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Abstract. Customer purchase behavior prediction plays an important
role in modern retailing, but the performance of this task is often lim-
ited by the randomness of individual historic transaction data. In the
meanwhile, Fragmentation and Coagulation Process (FCP), a stochas-
tic partition model, has recently been proposed for identifying dynamic
customer groups and modeling their purchase behavior. However, FCP
is not able to forecast the purchase behavior because such a data-driven
method requires transaction observations to conduct clustering. To tackle
this challenge, we propose FCP filter, a clustering-prediction framework
based on FCP, which can forecast purchase behavior and filter random
noise of individual transaction data. In our model, FCP clusters cus-
tomers into groups by their temporal interests to filter random noise of
individual transaction data. Then a predictor is built on grouped data.
The predicted results are also fed to FCP to adjust the parameter for
prior knowledge at the next time step. Our model is superior in capturing
temporal dynamics and having flexible number of groups. We conduct
experiments on both synthetic and real-world datasets, demonstrating
that our model is able to discover the latent group of individual customers
and provides accurate predictions for dynamic purchase behavior.
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1 Introduction

In modern retailing, accurate prediction on the quantity that customers are
going to purchase over items helps retailers to design effective marketing and
warehousing strategies. However, the purchase behavior of individual customer
is often random, limiting the accuracy of prediction. For example, Tom normally
purchases 1 bottle of milk in his weekly visit to supermarket, but may buy 2
bottles occasionally. The observation of purchase intensity on transaction data
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is 1 or 2 but the real purchase intensity could be 1.2, so the observational noise
is 0.2 and 0.8 for those two observations. In the above example, we can see that
the purchase behavior of individual customer is not stable. To address this prob-
lem, we propose to cluster customers into groups by their historic transaction
data because the purchase intensity of customer group is more stable and can
represent the real purchase intensity of individuals. The random purchase noise
of a customer can be filtered if his latent group could be accurately found.

For clustering customers into groups, a dynamic and flexible clustering model,
Fragmentation and Coagulation Process (FCP) [7], has been recently proposed.
FCP is a data-driven clustering model, with scalable number of customer groups,
which does not need to be predefined, and can evolve with the data. This prop-
erty enables FCP to capture the dynamic purchase behavior of customers accu-
rately. However, FCP clustering can only be conducted when customer purchase
data is given, which makes it hard to forecast the behavior of customer groups in
the future. The significance of FCP in real-world applications is limited by the
unavailability of future transaction data. For retailers, forecasting the behavior
of customer groups is more important than just grouping customers in the past
time.

Fig. 1. The purchase intensities of customer groups evolve with time. Each bubble
implies a customer group and the size of bubbles implies the size of groups. The line
connecting two bubbles represents customers shifting between groups.

In order to reduce the purchase random noise of individual customers as well
as to enable FCP to forecast group purchase intensity, we propose our FCP filter
based on FCP to predict purchase intensity at group level instead of individual
customer. For example, as shown in Fig. 1, there are 3 groups at t = 10. We
aim to predict the purchase intensity of these 3 groups at t = 11 and use the
predicted value of each group as the purchase intensity of its members. The
purchase intensity of individual customer changes rapidly and randomly, but
the group-based purchase intensity is more stable and easier to discover regular
patterns. We can take the group-level purchase intensity as the actual state
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of its members, while taking the individual customer purchase intensity as the
observation of group purchase intensity. By predicting over actual states instead
of observations, the individual randomness can be filtered.

Also, in our model, not only the clustering results influence prediction but
also the prediction results influence FCP clustering. In traditional FCP cluster-
ing, there is a hyperparameter to represent the prior knowledge of group purchase
intensity. Since our FCP filter can get the prediction of group purchase intensity,
we propose to update this parameter in a time-evolving manner instead of using
a predefined value. This parameter can be calculated from prediction results
and influence FCP clustering at the next time step. Theoretically, an accurate
prediction leads to better clustering fitness than fixing the parameter.

