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Abstract. Human Activity Recognition (HAR) plays an irreplaceable
role in various applications such as security, gaming, and assisted living.
Recent studies introduce deep learning to mitigate the manual feature
extraction (i.e., data representation) efforts and achieve high accuracy.
However, there are still challenges in learning accurate representations
for sensory data due to the weakness of representation modules and the
subject variances. We propose a scheme called Distance-based HAR from
Ensembled spatial-temporal Representations (DHARER) to address
above challenges. The idea behind DHARER is straightforward—the
same activities should have similar representations. We first learn rep-
resentations of the input sensory segments and latent prototype repre-
sentations of each class, using a Convolution Neural Network (CNN)-
based dual-stream representation module; then the learned representa-
tions are projected to activity types by measuring their similarity to the
learned prototypes. We have conducted extensive experiments under a
strict subject-independent setting on three large-scale datasets to eval-
uate the proposed scheme, and our experimental results demonstrate
superior performance of DHARER to several state-of-the-art methods.

Keywords: Activity recognition · Deep learning · Similarity
comparison · Spatial-temporal correlations

1 Introduction

Human activity recognition (HAR) is a significant step towards human com-
puter interaction and enables a series of promising applications such as assistant
living, skills training, health monitoring, and robotics [6]. Existing HAR tech-
niques are either video- or sensor-based. In particular, sensor-based HAR aims at
inferring human activities from a set of sensors (e.g., accelerometer, gyroscope,
and magnetometer), which generate data streams over time. This approach is
generally known to have several advantages over video-based HAR including:
ease of deployment, low cost and less invasive from a privacy perspective [7].
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Previous studies on sensor-based HAR focus on designing powerful hand-
crafted features in time (e.g., mean, variance) and frequency domain (e.g., power
spectral density) to represent segments of raw sensory streams [9]. Traditional
machine learning models such as Support Vector Machine (SVM) and Ran-
dom Forest are employed to project the feature vector to activity labels [2].
The performance of these methods normally depends on the effectiveness of
the extracted features where are heuristic, task-independent, and not specially
designed for HAR [12]. Since designing powerful task-specific features require sig-
nificant domain knowledge, and are labour intensive and time consuming, recent
research introduces deep learning methods, which have exceptional data repre-
sentation ability to expedite feature extraction. These works utilize deep neural
networks, such as Convolution Neural Networks (CNN) [5,16] and Long-Short
Term Memory (LSTM) [8,11], as feature extractors to learn the representation
of the input sensory segments automatically, and then map the representation
to labels using another neural network (normally a basic fully-connected layer).

Although deep learning methods have achieved significant progress, it is still
difficult to learn accurate representations for the input segments due to the com-
plex spatial correlations among sensors and temporal correlations between time
periods. Considering the sensitivity of neural networks to noise, the biases in
the representations further prevent neural network-based classifiers from mak-
ing correct activity classification. In addition, subject variances inherently exist
in HAR, where people tend to perform activities that are heavily influenced by
personal characteristics, such as gender, height, weight, and strength. For exam-
ple, men usually perform activities at a larger magnitude than women. Such
divergence introduces deviations to the representations among subjects and thus
prevent the model from getting accurate classification for new subjects (haven’t
appeared in the training set).

We propose to solve this problem from three perspectives: 1) Representation
Stage: It is necessary to jointly capture the spatial and temporal correlations
to achieve more accurate feature extraction. 2) Classification Stage: Intuitively,
representations of the same activities should be similar. Therefore, using a dis-
tance metric which can infer the type of an input segment from labels of the most
similar prototype is likely to make the classification module less susceptible to
the preciseness of the data representations (compared to neural network based
classification). 3) Training Stage: the subject variance can be explicitly modeled
and minimized in the training stage to enhance the generalization ability of the
approach.

The main contributions of this work are as follows:

– We propose a novel end-to-end deep learning framework for HAR to deal with
the bias and deviations in the representations due to inaccurate learning and
subject-variances.

