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Abstract. Mutual Information (MI) based feature selection methods
are popular due to their ability to capture the nonlinear relationship
among variables. However, existing works rarely address the error (bias)
that occurs due to the use of finite samples during the estimation of MI.
To the best of our knowledge, none of the existing methods address the
bias issue for the high-order interaction term which is essential for better
approximation of joint MI. In this paper, we first calculate the amount of
bias of this term. Moreover, to select features using χ2 based search, we
also show that this term follows χ2 distribution. Based on these two the-
oretical results, we propose Discretization and feature Selection based on
bias corrected Mutual information (DSbM). DSbM is extended by adding
simultaneous forward selection and backward elimination (DSbMfb). We
demonstrate the superiority of DSbM over four state-of-the-art meth-
ods in terms of accuracy and the number of selected features on twenty
benchmark datasets. Experimental results also demonstrate that DSbM
outperforms the existing methods in terms of accuracy, Pareto Optimal-
ity and Friedman test. We also observe that compared to DSbM, in some
dataset DSbMfb selects fewer features and increases accuracy.

Keywords: Feature selection · Mutual information · Interaction · Bias
correction

1 Introduction

In classification tasks, the objective of feature selection (FS) process is to choose
the most useful features that contribute to the prediction of class variable. Usu-
ally, all the features of a dataset do not have equal importance, rather some may
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create noise or be redundant. FS methods are used to remove such irrelevant
and redundant features and can be divided into three broad categories namely
Wrapper [14,18], Embedded [20], and Filter methods [13,15,16]. Among these,
filter methods do not depend on a classifier to select a feature. It thus works
faster, which is preferable for handling large feature sets [12].

Again, Mutual information (MI) is usually popular in filter based methods.
MI can capture non-linear relationships among features and class variable, can
be computed for both categorical and numerical data, and can deal with multiple
classes [7]. For these reasons, in this paper, we focus on MI based filter methods.

In MI based filter methods, the main goal is to select a subset of features S
from the original feature set, F = {f1, f2, f3, ..., fn} in such a way that it will
maximize joint MI (I(S;C)) with the class variable, C as showed in Eq. 1.

I(S;C) = I(f1, f2, ....., fk;C)

=
∑

f1,f2,.....,fk

∑

C

P (f1, f2, ....., fk;C) log
P (f1, f2, ....., fk;C)

P (f1, f2, ....., fk)P (C)
(1)

However, the computation of I(S;C) is a NP-hard problem [7]. To over-
come this problem, different approximations such as MIFS [1], mRMR [10],
JMI [19], RelaxMRMR [17] have been proposed over the last decades. In these
methods, MI terms such as feature relevancy(R), redundancy(r), conditional
redundancy(c) and interaction(i) are considered in order to achieve a better
approximation. However, none of the aforementioned methods correct “bias”
due to finite samples in calculating MI terms. In a recent method mDSM [16],
it is shown that incorporating bias correction for R, r, and c terms improves
the classification performance. However, the interaction term is not considered
in mDSM which needs to be addressed for better approximation [17].

Apart from the evaluation criteria, searching is an important step in the
FS methods to find out the combination of feature subset that performs well.
Most popular searching techniques are forward selection, backward elimination,
genetic algorithms (GA) based search [11]. Forward selection and backward elim-
ination are greedy searching strategy that select/delete a feature one at a time.
The limitation of these approaches are after selecting/deleting a feature, it can-
not be deleted/re-selected later which may add redundant features [6]. On the
other hand, GA based methods are computationally expensive and for a dataset
with large number of features, it is not feasible to apply. Convex based Relaxation
Approximation (COBRA) is proposed in [7] which provides a global solution for
MI based FS. Another search strategy is introduced in mDSM where a small
subset of features is selected using χ2 based forward selection that uses dynamic
discretization. However, it cannot deselect a feature once it is already selected
and do not show whether it is possible to use χ2 based search for interaction term.
Considering the aforementioned issues, we propose a method called Discretiza-
tion and feature Selection based on bias corrected MI (DSbM) and make the
following major contribution: First, we calculate bias for the interaction terms
and propose to use it for FS. Second, we show that the interaction terms follow χ2

distribution and proposed to use it in χ2 based search. Third, to obtain reduced
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number of feature, keeping similar performances with DSbM we propose a new
method for simultaneous forward selection and backward elimination (DSbMfb).