In summary, we construct a dynamical clustering-prediction framework for
modeling customer behavior. The main contributions of our model are (1) from
prediction perspective, this framework helps to filter individual random pur-
chase noise, (2) from clustering perspective, we enable FCP, a data-driven
clustering model, to forecast group purchase intensity. The flexibility and dynam-
ics of our FCP filter are appropriate for modeling customer behavior. It is flexible
that the number of groups do not need to be predefined but estimated from cus-
tomer transaction data. It is dynamic that the customer membership and group
number can change with time. The hyperparameter controlling the priori knowl-
edge of group purchase intensity is also updated dynamically so that the group
purchase intensity can be estimated more accurately.

2 Related Works

Clustering on customers is also known as customer segmentation, which aims to
identify the customers whose purchase behavior is in the same manner [10]. In
order to identify customer groups, the data-driven approaches based on cluster-
ing analysis are formal and reliable solution [3]. Decision tree [5] was used to
segment customers using their demographic information. Clustering models like
K-means [4] for static clustering and mixture model based on Non-homogenous
Poisson process [6] for tracking dynamic group interests were also proposed.
However, the preferences and interests of customers may also change over time.
In order to track the customers’ temporal shifting across groups, a novel Bayesian
non-parametric customer segmentation model FC-CSM [7] based on a random
partition process, Fragmentation and Coagulation Process (FCP) [1], was pro-
posed. It achieves high accuracy in fitting individual purchase frequency. Besides
modeling the dynamics of segmentation, another advantage of FC-CSM is the
flexibility. There is no need to set the number of customer groups manually,
which can be learned automatically from data directly. However, the FC-CSM
relies on the observed transaction data, so that the clustering can only be con-
ducted for the past time. It is more meaningful to forecast the purchase behavior
of groups instead of only analyzing past data. In this way, we propose to build
prediction on FCP. Due to the efficiency of FCP to identify latent groups and
model purchase behavior, the prediction could be more accurate than individual
prediction.
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3 Methodology

Our problem can be formally described as follows. Given the transaction data
of a product, a matrix XU×T is generated to record the transaction quantity,
for U customers during T time steps. Each entry xit in XU×T refers to the pur-
chase quantity of customer i at time step t. The task is to forecast the purchase
quantities of customers at the next time step T + 1, i.e. Λ̂U×1

T+1 in which λ̂i(T+1)

means the predicted purchase quantity of customer i at time T + 1.
Overall, our model has three main components: (1) customer segmenta-

tion based on FCP; (2) tracking model to track group purchase intensity
trajectory and (3) predictor to forecast group purchase intensity at next time
step.

3.1 Customer Segmentation

We adopt Fragmentation and Coagulation Process (FCP)[1,7], a dynamic ran-
dom partition model, to segment customers and capture dynamic interests of
customers. The schematic diagram of FCP from time step t to t+1 is illustrated
in Fig. 2. FCP contains two procedures: fragmentation and coagulation. Given
the initial customer partition πt, at the fragmentation step, each customer group
can remain the same or be split into several subgroups, forming the intermediate
partition π′

t. Then, at the following coagulation step, a group can remain the
same or be merged with other groups, forming the new partition πt+1. In this
way, FCP can capture the evolution of customer segmentation from t to t + 1.
Theoretically, FCP is flexible to model any change of segmentation, which means
that the new segmentation can be totally different from the previous one.

Fig. 2. Illustration of customer segmentation using FCP

Priori Probability of Customer Segmentation. FCP defines the priori
transition probability from partition πt to πt+1. Formally, at t = 1, we adopt a
random partition process Chinese Restaurant Process (CRP) [8] to model the
initial partition of customers, and the probability of customer i in group g is:

P
(
π1(i) = g|π−i

1

)
=

{ |Mg| /(|U | − 1 + ρ) if Mg ∈ π−i
t

ρ/(|U | − 1 + ρ) if Mg = φ
(1)
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where the hyperparameter ρ is to control the probability that the customer starts
a new group, and Mg denotes the set of customer members in group g. π−i

t is
the partition of customers except for customer i at t, which assumes customer
i is the last one who needs to allocate. In CRP model, the larger groups of a
partition tends to attract more members and becomes larger.