– We design a dual-stream CNN network to jointly capture the spatial and
temporal correlations in the multivariate sensory data, which can achieve
more accurate representation and decrease the bias.
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– We introduce a distance-based classification module to classify the segments
by comparing their similarity to the learned prototypes of each class in the
representation space, which is less susceptible to representation bias. We also
introduce a cross-subject training strategy to train the module for minimizing
the deviation caused by subject-variance.

– We conduct extensive experiments on three large-scale datasets under a strict
subject-independent setting and demonstrate the superior performance of our
model in new subjects. Our method consistently outperforms state-of-the-art
methods by at least 3%.

2 Related Works

The recent work in HAR has moved towards designing deep learning models for
more accurate recognition, given the exceptional representation ability of deep
learning techniques. Most deep learning-based HAR methods focus on capturing
the temporal correlations in the sensory streams. Jian Bo et al. [16] tackle the
problem with convolutional neural networks, in which the convolution and pool-
ing filters are designed along the temporal dimensions to process the readings of
all sensors. Their work can capture long-term temporal correlation by stacking
multiple CNN layers. Ordóñez et al. [12] further extend this model to Deep-
ConvLSTM by integrating LSTM after CNN layers. The proposed DeepCon-
vLSTM framework contains four CNN layers and two LSTM layers to capture
the short-term and long-term temporal correlations, separately. One drawback
of the DeepConvLSTM is that it potentially assumes the signals in all time steps
are relevant and contribute equally to the target activity, which may not true.
Murahari et al. [11] propose to solve the problem by integrating the temporal
attention module to DeepConvLSTM. The attention module aligns the output
vector at the last time step with other vectors at earlier steps to learn a rela-
tive importance score for each previous time step. Different from these methods,
Guan et al. [8] propose to achieve more robust data representation ability with
the ensemble method. They employ the Epoch-wise Bagging scheme in the train-
ing procedure and select multiple LSTMs in different training epochs as basic
learners to form a powerful model. However, these methods neglect the spatial
correlations among the different sensors, which cannot represent the sensory data
precisely. Besides, they directly classify the learned representations to activity
type with basic NN-based classifier, which could lead to misguided result due to
the learning deviation and subject variances in the representations.

3 Problem Definition

The typical scenario for sensor-based HAR involves multiple devices attached
to different parts of the human body. Each device carries multiples sensors,
e.g., an inertial measurement unit (IMU) typically contains nine sensors: 3-
axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. In this work,
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we consider each 3-axis device as three sensors for capturing spatial correla-
tions, e.g., 3-axis accelerometer contains x-accelerometer, y-accelerometer, and
z-accelerometer. Thus, an IMU with 3-axis accelerometer, 3-axis gyroscope, and
3-axis magnetometer contains nine sensors. Let M be the total number of sensors
embedded in multiple body-worn devices, and si (1 ≤ i ≤ M) be the reading
from the ith sensor. Then, at each time point, the sensors, together, generate a
vector of readings: s = [s1, s2, ... , sM ]T . Thus, a segment with the sliding window
size T can be represented by Seg = [s1, s2, ... , sT ].

Let there be N potential activities to be recognized, C = {c1, c2, ... , cN},
HAR aims to learn a function, F(Seg, •), to infer the correct activity label for
the given segment, where • represents all learnable parameters.

4 Methodology

In this section, we elaborate our proposed methods for more accurate HAR,
which contains three components: a dual-stream representation module to learn
more accurate representations of the input segment, a distance-based classifica-
tion module to recognize human activities, and a cross-subject training strategy
to minimizing the subject-divergence.

4.1 Dual-Stream Representation Module

We first introduce the CNN-based dual-stream representation module (DARM)
(shown in Fig. 1), which contains a spatial CNN network and a temporal CNN
network. The two CNN networks learn two sub-representations capturing the
spatial correlations and temporal correlations within the input segment, respec-
tively, which can be regarded as an image of M ×T (as denoted in Sect. 3). Then
the two sub-representations are merged by summing to get the final joint repre-
sentation of the input segment. Compared to the previous data representation
models, the dual-stream representation module is more accurate by encapsulat-
ing both spatial and temporal correlations jointly. Besides, it is more light-weight
and easy-to-train compared to LSTM-based approaches [8,11,12].