2 Information Theoretic Feature Selection Methods

The main objective of MI based features selection methods is to determine a
subset of features that have maximum dependency with the given class as shown
in Eq. 1. Alternatively, this problem can be formulated for incremental feature
selection that is to add one feature at a time in the selected subset to maximize
I(S;C). From a given set F with n number of features, a new feature fm is
added to the selected set, S = {f1, f2, ....., fm−1}, that maximizes the score for
a feature fm:

J(fm) = I(fm ∪ S;C) = I(S;C) + I(fm;C | S) (2)

Since I(S;C) remains constant with respect to fm, we choose fm that maximizes
I(fm;C | S). Using MI identities, this term can be expressed as

I(fm;C|S) = I(fm;C) − I(fm;S) + I(fm;S|C) (3)

here, the terms I(fm;C), I(fm;S) and I(fm;S|C) represent feature relevancy,
redundancy and conditional redundancy respectively [2]. Hence the score J(fm)
increases if the relevancy of the feature fm is large and redundancy with the
existing features is low. However, the score also increases if the conditional redun-
dancy is higher than the redundancy term. Hence, there is a trade-off, and the
overall score is what needs to be maximized. Brown et al. in [2] further shows
under the assumption that (a) the selected features in S are independent given
the feature fm and (b) the selected features are class-conditionally independent
given the feature fm and removing terms that have no effect on the choice of fm
one can obtain the following equivalent score function:

J(fm) = I(fm;C) − β
∑

fi∈S

I(fm; fi) + γ
∑

fi∈S

I(fm; fi|C) (4)

with β = 1 and γ = 1, this is what we call the Rrc criterion. It can then be
easily shown that the incremental FS criterion or score function of well known MI
based method such as MIFS [1], mRMR [10], Extended mRMR [9], JMI [19], and
MIM [5] can be derived from this parameterized version of the score function.
For example, JMI [19] criteria can be derived setting the value of β = γ = 1

|S| .
In [17], the authors propose a new criterion by relaxing the the first assump-

tion. They show under the relaxed assumption that the selected features are
conditionally independent given the fm and another feature fi in S, the redun-
dancy term can be approximated as the following

I(fm;S) = I(fm; fi) +
∑

fj∈S,i�=j

I(fm; fj |fi) + Ω (5)
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where Ω is not dependent on fm. Instead of finding a feature fi to condition
on, they propose to average the right-hand side over all fi ∈ S, resulting in the
following score function

JrMRMR(fm) = I(fm;C) − 1
| S |

∑

fi∈S

I(fm; fi) +
1

| S |
∑

fi∈S

I(fm; fi | C)

− 1
| S || S − 1 |

∑

fi∈S

∑

fj∈S;i�=j

I(fm; fj | fi)
(6)

here, the I(fm; fj | fi) terms are the second order interaction term between the
features. It should be noted that sum of the second order terms is normalized
by 1

|S||S−1| instead of 1
|S| . The authors note that this is to prevent this sum to

out-weight other terms. It can be seen that one can approximate the redundancy
term using 3rd or higher order interaction terms by further relaxing the assump-
tion. However, it is shown that the joint MI is more influenced by lower-order
interaction terms in case of forward selection methods [4].

Practically, all aforementioned MI terms that have been used for the approx-
imation need bias correction due to the finite number of samples. To solve this
issue, a recent method namely, mDSM [16] is proposed where bias corrected MI
has been used for calculating relevancy, redundancy and complementary term.
They show incorporating bias correction improves the accuracy of classification.
Also, it is theoretically shown that these three terms follow χ2 distributions.

