to be used for generating the random walks is
returned. The function RANDOM WALKS (Line 37) takes in the final transi-
tion matrix Q along with number of walks and walk length as input and returns
multiple random walks of fixed length starting from each node in each layer. The
generated random walks are then passed into the SKIP GRAM (Line 12) func-
tion that optimizes the objective function (Eq. 5) and returns the final learned
D dimensional continuous embedding matrix X, which can further be used for
any downstream tasks.

Complexity Analysis: Learning β is the most expensive task in Multi-
graph2Vec. To compute the loss (Eq. 6), for a source node we need to obtain
personalized PageRank scores for each node in its corresponding H and L sets.
We use power iteration method [3] for the same. In theory, PageRank computa-
tion takes O(N3). However, in practice, it takes 5–6 iterations to get the person-
alized PageRank vector. Since we perform this operation for all the source nodes
S, the overall time complexity per iteration becomes O(|S|N3). We observed
that L-BFGS takes 15–20 iterations to converge and returns the optimal β.

5 Evaluation

We show the efficiency of Multigraph2Vec via two tasks – link prediction and
multi-class node classification.

5.1 Experimental Setup

We set the similarity threshold hyper-parameter τ to 90%. A low similarity
threshold value introduces a large number of common nodes in the set H of each
source node, thereby reducing the uniqueness of set H (high priority node set) of
each source node. All the baselines we consider uses logistic regression classifier.
So, in order to maintain a fair ground for comparison we use logistic regression
classifier as well. Table 1 describes the datasets used in this study.

5.2 Link Prediction

We evaluate the ability of Multigraph2Vec to predict the presence of a specific
type of link between any two nodes given all other links between them. We pose

532 A. Roy et al.

Table 1. Summary of the datasets.

Dataset # of nodes Layer (# edges) Metadata Description

EU 1319 FP7 (114845) Yes Nodes are Organization, Relations

are based upon projects funded

under FP7 and H2020 programH2020 (75013)

Hike 1230 Contact Book (2605) Yes Nodes are users of the network, Two

type of relations are based upon

whether two users have each other

in their contact book or are friendsFriend (4666)

Lazega 71 Co-work (892) No Nodes are partners and associates of

a corporate partnership

Friendship (575) Relations are directed which are

based upon whether two nodes have

worked with each other or has taken

advice or are friendsAdvice (1104)

Publication 1180 Co-citation (530) No Nodes are authors, Relations are

based upon whether they have cited

each other or are co-author of a

paper. We used papers after 2009 in

this studyCo-author (170000)

Table 2. Layer-specific performance of different competing methods in the task of link
prediction on four datasets. The AUC score is reported after averaging the performance
across 50 iterations. The results are reported with network-property based attributes,
and the dimension of the embedding vector is set to 128.

Method EU Hike Publication Lazega

Layer1 Layer2 Layer1 Layer2 Layer1 Layer2 Layer1 Layer2 Layer3

Jaccard coefficient 0.7587 0.7573 0.6152 0.6298 0.6883 0.7243 0.6487 0.6363 0.6641

Adamic-Aard 0.7157 0.6860 0.6364 0.6206 0.6756 0.7145 0.6317 0.6437 0.6302

Common neighbor 0.6697 0.6580 0.6159 0.6271 0.6457 0.6256 0.6170 0.6008 0.6267

Node2Vec 0.6209 0.6367 0.6481 0.6576 0.6893 0.7478 0.5883 0.5839 0.6022

LINE 0.7113 0.7207 0.6423 0.6369 0.7006 0.7306 0.6521 0.6456 0.6568

MNE 0.7601 0.7773 0.6782 0.6734 0.7261 0.7563 0.6673 0.6563 0.6850

PMNE 0.7264 0.7345 0.6629 0.6786 0.7046 0.7456 0.6408 0.6376 0.6678

Multigraph2Vec 0.8032 0.8192 0.7135 0.7156 0.7561 0.7886 0.7143 0.7071 0.7281

it as a binary classification problem. Let us assume that we wish to evaluate
the performance for layer l. We then proceed by splitting tr% (training) and
ts% (testing) of the edges (set as 75% and 25%, respectively in our experiments)
in layer l into training set trpos and test set tspos respectively, thereby obtain-
ing positive class samples for training and testing. Similarly, we split the ‘no
edge/absent edges’ in layer l into training set trneg and test set tsneg, thereby
obtaining negative class samples for training and testing, respectively. We then
learn the node embeddings on the training set tr = trpos ∪ trneg.