As shown in Fig. 1, the overall architectures of the temporal CNN and spa-
tial CNN are the same. Both of them contain three consecutive CNN blocks to
extract prominent patterns in the segment from different perspectives. The dif-
ference between the temporal CNN and spatial CNN mainly lays in the size of
CNN kernels. More specifically, the temporal CNN applies the CNN kernels with
size 1 × kl

T in the lth T-CNN block, which operate the data along the time axis to
capture the temporal correlations between different time points. As a contrast,
the spatial CNN applies the CNN kernels with size kl

S × kl
S in the lth S-CNN

block to capture the spatial correlations between different sensor series. Besides
the kernel size, either of the T-CNN block and the S-CNN block comprises
a convolutional layer with a rectified linear units (ReLu) activation function,
a max pooling layer, and a batch-normalization layer. The convolutional layer
performs the main function of pattern extraction, which employs several kernels
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Fig. 1. The proposed dual-stream data representation module based on CNN networks

of the same shape to filter the input data X and extract meaningful patterns.
We calculate a convolution layer with the ReLu activation function as follows:

X l+1
j = σ(

i=F l∑

i=1

Wi,j × X l
i + blj) (1)

where X l
i is the ith channel of the input for the lth convolutional layer, F l

is the feature map (channel) numbers, Wi,j is the jth kernel, blj is the bias
and σ(·) is the ReLu function defined as: σ(X l+1) = max(0,X l+1). Then, the
max pooling layer is employed as the sampling method to down-sampling the
extracted representations while keeping the most protrusive patterns. We further
integrate the batch-normalization layer to the CNN block to achieve faster and
more stable training. The batch-normalization layer normalizes the layer’s input
with batch mean and batch variance to force the input of every layer to have
approximately the same distribution [10].

4.2 Distance-Based Classification Module

Based on the representation module, we then propose to learn to recognition
human activities by distance based classification module (DCAM) (Fig. 2), which
is based on the Prototypical Networks [14]. Different from the general HAR pro-
cess, which first learns a representation for the input segment and then maps
the representation to the corresponding activity with classifiers, DCAM first
learns a representation for the input segment and a latent prototype representa-
tion (a vector) for each class together. The prototypes are used to represent the
embedding of each class. Then, DCAM recognizes the segment representation by
comparing its similarity with the prototypes, which follows the same idea with
the nearest neighbour methods. For clarity, we denote the data used to learning
the prototypes as the support set and the segments to be recognized as queries
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(see Fig. 2). In the training period, both support set and queries come from the
training dataset. In the testing phase, we extract the support set from the train-
ing dataset and the queries from the testing dataset to avoid the information
leakage.

Fig. 2. The proposed distanced-based classification module

To learn the prototypes, we randomly select Ns samples from each class
to form the support set for a batch of queries. Then, these support samples
are fed into our dual-stream representation module to get their representations.
The prototype of each class is the mean vector of the learned representations
in the support set belonging to the corresponding class. Take f(·) denote the
transformation of representation module, Xj

i as the ith support sample in the
jth class, then the prototype of class j can be calculated as:

Cj =
1

Ns

Ns∑

i=1

f(Xj
i ) (2)

Similarly, the query instances are also mapped to the embedding space by
our representation module. DCAM can then learn a distribution of a query x
over classes based on the softmax of its distances to the learned prototypes
{C1, C2, ... , CN} in the representation space [14]:

pf (y = cj |x) =
exp(−d(f(x), Cj)∑N

j′=1 exp(−d(f(x), Cj′))
(3)

where d(·, ·) is a distance function to measure the similarity of two given vectors.
There are multiple widely used choices for calculating distance in the literature,
such as the Cosine distance, Mahalanobis distance, Euclidean distance and so on.
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In this work, we employ the squared Euclidean distance as the distance function
as it is proved to be more effective than others in [14].