JmDSM (fm) = I(fm;C) − (M − 1)(K − 1)
2N ln 2

+
1

| S |
∑

fi∈S

(I(fm; fi | C)−

(M − 1)(I − 1)K
2N ln 2

− I(fm; fi) +
(M − 1)(I − 1)

2N ln 2
) (7)

here, M and I are the number of intervals in feature fm and fi respectively. K
is number of class and N is total number of samples. The limitation of mDSM
is that it does not consider the interaction term while proposing bias corrected
MI to calculate the feature score which is necessary for better approximation of
joint MI.

3 Proposed Method

In this paper, we propose Discretization and feature Selection based on bias
corrected MI (DSbM) which incorporates bias correction for MI based selection
criteria. DSbM also uses dynamic discretization and greedy χ2 based forward
selection. Moreover, a simultaneous forward selection and backward elimination
is also proposed. These are described in the following subsections.

3.1 Discretization and Feature Selection Based on Bias Corrected
Mutual Information (DSbM)

DSbM incorporates the bias correction for all four terms mentioned in Eq. 6 as
it is necessary for better approximation of joint MI. The bias for the first three
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terms are given in Eq. 7. Theorem 1 shows the amount of bias for the interaction
term and Theorem 2 shows that this term follows χ2 distribution. Proof of the
theorems are given as supplementary materials due to page limitation.

Theorem 1. Bias is (M−1)(J −1)I
2N ln 2 for Interaction I(fm; fj | fi) among the fea-

tures fm and fj given feature fi, where I, J and M are the number of intervals
in feature fi , fj and fm respectively.

Incorporating this bias corrected Interaction term with Eq. 7, DSbM uses the
following criteria for discretization and feature selection.

JDSbM (fm) = I(fm;C) − (M − 1)(K − 1)
2N ln 2

+
1

| S |
∑

fi∈S

(I(fm; fi | C)−

(M − 1)(I − 1)K
2N ln 2

− I(fm; fi) +
(M − 1)(I − 1)

2N ln 2
)−

1
| S || S − 1 |

∑

fi∈S

∑

fj∈S;i�=j

(I(fm; fj | fi) − (M − 1)(J − 1)I
2N ln 2

)

(8)

Theorem 2. I(fm; fj | fi) follows χ2 distribution with (M−1)(J −1)I degrees
of freedom if fm, fi and fj are statistically independent.

Based on Theorem 2, the critical value of the Interaction term will be as Eq. 9

χ2
(i) = 2N ln(2) ∗ I(fm; fj | fi) (9)

As the other three terms of Eq. 6 also follows χ2 distribution, we can use their
critical values (shown in [16]) for selecting a new feature.

The overall process of DSbM is given in Algorithm 1. First, each feature
fm ∈ F is discretized with minimum number of intervals (dm) for which its rele-
vancy with the class variable (Jrel(fm) = I(fm;C) − (M−1)(K−1)

2N ln 2 ) is significant.
If the feature is not significant even with some predefined maximum number of
intervals (dmax), it is dropped. The selected candidate features (Fc) are then
sorted according to their relevance Jc in descending order (line 2–12 in Algo-
rithm1). The first feature f1 is then included to the final selected feature set S.
The remaining features of Fc are evaluated incrementally maximizing the Rrci
criteria. The score of JDSbM (Eq. 8) is compared (in line 15) with its’ critical
value (χ2

(Rrci)), to select a new feature fm if it is not significantly redundant.
Otherwise, fm is discarded considering that it does not contribute to the score
significantly. While selecting a new feature, its discretization level is also shifted
by a small value δ from its original value (as selected previously based on Jrel

as shown in line 16–21). This process helps to select the discretization level of
features dynamically considering its dependency with other feature. In this way,
all the features are discretized and selected simultaneously.