Given partition and allocation at previous time step, for customer i, the
transition probability from group g in the current partition to group g′ in frag-
mentation step is defined as:

P
(
π′

t(i) = g′|πt(i) = g, π−i
t , π′−i

t

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if Mg = Mg′ = φ

δ |Ft (Mg)| / |Mg|, if Mg ∈ π−i
t ,Mg′ = φ

(|Mg′ | − δ) / |Mg|, if Mg ∈ π−i
t ,Mg′ ∈ Ft (Mg)

0, otherwise

(2)

where Ft (Mg) is formally defined as
{
B|B ∈ π′−i

t , B ⊆ Mg, B �= φ
}
, which refers

to the groups splitting from Mg. Equation (2) shows that a customer is more
likely to join large groups splitting from Mg. The hyperparameter δ controls the
probability that customer i starts a new group not existing in the previous group
πt(i), which is also the temporal dependency of partitions between consecutive
time steps.

Similarly, in the coagulation step, the transition probability of customer i
joining group l from the intermediate group g′ is:

P
(
πt+1(i) = l|π′

t(i) = g′, π−i
t+1, π

′−i
t

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ/
(
ρ + δ

∣
∣π′−i

t

∣
∣), if Ml = Mg′ = φ

δ |Ct (Ml)| /
(
ρ + δ

∣
∣π′−i

t

∣
∣), if Ml ∈ π−i

t+1,Mg′ = φ

1, if Ml ∈ π−i
t+1,Mg′ ∈ Ct (Ml)

0, otherwise

(3)

where Ct (Ml) =
{
B|B ∈ π′−i

t+1, B ⊆ Ml, B �= φ
}

denotes the set of subgroups
merged into Ml. The priori knowledge is that a customer is more likely to join
the group that merged by more subgroups.

Likelihood of Observations. The individual purchase quantity is modeled
by Poisson distribution. Given the purchase quantity of customer i at time step
t, xit, the likelihood of customer i belonging to group g at t is represented as
follows:

P (xit|πt(i) = g) =
λxit

g e−λg

xit!
(4)

where the purchase intensity for customer group g is λg.
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The purchase intensity has Gamma distribution as its prior, due to the con-
jugacy of Poisson and Gamma distributions. Therefore, we have the Maximum
A Posteriori (MAP) of λg as follows:

λg =

⎧
⎪⎨

⎪⎩

∑

j∈Mg

xjt+αt−1

|Mg|+β−1 if Mg ∈ π−i
t∑

j∈U\{i}
xjt+αt−1

|U |−1+β−1 if Mg = φ

(5)

where the purchase intensity of a group can be interpreted as the average pur-
chase quantities of its members, and impacted by the hyperparameters of αt (i.e.
shape parameter) and β (i.e. scale parameter) of the Gamma prior.

3.2 Tracking Purchase Intensity

For each customer i, we need to determine the purchase intensity trajectory
{λit}T

1 in order to predict for the future. An intuitive idea is to use the purchase
intensity of the group that customer i belongs to along the time as the trajectory
of purchase intensity, i.e. λit = λπt(i) for any t. However, the customer interests
are evolving with time that the groups from the past may not fit the customers’
current interests, and those λπT−n(i) may demonstrate misleading trends for
prediction.

Therefore, we propose to predict their purchase intensity λ̂i(T+1) only consid-
ering the current group membership, πT (i) and backtrack the intensities of this
group in the past time steps, instead of using the actual groups the customers
belonged to. The difficulty for tracking the purchase intensity of group πt(i) is
that the group members could be totally different in consecutive time steps i.e.
Mπt(i) �= Mπt−1(i). To address this problem, we build a backward tracking model
to get the series of purchase intensities for the current group MπT (i) in partition
πT .

