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Abstract. In recent years, deep reinforcement learning (DRL) has
achieved tremendous success in high-dimensional and large-scale space
control and sequential decision-making tasks. However, the current
model-free DRL methods suffer from low sample efficiency, which is a
bottleneck that limits their performance. To alleviate this problem, some
researchers used the generative model for modeling the environment.
But the generative model may become inaccurate or even collapse if the
state has not been sufficiently explored. In this paper, we introduce a
model called Curiosity-driven Variational Autoencoder (CVAE), which
combines variational autoencoder and curiosity-driven exploration. Dur-
ing the training process, the CVAE model can improve sample effi-
ciency while curiosity-driven exploration can make sufficient exploration
in a complex environment. Then, a CVAE-based algorithm is proposed,
namely DQN-CVAE, that scales CVAE to higher dimensional environ-
ments. Finally, the performance of our algorithm is evaluated through
several Atari 2600 games, and the experimental results show that the
DQN-CVAE achieves better performance in terms of average reward per
episode on these games.

Keywords: Reinforcement learning · Deep Q learning · Exploration ·
Variational autoencoder

1 Introduction

Reinforcement learning (RL) [17] is a popular area of current research across
various fields. The goal of the RL algorithm is achieving the target task by
maximizing the expected rewards provided by the environment. Recently, Mnih
et al. proposed Deep Q learning (DQN) [3,13,14], which combines deep learning
(DL) [12] and RL, achieving a remarkable result in classic games such as Atari
2600 games.

Although DQN and its extensions have tremendous success in Atari 2600
environment, at the beginning of the training process, the current DQN algo-
rithms require millions of training samples based on the random policy before
any optimal policy is trained, and insufficient sample diversity will result in the
slow training speed. However, in many scenarios, the training sample may be dif-
ficult or time-consuming to obtain. Thus, some researchers attempt to represent
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the actual environment by using a generative model [1,6,8] to improve sample
efficiency. When the generative model is sufficiently trained, the DRL algorithm
can be trained without interacts with the actual environment. In [1,2,6,8], it is
confirmed that the agent can learn the optimal policy only use generate train-
ing samples. However, these generative models may become inaccurate and even
collapse where the state-action pair insufficient explored [1,2,6].

Moreover, inadequate exploration of the environment may also result in slow
learning speed. In traditional model-free DRL algorithms, they rely on simple
heuristics exploration strategies such as ε-greedy. However, these exploration
strategies are often trapped in local minima of the state space, which leads to
the state space may be partially observed in the high-dimensional environment.
Curiosity-driven exploration uses an extra reward signal that inspired the agent
to explore the state that has not been sufficiently explored before. It tends to
seek out the unexplored regions more efficiently in the same amount of time.

In this paper, we propose a new algorithm called Curiosity-driven Variational
Autoencoder (CVAE), which uses a CVAE to model the environment in latent
space to improve sample efficacy while curiosity-driven exploration to make a suf-
ficient exploration. Then we apply the CVAE to DQN and its variants denoted as
DQN-CVAE. In addition, we provide experimental results on several Atari 2600
games. Experimental results show that the DQN-CVAE algorithm can improve
the exploration and performance of the agent.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 elaborates on the DQN and VAE algorithms. Section 4 offers
an overview of our approach, then describes DQN-CVAE algorithm in detail.
Section 5 provides our experimental setup and results. Section 6 concludes.

2 Related Work

Recently, some researchers attempt to model the environment by using a genera-
tive model to improve sample efficiency. The notion of modeling the environment
in latent space may trace back to [8], which proposed DARLA, an architecture for
modeling the environment with β-Variational Autoencoder, and have applied the
latent features for transfer learning across multiple environments. In [6], Ha et
al. proposed World Model, an architecture for modeling the environment using a
VAE model and a recurrent neural network (RNN) model, which shows that the
agent can learn the optimal policy only use generate training samples. Similarly,
Anderson et al. [1] proposed Dreaming Variational Autoencoder, an architecture
for modeling the environment using VAE and RNN, which uses the real trajec-
tories from the actual environment to imitate the behavior of the actual envi-
ronment. Conversely, Anderson et al. [2] found that in high-dimensional tasks,
simple heuristics exploration are often trapped in local minima of the state space,
which may cause the generative model to become inaccurate or even collapse.