3.2 DSbM with Simultaneous Forward Selection and Backward
Elimination (DSbMfb)

DSbM follows χ2 based forward searching strategy where a feature can not be
discarded once it is added to the selected subset S. When a candidate feature fm
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Algorithm 1 : DSbM
Input: Set of n features, F , Maximum discretization level dmax, Class C
Output: Selected set of features, S = {f1, f2, · · · , fk} with discretization, D =

{d1, d2, · · · , dk}
1: Subset of r candidate features, Fc ← ∅
2: for each fm ∈ F do
3: for all l = 2 to dmax do
4: Discretize fm with l interval
5: Calculate Jrel for feature fm
6: if Jrel(fm) > χ2

(R) then
7: Fc ⇐ Fc ∪ fm; Dc ⇐ Dc ∪ l; Jc ⇐ Jc ∪ Jrel(fm);
8: break
9: end if

10: end for
11: end for
12: Sort Fc with corresponding Dc in decreasing order based on their Jc values
13: select f1 with its’ corresponding d1

14: S ⇐ S ∪ f1; D ⇐ D ∪ d1; Fc ⇐ Fc \ f1;
15: for each fm ∈ Fc do
16: for all l = dm - δ to l = dm + δ do
17: Discretize fm with l interval
18: if JDSbM (fm) > χ2

(Rrci) then

19: dm ⇐ l; Jm ⇐ JDSbM (fm); T ⇐ χ2
(Rrci);

20: end if
21: end for
22: if JDSbM > T then
23: S ⇐ S ∪ fm; D ⇐ D ∪ dm;
24: end if
25: Fc ⇐ Fc \ fm;
26: end for
27: Return S and their respective D

is found redundant with respect to the selected features from S, DSbM does not
consider fm for selection. However, it may happen that fm is more important
and contains extra information compared to the already selected features. In this
case, removing the redundant features from S is more appropriate. Therefore,
we modify DSbM by including backward elimination and propose DSbMfb where
simultaneous selection and elimination is incorporated.

The process of backward elimination is described in Algorithm 2. Here, the
redundant candidate feature fm is rechecked based on its interaction value to
decide whether this feature fm is able to replace some features from S. This
checking can be done by several ways such as considering all possible combination
of three way interaction of fm with fi and fj and selecting the feature pair
whose replacement can increase the JDSbM score significantly. However, it is
computationally expensive to check all possible combination pairs of features.
Hence, we consider the pair for which we obtain the highest interaction value
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Algorithm 2 : DSbMfb

Input: Set of n features, F , Maximum discretization level dmax, Class C
Output: Selected set of features, S = {f1, f2, · · · , fk} with discretization, D =

{d1, d2, · · · , dk}
1: Line (1-14) from Algorithm 1
2: for each fm ∈ Fc do
3: Line (16-21) from Algorithm 1
4: if JDSbM > T then
5: S ⇐ S ∪ fm; D ⇐ D ∪ dm;
6: else
7: Set of interaction values, E ⇐ ∅
8: if | S |>= 4 then
9: for all i = 1 to | S | do

10: for all j = 1 to | S | and i �= j do
11: Calculate Interaction, I(fm; fj | fi) among feature fm, fi, fj
12: eij = I(fm; fj | fi)
13: end for
14: end for
15: Select feature fi, fj with highest interaction value eij from E
16: S′ ⇐ S \ {fi, fj}
17: if JDSbM (fm) on S′ > χ2

(Rrci) && JDSbM (fm) on S′ > JDSbM (fm) on
S then

18: S ⇐ S ∪ fm; S ← S′; D ⇐ D ∪ dm; D ⇐ D \ {di, dj};
19: end if
20: end if
21: end if
22: Fc ⇐ Fc \ fm;
23: end for
24: Return S and their respective D

(line 9–15) and replace that feature pair with fm if their removal from S passes
the χ2 value and increases the total score (line 17–18). As a result, DSbMfb

obtains a smaller subset of features compared to DSbM.