Assume the group we are going to track is denoted as gtracking and the
members of gtracking as Mgtracking

. The group gtracking is initialized as πT (i)
for current time step t = T . If there exists g ∈ πt−1 satisfying tracking rules
(Eq. (6)), we update the group g as the new group to be tracked.

gtracking ⇐ g :
|Mg ∩ Mgtracking

|
|Mgtracking

| > η1 and
|Mg ∩ Mgtracking

|
|Mg| > η2 (6)

In the tracking rules (Eq. (6)), we require that the majority of group g has
shifted to group gtracking and the majority of group gtracking come from group
g. The hyperparameter η1 and η2 are generally set as >0.5, so there could only
be at most one or no tracked group. If there is no group g ∈ πt−1 satisfying the
tracking rules, gtracking remains the same:

Mgtracking
=

{
Mg, if ∃ g ∈ πt−1, s.t. gtracking ⇐ g

Mgtracking
, otherwise

(7)
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As to the individual purchase intensity, it is defined as follows based on
whether there is a group g found:

λi(t−1) =

⎧
⎪⎨

⎪⎩

λg, if ∃ g ∈ πt−1, s.t. gtracking ⇐ g
∑

j∈Mgtracking
λπt−1(j)

|Mgtracking
| , otherwise

(8)

If there is no tracked group g found, we use the average purchase intensity
at t − 1 of all members of group gtracking to represent tracked group intensity.

By computing backwards from t = T to t = 1, we can finally get the trajec-
tory of group purchase intensity {λit}T

1 for customer i.

3.3 Predicting Purchase Intensity

Finally, the prediction model can be applied on the tracked purchase intensity
trajectory {λit}T

1 of customer i.

λ̂i(T+1) = Pred(λi(T ), λi(T−1), . . . , λi1) (9)

In traditional FCP, the priori distribution of group purchase intensity is mod-
eled by Gamma distribution with static predefined hyperparameter αt and β in
Eq. (5). Since our FCP filter can get the prediction of group purchase intensity,
we propose to update this prior hyperparameter with the prediction results so
that the priori knowledge of group purchase intensity could be more accurate.
For Gamma distribution, we estimate the parameter αT+1 by Maximum Like-
lihood Estimation (MLE), taking the predicted group purchase intensity λ̂g at
time step T + 1 as observations, and we have:

αT+1 =

∑
g∈πT

λ̂g

|πT |β (10)

where |πT | is the total number of groups in the partition.
Our framework does not restrict the prediction models to use, and we have

tested the performance of using the framework with various models including
linear regressions and Long Short Term Memory (LSTM) in our experiments.

3.4 Graphical Model of the Framework

The generative graphical model of our FCP filter is shown in Fig. 3. The initial
partition π1 is sampled based on CRP rules and the partitions in following time
steps obey FCP rules as described in Sect. 3.1. Given customer i belonging to
group πt(i) at time t, the individual purchase intensity xit is drawn from Poisson
distribution with parameter λπt(i), which is the purchase intensity of the group he
belongs to. The group purchase intensity λπt(i) at time t is drawn from Gamma
distribution with hyperparameters αt (i.e. shape parameter) and β (i.e. scale
parameter). It is worth noting that αt is dynamic, which means that different
αt at different time step t, that is different from original FCP. The parameter
αt is computed by using MLE of Gamma distribution with the predicted group
purchase intensity λ̂t and the scale parameter β as shown in Sect. 3.3.
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α1 α2 αT αT+1

xi1 xi2 xiT

λπ1(i) λπ2(i) λπT (i)

π1 π2 πT

i ∈ U

i ∈ U i ∈ U i ∈ U

π1 ∼ CRP(U, ρ, 0)

πt+1|πt ∼ FCP (πt, ρ, δ)

xit|πt(i) ∼ Poisson λπt(i)

)

λπt(i) ∼ Gamma(αt, β)

αt = MLE(λ̂t, β)

Fig. 3. The generative graphical model of our FCP filter

3.5 Inference

The customer partition and allocation are inferred by sampling using the poste-
rior transition probabilities, computed by Eqs. (11) and (12) based on the priori
transition probabilities and the observation likelihood terms.