Once the node embeddings are learned, a d-dimensional edge representation
for each edge in training and test sets is obtained by averaging the corresponding
node embeddings. Due to real-world networks being sparse, the training set is

Learning Multigraph Node Embeddings Using Guided Lévy Flights 533

Algorithm 1. Multigraph2vec
1: Input : G, Node attributes
2: Output : X
3: Initialize:
4: sl ← 100 � Number of source nodes from each layer
5: τ ← 0.9 � Similarity Threshold
6: n walks ← 10 � Number of walks
7: walk len ← 80 � Walk Length
8: ψ : ψ

vl
i
vl

′
j

∨ 1 ≤ i, j ≤ N ; 1 ≤ l ≤ |L| � node pair features

9: β = LEARN WEIGHTS(G, sl)
10: Q = BUILD FINAL TRANSITION MATRIX(G, β, ψ)
11: walks = RANDOM WALKS(Q, walk len, n walks)
12: X = SKIP GRAM(walks)

13: function Learn Weights(G, sl)
14: S ← []
15: for l in L do
16: S.extend(Sample(Gl, sl))
17: end for
18: for s in S do
19: Hs ← []
20: Ls ← []
21: Hs ← neighbor(s, k) ∪ sim node(s, τ) ∪ alias(s, G)
22: Ls ← Gl − Hs

23: end for
24: β ← L − BFGS(minObj[6], Hs, Ls, S, Ψ)
25: return β
26: end function
27: function Build Transition Matrix(G,β,ψ)
28: Q ← []
29: for ψ

vl
i
,vl

j
in ψ do

30: Q[vl
i, vl

j] ← βT ψ
vl
i
,vl

j

31: end for
32: for ψ

vl
i
,vl

′
i

in ψ do

33: Q[vl
i, vl

′
i] ← βT ψ

vl
i
,vl

′
i

34: end for
35: return Q
36: end function
37: function Random Walks(Q, walk len, n walks)
38: walks = []
39: for l in L do
40: for vl

j in Gl do

41: walks.extend(Walk(Q, n walks, walk len, vl
j))

42: end for
43: end for
44: return walks
45: end function

highly imbalanced. It contains an overwhelming proportion of negative samples
(no-edge) compared to that of positive samples. To remove class imbalance, we
undersample the negative class by taking similar number of samples as that
present in the positive class. We then train a logistic regression model on the
training set (formed after removing class imbalance) and test the performance
of the model on the test set. We repeat the experiments 50 times and report the
average AUC score.

534 A. Roy et al.

Fig. 2. Variation in the performance
of Multigraph2Vec w.r.t. the increas-
ing dimension of embedding and node
attributes (metadata based or network-
structure based) on link prediction.
AUC scores averaged across layers are
plotted on a log scale to elucidates
mall differences in AUC values. Note
that Lazega network does not have any
metadata information of nodes.

Fig. 3. Accuracy obtained with dif-
ferent competing methods in multi-
class node classification task on the
Publication dataset. The accuracy is
reported after averaging the perfor-
mance across 50 iterations. The results
are reported with network-property
based attributes, and the dimension of
the embedding vector is set to 128.

Baseline Methods: We compare Multigraph2Vec with single-layer methods,
namely Node2Vec [7], LINE [21], and multi-layer methods, namely PMNE [13]
and MNE [25]. We also compare against non-embedding methods like Jaccard
Coefficient (JC) [11], Adamic-Adar (AA) [2], and common neighbor (CN) [17]
based link prediction approaches.

Single-layer methods are not straightforwardly applicable to multidimen-
sional networks and are also unable to capture multi-relation/interlayer interac-
tions in the learned embeddings. For these methods, in order to obtain embed-
dings while evaluating for layer l, we only consider the training edges of layer
l. Multi-layer methods (PMNE and MNE) are straightforward to apply in our
setting, apart from the fact that these methods do not handle isolated nodes.
For this, we terminate the random walk if it starts from or reaches an isolated
node.

Parameter Sensitivity: We examine how different choices of embedding
dimensions and node attributes (metadata based, network structure based and
combination) affect the performance of Multigraph2Vec for link prediction.
Figure 2 shows that with the increase of embedding dimension d, Multigraph2Vec
performs consistently better. However, it performs the best if only network struc-
ture based attributes are used, rather than metadata based or their combination.
Table 2 shows the performance of Multigraph2Vec with network structure based
attributes keeping d = 128.

Comparative Analysis: Table 2 shows the performance of different embed-
ding methods on four datasets (layer-wise). As expected, multilayer embedding

Learning Multigraph Node Embeddings Using Guided Lévy Flights 535

methods (Multigraph2Vec, PMNE and MNE) outperform single-layer embed-
ding methods (Node2Vec, LINE). The reason is that multilayer methods can cap-
ture the useful multi-relational interactions among nodes, while single-layer net-
works cannot. MNE turns out to be the best baseline. However, Multigraph2Vec
outperforms MNE by 5.53%, 5.73%, 6.66% and 5.21% higher AUC (relative) on
EU, Hike, Lazega and Publication datasets, respectively (averaged over the lay-
ers). From Fig. 2 it can be seen that when only network attributes are used AUC
values are always higher than when either metadata attributes or both meta-
data and network attributes are used. This is because metadata features are
redundant when combined with network properties, Hence together these fea-
tures are actually losing information instead of gaining one. To support the fact
we perform correlation analysis between every metadata and network properties
features. We compute both linear (Pearson) as well as non linear (Spearman)
coefficient on EU and System dataset because only they had metadata attributes.
The mean linear correlation comes out to be 0.82 and 0.92 while the mean non
linear correlation is 0.78 and 0.86 respectively on EU and Hike dataset. These
values support the fact that network properties along with metadata proper-
ties causes redundancy which decreases the AUC-ROC score and hence network
attributes alone gives best result.