4 Experimental Result

In this section, the experimental setup and evaluation process of different meth-
ods along with the proposed ones is presented. Furthermore, a number of experi-
ments are performed to highlight the effectiveness of the proposed contributions.

4.1 Dataset Description and Implementation Details

In this experiment, twenty benchmark datasets collected from UCI Machine
Learning Repository [3] are used as they are also employed in [16] and [19].
The description of these datasets are given in Table 1. For classification, we
use SVM and KNN, and conduct 10-fold cross-validation on each dataset.
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We compare DSbM with four state-of-the-art methods namely mDSM, JMI,
JMI with COBRA search (JC) and RelaxMRMR. Here, DSbM, mDSM and JC
are feature selection method, however, JMI and RelaxMRMR are feature rank-
ing method. Hence, the number of selected feature obtained in DSbM are used
to generate the results for these two methods. For JMI and RelaxMRMR, we
use forward selection whereas, JC performs COBRA search and mDSM uses χ2

based search. For comparing the methods we use three metrics namely accu-
racy, Score (defined in Eq. 10) and Pareto Optimality(PO). PO returns a set of
non-dominant candidate solutions.

Score =
∑n

i=1 wi ∗ αi∑n
i=1 wi

(10)

here, αi and wi indicates the performance evaluation criteria and weights respec-
tively. For our method α1 and α2 indicates the percentage accuracy, and α2 =
(Nt −Ns)/Nt is the percentage of reduction features. Here, Nt is the total num-
ber of features in a dataset and Ns is the number of selected features. We use
equal weights. To calculate PO, we use α1 and α2 and to perform Friedman test
we use Score to incorporate the joint impact of number of selected features and
the corresponding accuracy. We also calculate Win/Tie/Loss which indicates
the number of datasets for which comparing method performs better/equally-
well/worse than other methods unless otherwise stated. To determine whether
the wins are statistically significant we perform t-test at 0.05 significance level.

4.2 Results and Discussion

Here, we first discuss how DSbM performs compared to other methods and then
we compare the performance of DSbM with DSbMfb.

Comparison of DSbM with Other Methods. To investigate the impact
of high-order term for approximating joint MI in DSbM, let us first consider
Table 2. For this table, win/tie/loss is calculated using the accuracies given
in Table 3. RelaxMRMR performs slightly better than JMI due to the incor-
poration of interaction term. Whereas, mDSM outperforms RelaxMRMR even
though mDSM does not consider high-order term. It is due to the bias correc-
tion, dynamic discretization and χ2 based search. This indicates that mDSM
with high-order term might perform well which is the proposed DSbM. mDSM
also performs better than JC. Table 3 compares DSbM with mDSM, JC, JMI
and RelaxMRMR. The number inside the parenthesis represents the number of
selected feature. For example, DSbM achieves 96% accuracy using SVM with 2
selected features for Iris dataset.

It is evident from Table 3 that DSbM outperforms all the four state-of-the-
art methods. The second last and the last row of Table 3 represent the pair
wise win/tie/loss and significant win/loss of DSbM with the existing methods
respectively. Even though DSbM wins in thirteen datasets among the twenty
compared to mDSM for SVM classifier, the differences in accuracies are not
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Table 1. Dataset description

Index Dataset Dimension Instance Class Index Dataset Dimension Instance Class

1 Iris 4 150 3 11 Parkinson 22 197 2

2 Pima 8 768 2 12 Steel 27 1941 7

3 Yeast 8 1484 10 13 Breast 30 569 2

4 Glass 9 214 6 14 Dermatology 34 366 6

5 Wine 13 178 3 15 Spambase 57 4601 2

6 Heart 13 270 2 16 Sonar 60 208 2

7 Australian 14 690 2 17 Liver 6 345 2

8 Segment 17 2310 7 18 Breast Tissue 9 106 6

9 Cardio 21 2126 10 19 Arrhythmia 279 452 16

10 Waveform 21 5000 3 20 Semeion 256 1593 10

Table 2. Comparison of different methods (Win/Tie/Loss)