Previous research on exploration technique may solve the problem that
the agent achieves a sufficient exploration in the high-dimensional task. Many
researchers focus on using the intrinsic reward to drive the agent to make an
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efficient exploration. Kulkarni et al. [11] suggested a hierarchical DRL model in
which the agent receives the extrinsic reward and the intrinsic reward at different
temporal scales. Stadie et al. [16] introduced incentivizing exploration, which use
extra reward signal to encourage the agent to visit the state-action pairs that
it has not sufficiently explored. Pathak et al. [5,15] proposed an exploration
method called curiosity-driven exploration method. The main idea of curiosity-
driven exploration is to attempt to use the intrinsic reward to drive an agent
to explore trajectories that it has not visited frequently. Hoothooft et al. [9]
suggested a curiosity-driven based method called Variational Information Max-
imizing Exploration, which uses the information gain as an intrinsic reward and
achieves a better performance than heuristic exploration methods across various
continuous control tasks.

3 Background

3.1 Deep Q Network

DQN combines Q learning and DL, which use the experience replay mechanism
and target network mechanism are used to alleviate learning instability [13,14].
The experience replay mechanism is sampling a fixed number of training samples
from experience replay pool D uniformly at random. At each discrete time step
t, agent receives a state st, and selects an action at based on ε-greedy policy with
respect to the action values. As a feedback, agent gets a reward rt and receives
next state st+1, then (st, at, rt, st+1) is stored as a sequence in experience replay
pool D, and a fixed number of samples are taken from the training process as a
network input.

DQN uses two independent deep networks, the current value network
Q(s, a; θ) with parameters θ and the target value network Q(s, a; θ−) with param-
eters θ−, where DQN learns the parameters of the network Q(s, a; θ) online, and
the parameters θ− is periodically copied by θ. The loss function is determined
by the mean square error of the target value function and the current value
function. The corresponding formula is shown in Eq. (1):

L(θ) = Es,a,r,s′ [(r + γ maxa′Q(s′, a′; θ−) − Q(s, a; θ))2] (1)

In order to solve the minimized loss function, the parameter θ is derived in
Eq. (1). The gradient update is shown in Eq. (2):

∇θL(θ) = Es,a,r,s′ [(r + γ maxa′Q(s′, a′; θ−) − Q(s, a; θ))2]∇θQ(s, a; θ) (2)

3.2 Variational Autoencoder

VAE is a generative model capable of learning unsupervised latent representa-
tions of complex high-dimensional data [10]. The VAE model consists of two
parts: encoder qφ(z|x) and decoder pθ(x|z). The encoder consumes the sample
x, yielding the input in latent space z, then z is fed into decoder to predict sam-
ple x. The key idea of the VAE is to learn the marginal likelihood of a sample
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x from a distribution parametrized by generative factors z. Thus, qφ(z|x) is the
variational approximation for the true posterior pθ(z|x). The marginal likelihood
of a data point x can take following form:

log pθ(x) = L(x; θ, φ) + DKL(qφ(z|x)||pθ(z|x)) (3)

Since the true data likelihood is usually intractable, instead, the VAE opti-
mizes an evidence lower bound (ELBO) which is a valid lower bound of the true
data log likelihood, denoted as:

L(x; θ, φ) = Eqφ
[log pθ(x|z)] − DKL(qφ(z|x)||p(z)) (4)

L(x; θ, φ) consists of two terms: the first term can be considered as reconstruction
loss, and the second term is approximated posterior qφ(z|x) from prior p(z) via
KL-divergence. In practice, qφ and pθ are implemented via deep neural networks,
and prior p(z) usually sets to follow Gaussian distribution N(0, 1).

4 Curiosity-Driven Variational Autoencoder

We propose the Curiosity-driven Variational Autoencoder (CVAE), which com-
bines curiosity-driven exploration with the VAE model. The CVAE model uses
the prediction error as an intrinsic reward to drive the agent to make a sufficient
exploration, which can improve the quality of the generate training samples.

The DQN-CVAE model is consists of two components: the DQN reinforce-
ment learning method and the CVAE model. The structure of DQN-CVAE is
presented in Fig. 1(a). Since we use a CVAE model to generate training samples,
an additional experience replay pool Dg is used to store up the training samples
generated by the CVAE model.
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Fig. 1. Illustration of the DQN-CVAE model.