For the customer segmentation component, we use Gibbs sampler to infer
the group membership of each customer over time πt(i). In more detail, since
the FCP is exchangeable and projective [9], we assume that customer i is the
last customer to be sampled, which means that we can allocate customer i given
the allocation of all the other customers. According to Bayesian theorem, the
sampling posterior transition probabilities for split and merge steps are defined
respectively as:

P
(
π′

t(i) = g′|πt(i) = g,xi,
{
π−i

τ

}T

1
,
{
π′−i

τ

}T−1

1

)

∝P
(
π′

t(i) = g′|πt(i) = g, π−i
t , π′−i

t

)

×P
(
{xiτ}T

t+1 |π′
t(i) = g′,

{
π−i

τ

}T

t
,
{
π′−i

τ

}T−1

t

)
(11)

P
(
πt+1(i) = l|π′

t(i) = g′,xi,
{
π−i

τ

}T

1
,
{
π′−i

τ

}T−1

1

)

∝P
(
πt+1(i) = l|π′

t(i) = g′, π−i
t+1, π

′−i
t

)
P

(
xi(t+1)|πt+1(i) = l

)

×P
(
{xiτ}T

t+2 |πt+1(i) = l,
{
π−i

τ

}T

t+1
,
{
π′−i

τ

}T−1

t+1

)
(12)

where the priori terms in the equations above can be calculated based on Eqs. (2)
and (3) by forward and backward algorithm as used in Hidden Markov Model
[2], with the likelihood terms given in Eq. (4).
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In summary, the dynamic customer segmentation is firstly modeled by FCP.
Then we build tracking model to get intensity trajectory of each latent group.
After that, predictor can be used to predict the purchase intensity of tracked
groups. Finally, the predicted results also influence FCP clustering at the next
time step by updating αt.

4 Experimental Results

We conducted experiments on synthetic and real-world datasets to illustrate
that our model can (1) identify dynamic customer groups based on purchase
behavior, (2) achieve more accurate prediction results by filtering individual
random noise. The hyperparameters are empirically set using validation dataset
as follows: ρ = 0.8, δ = 0.4, η1 = η2 = 0.65, α1 = 2 and β = 0.5. The evaluation
metrics in our study is the Mean Absolute Error (MAE). The MAE measures
the average error between predicted purchase intensity and the ground truth.

4.1 Synthetic Dataset

We generate a synthetic dataset to demonstrate our model’s capability to identify
the latent group and customer shifting over groups. There are 40 products in the
synthetic dataset. For each product, we generate purchase quantity X100× 10 of
100 customers from 3 latent groups with 10 time steps.

Specifically, we firstly generate the group purchase intensity of those 3 groups
at the first 5 time steps randomly Λ3× 5. At each time step, we sort the group-
level purchase intensities from large to small values, so that those 3 groups
can show relevant purchase patterns continuously. To fill in the intensity matrix
Λ3× 10 of 10 time steps, λgt from t = 6 to t = 10 is generated by linear regression
of 3 orders: λgt =

∑3
n=1 an ∗ λg(t−n) + b. Then all customers are allocated into

those 3 groups randomly at t = 1. We assume that a customer changes group
membership over time with probability of 0.1, which means that the customers
have 10% of chance shifting into another group. Finally, we generate customer
purchase quantities using Poisson distribution with parameter λ = λπt(i) based
on their allocation.

We test the predicting performance using FCP filter model and using indi-
vidual records. As the purchase intensity of each group in our synthetic data
evolves according to the rule of linear regression of 3 orders, the same regression
predictor is used for both cases. Accurate prediction results could demonstrate
the capability of our model to identify latent groups for customers. The results
are shown in Fig. 4 comparing these two models. We can see that our FCP filter
achieves lower MAE on almost all products. The average MAE over 40 products
of individual prediction and our FCP filter are 5.58 and 3.34, respectively. This
means that FCP filter successfully tracked the evolving purchase intensity of
latent groups in this dynamic dataset and predicted accurately.