5.3 Node Classification

In this setting, each node is assigned a label from a label set. The entire multi-
graph is used for unsupervised feature learning i.e., for learning the embedding
of each node. Once the embeddings are learned, 75% nodes represented by their
corresponding embeddings are used for training a multi-class classifier (here we
use Logistic Regression classifier with one v/s rest approach). The remaining
25% nodes are used as test set. Multi-class node classification experiments are
performed on the publication dataset only, since other datasets do not have
node labels.

Baseline Methods: We learn the embeddings using single-layer baseline meth-
ods – Node2Vec, LINE, on an aggregated network. A pair of nodes are connected
if they have at least one edge between them in the original multigraph. Multi-
layer baseline methods (PMNE and MNE) are trained on the entire multigraph
itself.

Comparative Analysis: Figure 3 shows the performance of different embed-
ding methods on the publication dataset. Multigraph2Vec with an accuracy of
74.28% outperforms other multi-layer embedding methods, MNE (accuracy of
69%) and PMNE (accuracy of 68.53%); whereas, single-layer methods, Node2Vec
and LINE could only achieve an accuracy of 60.54% and 55.31%, respectively.

6 Conclusion

In this paper, we proposed Multigraph2Vec, a novel multigraph embedding gen-
eration method, which allowed flights instead of walks and learns transition prob-
abilities while concurrently preserving multi-relation interactions among nodes,

536 A. Roy et al.

in a principled fashion. We compared Multigraph2Vec with four state-of-the-art
network embedding methods on four real-world datasets for the task of link pre-
diction and multi-class node classification and observed significant improvement
over these baselines. We also deployed Multigraph2Vec on Hike app for friend
recommendation.

References

1. Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., Alemi, A.: Watch your step: learning
graph embeddings through attention. CoRR abs/1710.09599 (2017)

2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230
(2001)

3. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: WSDM, pp. 635–644 (2011)

4. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. CoRR abs/1312.6203 (2013)

5. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heteroge-
neous network embedding via deep architectures. In: ACM SIGKDD, pp. 119–128
(2015)

6. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learn-
ing for heterogeneous networks. In: ACM SIGKDD, pp. 135–144 (2017)

7. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: ACM
SIGKDD, pp. 855–864. New York, NY (2016)

8. Guo, Q., Cozzo, E., Zheng, Z., Moreno, Y.: Lévy random walks on multiplex net-
works. Sci. Rep. 6, 1–11 (2016)

9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. CoRR abs/1706.02216 (2017)

10. Hong, S., Chakraborty, T., Ahn, S., Husari, G., Park, N.: SENA: preserving social
structure for network embedding. In: 28th ACM Conference on Hypertext and
Social Media, pp. 235–244 (2017)

11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
JASIST 58(7), 1019–1031 (2007)

12. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimiza-
tion. Math. Program. 45(3), 503–528 (1989). https://doi.org/10.1007/BF01589116

13. Liu, W., Chen, P.Y., Yeung, S., Suzumura, T., Chen, L.: Principled multilayer
network embedding. In: ICDMW, pp. 134–141 (2017)

14. Ma, Y., Ren, Z., Jiang, Z., Tang, J., Yin, D.: Multi-dimensional network embedding
with hierarchical structure. In: WSDM, pp. 387–395 (2018)

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

17. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Phys. Rev. E 64, 025102 (2001)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: ACM SIGKDD, New York, NY, USA, pp. 701–710 (2014)

19. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network
embedding for recommendation. IEEE TKDE 31(2), 357–370 (2019)

https://doi.org/10.1007/BF01589116

Learning Multigraph Node Embeddings Using Guided Lévy Flights 537

20. Supplementary, I.: Multigraph2Vec: code & data (2019). https://tinyurl.com/
y5goe7vx

21. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077 (2015)

22. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min.
Knowl. Disc. 23, 447–478 (2010). https://doi.org/10.1007/s10618-010-0210-x

23. Verbrugge, L.M.: Multiplexity in adult friendships. Soc. Forces 57(4), 1286–1309
(1979)

24. Yan, L., Dodier, R., Mozer, M.C., Wolniewicz, R.: Optimizing classifier perfor-
mance via an approximation to the wilcoxon-mann-whitney statistic. In: ICML,
pp. 848–855 (2003)

25. Zhang, H., Qiu, L., Yi, L., Song, Y.: Scalable multiplex network embedding. In:
IJCAI, pp. 3082–3088, July 2018

https://tinyurl.com/y5goe7vx
https://tinyurl.com/y5goe7vx
https://doi.org/10.1007/s10618-010-0210-x

	Learning Multigraph Node Embeddings Using Guided Lévy Flights
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Multigraph2Vec
	4.1 Skip-Gram Model
	4.2 Neighborhood Sampling in Multigraph2Vec

	5 Evaluation
	5.1 Experimental Setup
	5.2 Link Prediction
	5.3 Node Classification

	6 Conclusion
	References