The structure of CVAE model is shown in Fig. 1(b). During the training
process, the model consumes state st, yielding the input encoded in latent space
ht = [μ, σ], which represents a concatenated form of the mean μ and the standard
deviation σ, then the ht is reparametrized into a posterior variable zt. Then inject
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the action at to the zt, latent parameter zt element-wise addition with at is fed
into the decoder network to predict the next state s′

t+1. The predict next state
s′

t+1 is compared with the real state st+1 given by the environment after the
action at is taken.

To improve the generate sample quality. At time step t we consider a training
sample xt = (st, at, rt, st+1) from D. We feed the state st and action at into
encoder as an input, and predict the reward rt and next state st+1. In this case,
we divided the training sample xt into two pairs as follows:

xt = [(st, at), (st+1, rt)] (5)

where (st, at) represents the current state-action pair, and (st+1, rt) represents
the next state pair, which obtains from the agent interacts with the environment.
Then, we focused on (st+1, rt), we use the KL divergence as prediction error as
follows:

et = DKL((st+1, rt)||(s′
t+1, r

′
t)) (6)

Moreover, we use curiosity-driven exploration to improve the efficiency of
exploration. An intrinsic reward associated with et drives the agent to make a
sufficient exploration, the reward function is modified as follows:

r′
t = r′

t + βet (7)

where β is the weighted variables.
According to Eq. (4), the loss function of the VAE model consists of two parts:

reconstruction loss and latent space loss. Thus, different from the Eq. (4), we use
the prediction error et as reconstruction error, the loss function is computed by
the following formula:

Lcvae = et − DKL(qφ(zt|st)||N(0, 1)) (8)

The DQN-CVAE algorithm is presented in Algorithm (1). During the learn-
ing process, the agent collects the training samples (st, at, rt, st+1) from many
episode, and accumulates it as a experience replay pool D. The VAE model is
trained using the real training sample in D and generates a new training sample
(st, at, r

′
t, s

′
t+1). At the same time, the prediction error et is used to predict the

intrinsic reward. Then, add the generate sample to Dg, which is an experience
replay pool follow the First-in First-out principle to store generate training sam-
ples. Next, turn to the DQN part, a fixed number of samples from D and Dg

are selected as a minibatch according to the proportion factor g and provided to
the agent for training the action-value function and learning the optimal strat-
egy. Besides, during the training process, the VAE model continues to generate
training samples and add them to Dg to speed up the learning speed. Although
the CVAE model increases the size of the parameter of the neural network, the
CVAE model is in parallel with the agent, which does not significantly increase
the time complexity of the algorithm, but speed up the learning speed.
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Algorithm 1. DQN-CVAE
Initialize replay memory D with capacity N , generate replay memory Dg with capac-
ity Ng, minibatch size M , proportion factor g
Initialize the action-value function Q with random weight θ
Initialize the target action-value function Q with weight θ−

for episode=1, I do
Observe state s0
for t=1,T do

Choose an action at based on ε-greedy policy
Observe transition(st, at, rt, st+1)
Store transition(st, at, rt, st+1) in D
/∗CVAE part∗/
Sample random minibatch of transition (st, at, rt, st+1) from D
Generate transition (st, at, r

′
t, s

′
t+1)

Compute the prediction error et
Store transition (st, at, r

′
t + βet, s

′
t+1) in Dg

/∗DQN part∗/
Random sample M × (1 − g) of transition (sj , aj , rj , sj+1) from D
Random sample M × g of transition (sj , aj , rj , sj+1) from Dg

Set

yj =

{
rj if episode terminates at step j+1

rj + γmaxa′Q(sj+1, a
′; θ−) otherwise

Perform a gradient descent step on (y −Q(s, a; θ))2 with respect to the network
parameters θ
Every C step update θ− = θ

end for
end for

5 Experiments

5.1 Research Questions

In these experiments, there are several research questions (RQ) that we consider.
For starters, we wish to know whether our algorithm leads to improved DQN.
Then, we also want to know whether our algorithm can apply in other DQN
extensions. Finally, we investigate how the proportion factor of g affects the
performance of our algorithm.