The whole model can be easily trained in an end-to-end manner by minimiz-
ing the negative log-probability −log(pf (y = cj |x)) according to the true label
cj of the query segment x via back-propagation strategy. Thus, We define the
loss function as follows:

Lx = d(f(x), Cj) + log(
N∑

j′=1

exp(−d(f(x), Cj′))) (4)

4.3 Cross-Subject Training

We further propose the cross-subject training strategy to alleviate the influence
of subject variances to the representations. Instead of random sampling support
samples and queries from the training set, our cross-subject training strategy
intentionally select queries from one subject and support set from other subjects
for each batch during the training process. Thus, we can decrease the divergence
between different subjects in the representation space through training itera-
tion by minimizing the distance between queries representations and prototypes,
which are learned from different subjects separately. Besides, the cross-subject
training strategy also harmonizes the training stage and testing stage under the
subject-independent setting, where the support set from the training dataset
and queries from the testing dataset come from different subject inherently.
Algorithm 1 describes the method’s overall training procedure.

Algorithm 1. Training and Optimization
Require: the training dataset L = {(X ,Y ,U )} (U is the subjects set in training),

number of samples in queries Nq, number of samples in the support set for each
class Ns, maximum training iteration Iter.

1: random initialize the network parameters
2: for iter = 0; iter < Iter do
3: randomly choose query subjects ui from U
4: load Nq query samples from subject ui as Q
5: load Ns support samples for each class from U − ui as support set S
6: calculate representations of the queries and support samples with DARM
7: for ci in {c1, c2, ..., cn} do
8: calculate prototype Ci of class ci according to Equation 2 with represented S
9: end for

10: Init loss L = 0
11: for x, y in represented Q do
12: calculate loss Lx with Equation 4
13: update loss with L = L + Lx

14: end for
15: Back-propagate L and update the network parameters
16: end for
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Table 1. Statistics of datasets (# denotes the “number”).

Dataset Subject# Activity# Frequency Window Devices# Sensors# Sample#

MHEALTH 10 12 50Hz 20 (0.4 s) 3 23 34 097

PAMAP2 8 12 100Hz 20 (0.2 s) 3 36 191 309

UCIDSADS 8 19 25Hz 20 (0.8 s) 5 45 113 848

5 Experiments

5.1 Datasets

While several datasets are publicly available for HAR, many of them are limited
in the scale of subjects (e.g. the Skoda dataset [15] only has one subject) or
activities (e.g. the UCI dataset [1] only contains six activities). To evaluate the
performance of our method in classifying activities and dealing with subject
divergence more comprehensively, we select the following three datasets with
relatively more activities and subjects:

MHEALTH Dataset. This dataset [3] contains body motion and vital signs
for ten volunteers of diverse profiles. Each subject performed 12 activities in an
out-of-lab environment with no constraints.

PAMAP2 Dataset. The PAMAP2 dataset [13] was designed to benchmark
daily physical activities. It contains data collected from nine subjects related to
18 daily activities such as vacuum cleaning, ironing, and rope jumping.

UCIDSADS Dataset. The UCIDSADS dataset [4] was specially designed for
daily and sports activities. It comprises motion sensor data of 19 sports activities
such as walking on a treadmill and exercising on a stepper. Each activity was
performed by eight subjects for 5 min without constraints.

Data Pre-processing. For the MHEALTH and UCIDSADS dataset, we use all
the data from all subjects for experiments. For the PAMAP2 dataset, we remove
six activities (watching TV, computer work, car driving, folding laundry, house
cleaning, and playing soccer) as they are only executed by one subject. As a
result, 12 activities from eight subjects are kept for our experiments in PAMAP2.
Only the basic data segmentation and normalization methods are applied to the
dataset. More specially, we first divide the raw sensory data streams into small
segments with a fixed-sized sling window and an overlap of 50% for all the three
dataset. Each window contains 20 time points, resulting the window lengths for
MHEALTH, PAMAP2, and UCIDSADS are 0.4 s, 0.2 s, and 0.8 s, respectively.
Then, we normalize the segments with the standard normalization methods.
Table 1 gives the statistics of the three datasets.