RelaxMRMR vs. JMI mDSM vs. RelaxMRMR mDSM vs. JC

SVM 7/7/6 13/1/6 14/0/6

KNN 14/1/5 14/0/6 16/0/4

significant in most of the cases. DSbM wins significantly only for three datasets
and losses for one. However, DSbM selects less number of features than other
feature selection methods as it considers the bias corrected interaction term for
which some redundant features are discarded. For example, in Wine dataset the
accuracy of SVM is 96.84% for both DSbM and mDSM. However, DSbM selects
only 9 features whereas mDSM selects 12. But in some cases mDSM selects less
feature than DSbM. This is due to the greedy nature of forward selection and
difference in the score functions. DSbM and mDSM may select different features
in any iteration due to the inclusion of interaction term in DSbM, This may
results in DSMb selecting a larger number of features compared to mDSM (for
example, in case of Spambase and Sonar).

To understand the joint impact of accuracy and number of selected features,
let us consider Table 4, where the ranking of the above mentioned methods is
shown according to their frequency in the PO set and Friedman test. In both
cases, DSbM achieves the highest rank. In Friedman test, after rejecting the
null hypothesis that all the methods perform equivalently, a post-hoc test called
Nemenyi test [8] is used to determine the which method performs significantly
better than the others. The test indicates that DSbM significantly (at 95% con-
fidence level) outperforms the four other methods both for SVM and KNN.

Impact of DSbMfb over DSbM. To understand the impact of simultaneous
forward selection and backward elimination using DSbMfb, let us consider Fig. 1a
and Fig. 1b. We observe, in most of the cases DSbMfb selects less features than
DSbM (number of selected features is given on the top of each bar and on
the x-axis the index of datasets are given according to their order in Table 1).
These figures also illustrate that when the total number of features for a dataset
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Table 3. Comparison among different methods based on its accuracy. (∗) and (◦)
represents that DSbM wins and loses significantly from that method respectively and
bold values represent the overall win among all methods.

SVM(accuracy in %) KNN(accuracy in %)

DSbM mDSM JC JMI Relax

MRMR

DSbMmDSM JC JMI Relax

MRMR

Iris 96.00(2) 94.67(2) 91.30(2)∗ 93.33 93.33 91.33 86.00∗ 83.30∗ 87.32 87.33

Pima 74.94(5) 74.29(7) 73.60(8) 73.12 73.12 64.03 61.69 58.70∗ 48.83∗ 48.84∗

Yeast 54.44(7) 53.46(7) 50.00(7)∗ 51.83 51.50∗ 38.43 37.45 30.30∗ 33.33∗ 32.55∗

Glass 57.59(4) 50.00(5)∗ 51.70(7) 54.35 54.35 55.23 54.35 51.30 50.00 51.00

Wine 96.84(9) 96.84(12) 91.60(9)∗ 94.21 95.79 91.58 91.58 84.20∗ 96.32 94.74

Heart 80.74(9) 80.00(10) 81.10(10) 83.33 82.22 72.22 72.59 71.90 81.11◦ 75.93

Australian 87.71(10) 87.71(10) 68.30(11)∗87.14 87.57 82.43 81.14 59.30∗ 77.43∗ 75.23∗

Segment 95.51(14) 94.06(16) 88.80(12)∗89.26∗ 89.26∗ 90.43 91.60 86.90∗ 87.45∗ 87.47∗

Cardio 77.66(14) 76.88(16) 63.30(13)∗68.99∗ 68.95∗ 72.80 71.15 61.90∗ 68.21∗ 67.02∗