RQ1: Does the DQN-CVAE improve the performance of the DQN?
RQ2: Does the DQN-CVAE improve the performance of other DQN variants?
RQ3: How does the proportion factor g affect the performance of the DQN-

CVAE?
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5.2 Experimental Environment and Setup

Experimental Environment. We use the Atari 2600 game environment in
the OpenAI gym [4] as the experimental environment to evaluate the perfor-
mance of our proposed algorithm. OpenAI gym is an open-source toolkit that
provides a wide variety of Atari 2600 game interfaces. Five games were used in
our experiments. A brief introduction to these games is presented in Table 1.

Table 1. A brief introduction of some Atari games

Game Action
number

Introduction

Alien 18 Agent avoids enmenies and reach the target point

BeamRider 9 Agent avoids bullets and hits moving enemies

Kangroo 18 Agent climbs through stairs and avoids obstacles

Seaquest 18 Agent evades obstacles and attacks enemies under water

SpaceInvaders 6 Agent evades and attacks the enemies

Experimental Setup. In order to compare the performance of different algo-
rithms, all algorithms use the same network architecture and hyperparameters
settings. The main hyperparameter settings are shown in Table 2.

Table 2. Main hyperparameters and their values

Hyperparameter Value

Minibatch size 32

Discount factor 0.99

Learning rate 2.5 × 10−4

Initial exploration factor 0.96

Final exploration factor 0.1

Replay start size 500000

Target network update frequency 1 × 104

Experience replay pool size 1 × 106

Generate experience replay pool size 1 × 105

RMSprop momentum coefficient 0.95

Frame skip rate 4

The DQN-CVAE algorithm consists of two parts: the DQN model and the
CVAE model. The network architecture used in DQN and DDQN is the same
as the study of Mnih et al. [14] and Hasselt et al. [7]. There are 3 convolutional
layers, 2 full-connected layers and 3 deconvolutional layers in CVAE model. The
structure used in CVAE is shown in Fig. 1(b).
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Evaluation Criteria And Comparison Algorithms. In the Atari environ-
ment, we use the average rewards per episode as the evaluation criteria and uses
200 epoch as the training periods, in which 50,000 steps were used to train the
network parameters, a total of 100,000,000 steps are trained.

In these experiments, we compare the training performance of two original
network (DQN and DDQN) and three networks with DQN-CVAE(DQN-CVAE,
DQN-VAE, CDQN), we denote these algorithms as follows:

(1) DQN and DDQN are deep Q learning [13,14] and double deep Q learning
[7], which are benchmark comparison algorithms;

(2) CDQN and CDDQN are DQN or DDQN based on curiosity-driven explo-
ration [5,15];

(3) DQN-VAE and DDQN-VAE add a VAE structure to DQN or DDQN, which
only uses the VAE model to alleviate insufficient sample diversity;

(4) DQN-CVAE and DDQN-CVAE are our proposed algorithms that combine
(2) and (3). It was different from (3) in that we use curiosity-driven explo-
ration to improve the efficiency of exploration.

5.3 Experimental Result

RQ1 asks whether the DQN-CVAE algorithm can improve the performance of
DQN. To answer this question, we first compared the performance of DQN,
CDQN, DQN-VAE, and DQN-CVAE during each epoch of training. The results
are presented in Fig. 2. The x-axis represents the training epoch, and the y-axis
represents the average rewards per episode.

As expected, it can be observed that the average rewards per episode
of DQN-CVAE are obviously higher than other algorithms. For models with
curiosity-driven exploration (DQN-CVAE, CDQN), the performance is signif-
icantly improved than DQN. It is indicated that insufficient exploration has
existed in some Atari games, which confirms the contribution of the curiosity-
driven exploration. For model with VAE (DQN-CVAE, DQN-VAE), we have
found that the DQN-CVAE has a better performance than DQN-VAE. It is
illustrated that CVAE improves the sample efficiency can improve the gener-
ative model performance. However, in some scenarios, it can be seen that the
performance of DQN-VAE has dropped below the DQN. It is not surprising, as
DQN-VAE would be inaccurate if the state space is sufficiently explored.