5.2 Evaluation Settings

The main parameters in our evaluation includes network parameters and training
parameters. For the temporal CNN part, we use 128 kernels in all three layers
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shaped (1 × 5) → (1 × 5) → (1 × 2) respectively. For the spatial CNN part,
we user 128 kernels in all three layers shaped (6 × 5) → (6 × 5) → (2 × 2),
(5 × 5) → (5 × 5) → (5 × 2), and (6 × 5) → (7 × 5) → (5 × 2) for MHEALTH,
PAMAP2 and UCIDSADS respectively. In learning the queries representations,
we set the Batch size (Nq) to 240 to accelerate the training speed and the length
of the learned segment representations is 64. For learning the prototypes, we
sample five samples from each class (Ns) as the support set in each iteration. We
initialize the network parameters with Xavier Normal initialization and optimize
them by Adam optimizer at the learning rate of 0.0005 for all three datasets.

To thoroughly evaluate the performance of our proposed model, we assess it
iteratively with LOSO protocol on every subject separately. In each experiment,
we train the model from scratch and test the model with one subject’s data.
Finally, we will get subjectnumber results for each model. Considering the space
limitation, we mainly report the mean result, worst result, and best result of all
subjects as mean[worst, best], which reflects both the overall performance and
the generalization ability of a model. Besides, the weighted Precision (Pw) and
weighted Fscore (Fw) are used as the performance metrics for comparison.

5.3 Overall Comparison

To verify the overall performance of the proposed model, we compare our method
with the following baseline and SOTAs: 1) the support vector machine (SVM),
2) MC-CNN [16], 3) b-LSTM-S [9], 4) ConvLSTM [12], 5) Ensem-LSTM [8], 6)
AttConvLSTM [11], 7) Multi-Agent [5]. These SOTAs vary from CNN-based,
LSTM-based to CNN-LSTM hybrid model and also include ensemble and atten-
tion methods. We replicated each method with the same settings as introduced
in the original papers, except for the data pre-processing steps, where we use the
same window size and overlap as ours. We also evaluate them with the LOSO
evaluation protocol iteratively to achieve a fair and thorough comparison.

Table 2 shows the experimental results, from which we can observe the fol-
lowing points: 1) all the SOTAs deep learning models perform better than SVM,
showing the superior ability of deep learning models in extracting complex non-
linear temporal patterns in the sensory streams. 2) the MC-CNN model outper-
forms LSTM-based methods in the MHEALTH dataset and PAMAP2 dataset,
but fails in the UCIDSADS dataset. Recall the window length of each dataset,
we interpret the results as the admirable ability of temporal CNN in captur-
ing accurate temporal correlations with only a short time period of data. As
a contrast, LSTM-based methods need data from longer period of time. 3) the
complex reinforcement learning-based Multi-agent model does not work very
well as reported in [5], where only six basic activities are selected for experi-
ments. The result indicates the difficulty of selecting important modalities for
numerous and more complex activities. 4) Last but not the least, our method
consistently beats all the comparison models on three datasets with a signif-
icant margin. The mean recognition Fscore achieves 4.52%, 4.78%, and 3.17%
absolute improvements over the best SOTA in the MHEALTH, PAMAP2 and
UCIDSADS datasets, respectively. The comparison demonstrates the effective-
ness of our proposed model.
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Table 2. Overall comparison with SOTAs on three datasets. Each cell consists of
the mean score of a method in one evaluation metric, followed by the corresponding
minimum and maximum scores in brackets. The best performance values are in bold.

MHEALTH Method SVM MC-CNN Bi-LSTM-S ConvLSTM

Pw 79.53

[65.29, 94.47]

93.51

[84.11, 98.18]

87.16

[76.51, 95.41]

89.37

[81.48, 99.21]

Fw 76.73

[59.33, 92.80]

92.17

[85.34, 97.98]

87.90

[79.01, 94.85]

89.89

[81.49, 99.22]

Method Ensem LSTM AttConvLSTM Multi-Agent DHARER

Pw 84.81

[74.57, 98.59]

89.96

[78.30, 98.21]

91.87

[80.51, 98.06]

97.05

[94.31, 99.59]

Fw 84.64

[70.32, 98.55]

90.75

[80.36, 98.17]