Waveform 84.35(19) 85.29(19) 80.80(13)∗83.97 83.97 75.87 76.71 70.30∗ 74.81 74.83

Parkinson 84.50(10) 83.00(17) 84.50(14) 84.50 84.00 87.00 87.00 92.00 91.50 84.50

Steel 65.61(9) 72.02(26)◦ 69.60(20)◦51.56∗ 63.79 68.54 69.39 69.30 21.01∗ 62.42∗

Breast 93.79(7) 96.38(26) 95.70(20) 93.62 95.17 91.21 94.66◦ 92.20 72.93∗ 89.66

Dermatology 96.00(28) 95.50(33) 95.30(23) 96.75 96.50 96.25 96.00 93.50∗ 92.75∗ 92.75∗

Spambase 93.90(50) 93.06(47)∗ 73.30(41)∗74.51∗ 74.71∗ 93.32 92.62 67.30∗ 68.31∗ 68.31∗

Sonar 81.36(36) 75.91(21) 72.70(60)∗70.45∗ 73.64∗ 85.00 83.64 88.60 87.27 84.55

Liver 57.14(2) 57.14(2) 59.43(6) 57.14 57.14 46.29 46.27 52.00◦ 43.14 43.14

Breast Tissue 60.71(3) 61.43(4) 55.00(6) 57.81 56.43 54.29 53.57 51.43 52.14 49.29

Arrhythmia 72.79(107)66.28(118)∗70.70(253) 72.56 74.19 65.12 65.35 58.60∗ 64.65 69.30

Semeion 93.23(253)92.93(255) 93.20(254) 93.17 93.17 91.41 90.73 91.20 91.40 91.41

Win/Tie/Loss 13/3/4 15/1/4 16/2/215/1/4 12/2/615/0/516/0/416/1/3

Sig. Win/Loss 3/1 9/1 5/0 5/0 1/1 11/1 9/1 8/0

Table 4. Ranking of existing feature selection criteria.

Frequency in Pareto optimal set

SVM DSbM(12) JC(8) mDSM(6) JMI(2) RelaxMRMR(2)

KNN DSbM(13) JC(10) mDSM(6) JMI(4) RelaxMRMR(1)

Average rank from Friedman test

SVM DSbM(1.70) RelaxMRMR(2.73) JMI(2.85) mDSM(3.78) JC(3.95)

KNN DSbM(1.68) RelaxMRMR(2.75) JMI(2.83) mDSM(3.80) JC(3.95)

is comparatively small then the performance of both DSbM and DSbMfb are
similar in terms of number of selected features and accuracy (e.g., Iris, Yeast,
Glass etc.). Note that in some cases such as in Cardio, Arrhythmia etc., DSbMfb

selects fewer features with higher accuracy.
Furthermore, a limitation of mDSM is that, the set of selected features might

contain a subset for which better accuracy can be found. DSbM also has similar
problem which can be observed in Fig. 2a. This issue is resolved to some extent
in DSbMfb. Here, we get 74.19% accuracy with 84 selected features (see Fig. 2b)
while DSbM obtains an accuracy of 72.79% with 107 features.
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(b) KNN

Fig. 1. DSbM(black bar) vs. DSbMfb(white bar)

(a) DSbM (b) DSbMfb

Fig. 2. Accuracy (SVM) vs. Number of features for Arrhythmia dataset

5 Conclusion

In this paper, we propose a method DSbM which includes bias correction for
high-order dependencies among features and use χ2 based search that also con-
sider high-order dependencies. Results over a large amount of dataset demon-
strate that DSbM outperforms current state-of-the-art methods. Beside this,
a χ2 based simultaneous forward and backward search is also proposed here
that shows similar performances with DSbM with less number of features. This
method can be applied for different applications such as activity recognition
and cancer classification for gene expression data. Incorporation of further high-
order terms might improve the overall performance which require further theo-
retical analysis and experimentation with global feature selection which will be
addressed in future work.
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