To illustrate the flexibility of FCP filter, we also compared the average MAE
using prediction models built on static K-means clustering with different number
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Fig. 4. Comparison of prediction results (MAE) using FCP filter and individual records
on 40 synthetic products

of clusters (k). The average MAE results of K-means are 3.93 and 4.76 for
K = 3 and K = 5, respectively, which are higher than FCP filter result (3.34 ).
Our model outperformed static K-means clustering with K = 3 or 5, even when
the ground truth for the number of clusters is 3. It shows that the importance of
dynamics and flexibility of FCP filter in capturing the evolution of the purchase
intensities. Moreover, there is no need to pre-define the number of clusters in
our model.

4.2 Real-World Dataset

In this section, we use a real-world supermarket dataset1 to illustrate our model’s
capability of filtering random purchase noise of individuals to get accurate predic-
tion and usage of various predictors. The dataset contains 2,595,732 transaction
records of 2,500 frequent customers on 2,383 products in 711 days (about two
years). The transaction data is sparse in the first several months, so that we use
the transaction data from 141 days to 420 days (40 weeks) for experiments. We
divide 40 weeks into 10 time steps with 4 weeks in each time step. We select 24
popular products, which had the largest number of records and common in our
daily life for experiments such as milk, cereal, eggs and so on. For each prod-
uct, we discard customers who never bought that product and who ranked at
the top 5 % based on purchase quantities as outliers. We randomly sample 100
customers for computational convenience and the purchase frequency is defined
as the quantity purchased by a customer at one time step (4 weeks).

Several predictors are applied in our experiments to show FCP filter can
generally achieve better prediction accuracy. They are LSTM network, 1-order
and 3-order linear regressions, and a last-step predictor which takes the value at
last time step as predicted value λi(T+1) = λπT (i). The average MAE is shown in
Table 1. Similar to the results on the synthetic data, our FCP filter achieves the

1 https://www.dunnhumby.com/careers/engineering/sourcefiles.

https://www.dunnhumby.com/careers/engineering/sourcefiles
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Table 1. Average MAE for FCP filter, individual and static K-means with different
predictors

Average MAE LSTM Last-step
predictor

Regression
(1-order)

Regression
(3-order)

Individual 1.05 1.06 1.16 2.27

K-means (K = 3) 1.18 1.04 1.10 1.77

K-means (K = 5) 1.16 1.02 1.10 4.29

FCP filter 0.98 1.00 1.07 1.53

best prediction accuracy with all the predictors. It is mainly because our dynamic
model is suitable for modeling customers’ dynamic interests and identifies the
latent groups covered by random individual purchase behavior. We notice that
the 3-order regression is not accurate and stable, and the possible reason could
be that it is sensitive to the input purchase intensity series data.

Fig. 5. Comparison of MAE for FCP filter and individual model with the last-step
predictor on all products

Specially, Fig. 5 shows the prediction results of our model and individual
model with the simple last-step predictor on all products. Our FCP filter gets
higher prediction accuracy than individual prediction for every product. Since
the predictor is quite simple, this result implies that the evolving customer pur-
chase intensity is closer to group purchase intensity than individual one, and our
FCP filter is able to find the latent group of customers and filter the noise in
the individual records to produce accurate prediction results.

5 Conclusion

We build a dynamic and flexible clustering-prediction framework FCP filter to
predict customer purchase intensity regardless of the random noise of individual
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customer behavior. Our model segments customers by FCP and then predict
customer purchase intensity on the tracked group purchase intensity. After that,
the prediction result adjusts priori knowledge of clustering at next time step.
We conduct experiments on both synthetic and real-world datasets, and show
that FCP filter model is able to (1) identify the latent group and track purchase
intensity evolving trends of groups; (2) improve the accuracy of customer pur-
chase intensity prediction. Our framework is scalable with the datasets, without
the needs of defining the number of clusters and is flexible to work with different
predictors. Generally, our proposed model is not restricted to the domain of cus-
tomer behavior modeling. It is also useful for other sequential data containing
subjects that shifting among latent groups. In our future work, our model will
be built on other domains with sequential data to improve prediction accuracy.
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