91.20

[81.12, 98.01]

96.69

[93.55, 99.58]

PAMAP2 Method SVM MC-CNN Bi-LSTM-S ConvLSTM

Pw 70.77

[41.69, 88.76]

80.64

[57.65, 93.82]

71.12

[29.01, 92.21]

73.04

[36.42, 92.95]

Fw 68.11

[36.72, 86.68]

78.05

[52.09, 93.37]

68.65

[32.34, 91.94]

72.36

[41.67, 92.65]

Method Ensem LSTM AttConvLSTM Multi-Agent DHARER

Pw 73.90

[36.88, 90.93]

73.92

[50.40, 85.02]

73.35

[36.22, 89.88]

83.32

[60.25, 94.38]

Fw 71.98

[42.09, 88.84]

71.83

[44.79, 86.58]

71.39

[31.70, 87.14]

82.83

[56.09, 94.32]

UCIDSADS Method SVM MC-CNN Bi-LSTM-S ConvLSTM

Pw 70.60

[63.19, 78.84]

87.18

[64.01, 95.42]

89.72

[74.29, 95.25]

89.58

[79.88, 95.27]

Fw 67.74

[60.25, 78.33]

85.52

[66.57, 94.53]

87.73

[75.36, 93.28]

88.42

[77.95, 94.08]

Method Ensem LSTM AttConvLSTM Multi-Agent DHARER

Pw 84.06

[72.65, 93.51]

88.24

[74.57, 94.78]

87.45

[79.48, 92.91]

93.72

[89.71, 96.59]

Fw 81.09

[71.48, 90.19]

86.75

[74.64, 94.22]

84.26

[73.03, 90.70]

91.59

[82.77, 96.22]

5.4 Ablation and Case Study

We further conduct an ablation study to evaluate the performance of the basic
modules in our method. Figure 3 gives the weighted Fscore of the spatial CNN
module with two-layer MLP as classifier (S-CNN), temporal CNN module with
two-layer MLP as classifier(T-CNN), our dual-stream representation module
with two-layer MLP as classifier (Dual-CNN), and our dual-stream represen-
tation module with distance-based classification module (DHARER) on three
datasets. We can observe that the dual-CNN is better than both S-CNN and
T-CNN, indicating that ensembling T-CNN and S-CNN to capture both spatial
and temporal correlations is useful. Besides, our DHARER further improves the
dual-CNN significantly, which demonstrates the effectiveness of our distance-
based classification module and the cross-subject training strategy.
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Fig. 3. Ablation study results Fig. 4. Results of all subjects on
UCIDSADS dataset

Considering the space limitation, we only shows the case study results on
the UCIDSADS dataset in Fig. 4 and Fig. 5, which present the testing weighted
Fscore for each subject and the confusion matrix of subject 5 (achieve best per-
formance among UCIDSADS) and subject 8 (achieve worst performance). As we
can see, the results of different subjects and different activities vary seriously.
Our method can achieve impressive performance on some subjects and most of
the activities. But there still exist some hard-to-distinguish subjects and hard-
to-distinguish activities (e.g. activity 7 which represents standing in an elevator
still). In our future work, we will focus on improving the model’s performance
on these hard-to-distinguish subjects/activities.

(a) (b)

Fig. 5. Confusion Matrix of subject 5 (a) and subject 8 (b) from UCIDSADS dataset

6 Conclusion

In this work, we propose DHARER – a novel human activity recognition scheme
based on similarity comparison and ensembled convolutional neural networks to
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deal with the representation bias and deviation problem. We first design a dual-
stream networks based on CNN to represent the sensory streams more accurately
by integrating both spatial and temporal correlations. Then, a distance-based
classification model is introduced, which classify the segments by comparing
their similarity to the learned prototypes of each class in the representation
space. Comparing to the NN-based classification module, the distance-based
classification model is less susceptible to the bias in the segment representa-
tions. Moreover, we propose the cross-subject training strategy to deal with the
deviations caused by subject-variance. Extensive experiments on three datasets
demonstrate the superior of our proposed method over several strong SOTAs.
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