To confirm that DQN-CVAE can perform well after training, we compared
the performance of DQN, CDQN, DQN-VAE, and DQN-CVAE on five games
after training. For each game, the training completed model will be tested 100
times. Each test will receive a score that represents the average reward per
episode. The result in terms of the average reward per episode is reported in
Table 3. The result demonstrated that the performance of DQN-CVAE is more
effective than DQN in the testing process. It is indicated that DQN-CVAE can
improve the performance of DQN.
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Fig. 2. Comparisons of DQN, CDQN, DQN-VAE and DQN-CVAE

RQ2 asks whether the DQN-CVAE algorithm can improve the performance
of other DQN variants. In these experiments, we keep all these settings as in
RQ1, but adopt DDQN [7] instead of DQN as the original network, and com-
pares the performance of DDQN, CDDQN, DDQN-VAE and DDQN-CVAE on 5
Atari 2600 games. Figure 3 shows the performance of each algorithm. The x-axis
represents the training epoch, and the y-axis represents the average reward per
episode.

As shown in Fig. 3, similar to the result of Fig. 2, the performance of the
DDQN-CVAE is better than other algorithms. So, we can confirm that DQN-
CVAE can perform well in the training process when it applies to DQN and
its extensions. Then, we also compared the performance of DDQN, CDDQN,
DDQN-VAE, and DDQN-CVAE on 5 Atari 2600 games after training. Table 3
lists the results of these four algorithms for DDQN.

Overall, these results indicated that, in the Atari environment, DQN-CVAE
outperforms than DQN in the training and testing process. It is indicated that
DQN-CVAE uses the CVAE to model the environment that can improve the
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performance of the DQN. Besides, DQN-CVAE can successfully apply to other
DQN variants, which demonstrates that the DQN-CVAE is a simple extension
that can be easily integrated with other DQN variants.

Table 3. Average score after training

Game DQN DQN-VAE CDQN DQN-CVAE

DQN DDQN DQN DDQN DQN DDQN DQN DDQN

Alien 896 965 945 1104 1052 1142 1087 1164

BeamRider 1435 1642 1726 1942 1652 1820 1955 1974

Kangroo 2744 2582 2862 2647 2665 2674 3353 3287

Seaquest 1215 1285 1326 1426 1462 1508 1527 1683

SpaceInvaders 457 559 463 482 342 361 563 575
∗ the best results are highlighted in bold.
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Fig. 3. Comparisons of DDQN, CDDQN, DDQN-VAE and DDQN-CVAE



774 G.-J. Han et al.

RQ3 asks how the proportion factor g affects the performance of the DQN-
CVAE algorithm. We investigate the performance of DQN-CVAE with different
values of g, which is g = 0, 0.25, 0.5, 0.75, 1, respectively. Figure 4 presents the
result of DQN-CVAE with various g. It can be seen that the performance of
DQN-CVAE becomes better with the increasing of the value of g. However,
we also can observe that, in some scenarios like Fig. 4(b), the average reward
per episode has a large fluctuation while g is greater than 0.75. So, in these
experiments, it is recommended that g = 0.5.
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Fig. 4. Comparisons of various g value for Atari games

After conducting three sets of experiments, we confirm that DQN-CVAE
can achieve better performance than DQN in the Atari environment during
the training and testing process. Besides, we confirm that CVAE model can be
easily applied in other model-free DRL algorithms. Moreover, the performance
of DQN-CVAE is affected by the value of the proportion factor of g. With the
increasing value of g, the performance of DQN-CVAE become better in general.

6 Conclusion

In this paper, we introduce the CVAE algorithm, which combines the VAE model
and curiosity-driven exploration. The VAE model can improve sample efficiency,
and curiosity-driven exploration can make a sufficient exploration to improve the
accuracy of the VAE model. CVAE algorithm can be applied in the traditional
model-free DRL algorithm, such as DQN and DDQN. The experiment results
show that the DQN-CVAE algorithm can improve the exploration and perfor-
mance of the agent, and we also confirm that the CVAE algorithm is flexible
since it can be easily integrated with other DQN variants.

In future work, more experiments can be conducted on other Atari 2600
games to conform to the generalization of our CVAE algorithm. Besides, a pri-
ority can be used to select to generate samples from Dg based on intrinsic reward.
Another direction is to make g become a dynamic learnable parameter with the
use of neural networks.
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