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Abstract. In selection processes, decisions follow a sequence of stages.
Early stages have more applicants and general information, while later
stages have fewer applicants but specific data. This is represented by a
dual funnel structure, in which the sample size decreases from one stage
to the other while the information increases. Training classifiers for this
case is challenging. In the early stages, the information may not contain
distinct patterns to learn, causing underfitting. In later stages, appli-
cants have been filtered out and the small sample can cause overfitting.
We redesign the multi-stage problem to address both cases by combining
adversarial autoencoders (AAE) and multi-task semi-supervised learning
(MTSSL) to train an end-to-end neural network for all stages together.
The AAE learns the representation of the data and performs data impu-
tation in missing values. The generated dataset is fed to an MTSSL
mechanism that trains all stages together, encouraging related tasks to
contribute to each other using a temporal regularization structure. Using
real-world data, we show that our approach outperforms other state-of-
the-art methods with a gain of 4x over the standard case and a 12%
improvement over the second-best method.
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1 Introduction

In many applications including network intrusion detection [15] and medical
diagnosis [1], decision systems are composed of an ordered sequence of stages,
which can be referred to as a multi-stage process. For selection processes (such as
hiring or student intake), for instance, the applicants submit general information
in the initial stages, such as resumes. The evaluator screens trough the resumes
and selects applicants to move on to the next round. In each following stage,
applicants are filtered out until the final pool is selected. In terms of information,
the initial stages have general data about the applicants and for each subsequent
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Fig. 1. Dual funnel structure (a); multi-stage architecture (b). In (a), the left funnel
shows the number of applicants decreasing, whereas the right funnel shows the data
(in terms of variables) increasing. In (b), for every stage {s}S0 , a classifier fs make
decisions Ŷ s using features Xs.

round, more and specific information is gathered. As the process continues, the
cost to acquire and evaluate new data increases, which is an incentive to decrease
the pool of applicants. Hence, in the final stages, the evaluator has a smaller pool
with much more information about each applicant.

Training classifiers for a multi-stage process can be challenging because of
the dual funnel structure as shown in Fig. 1(a). During the initial stages, the
number of applicants decreases whereas the data about them increases. There-
fore, the dataset grows in dimensionality but decreases in terms of sample size.
Classifiers trained in initial stages have sufficiently large samples to generalize,
but the available features might not contain enough information to differenti-
ate applicants, causing high bias and underfitting. In the final stages, there is
more information for each applicant, but the sample size is reduced significantly,
causing classifiers to suffer from high variance and overfitting. To address this
problem, we redesign the multi-stage problem and present a framework with two
components.

In the first part of our framework, we use an adversarial autoencoder
(AAE) [19] that learns the data representation and is able to generate synthetic
data for data imputation in missing values. This component makes possible for
our framework to fill the data for an applicant in all the stages that he has
not reached. Therefore, we can generate a complete dataset with data for all
applicants in all stages.

In the second part of our framework, we use multi-task learning to train a
single classifier that can learn different tasks together. We introduce a temporal
regularization structure so that related tasks can share information, and we
adopt a semi-supervised approach to handle the newly generated samples from
AAE, which don’t have labels. This results in the aDversarial autoEnCoder
and multI-task SemI-superVised lEarning (DECISIVE) framework. The main
contributions of this paper are:
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1. We adapted an adversarial auto-encoder to perform data imputation and
generate a complete dataset to be shared in different stages.

2. We redesign the multi-stage problem and present a temporal multi-task semi-
supervised framework that allows knowledge from all stages to be shared.

3. The effectiveness of the proposed model is demonstrated by extensive longitu-
dinal experiments on real data from 3 different selection processes. Our model
is able to outperform other single-task and multi-task frameworks particularly
in the later stages where the sample size is significantly reduced.

2 Related Work

Our method builds on three subfields of machine learning, namely data imputa-
tion [3], multi-task learning [20] and multi-stage or decision cascades [15,17].

Data Imputation with Autoencoders - Many methods for data impu-
tation have been proposed, ranging from simple column average to complex
imputations based on statistical and machine learning models. Such methods
can be categorized in discriminative [14], or generative [16]. Missing data is a
special case of noisy input and deep architectures such as denoising autoencoders
(DAE) [16] have performed well due to their capability to automatically learn
latent representations. The work presented in [5] uses an overcomplete DAE as a
base model to create a multiple imputation framework, which simulates multiple
predictions by initializing the model with random weights at each run. Our AAE
component is based on the framework proposed in [19], which explores the gen-
erative adversarial network (GAN) [6] approach to create: a generator to accu-
rately impute missing data; a discriminator to distinguish between observed and
imputed components; and a hint mechanism to help generate samples according
to the true underlying data distribution.

Multi-Task and Semi-Supervised Learning - The goal of multi-task
learning (MTL) is to learn multiple related tasks simultaneously so that knowl-
edge obtained from each task can be re-used by the others. This can increase the
sample size for each task, making MTL beneficial for tasks with small training
sample. MTL has been applied in different approaches including neural nets (NN)
and kernel methods [1,7]. More recent methods have explored the application
of MTL to deep neural nets (DNN) [11]. The regularization parameters in MTL
control how information is shared between tasks and prevents overfitting. The
framework proposed in [7] enables information to be selectively shared across
tasks by placing a structure constrain on the learned weights. Our framework
builds on [21], in which temporal information is encoded using regularization
terms. MTL can also be combined with semi-supervised learning (SSL) to cre-
ate classifiers coupled by a joint prior distribution over the parameters of all
classifiers [4].

Multi-stage Classification - Multi-stage and cascade classifiers share
many similarities, however, an important difference between cascade [17] and
multi-stage can be defined as the system architecture. Detection cascades make
partial decisions, delaying a positive decision until the final stage. In contrast,
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multi-stage classifiers shown in Fig. 1(b), can deal with multi-class problems and
can make classification decisions at any stage [15]. The approach proposed in [12]
explores the connection between deep models and multi-stage classifiers such that
classifiers can be jointly optimized and they can cooperate across the stages. This
structure is similar to ours, but in our case, the algorithm only has access to the
original information in a specific stage.

3 Problem Statement

Let’s define s = {0, 1, ...S} as a single stage in a multi-stage process. Every stage
has a dataset with training examples {xs

i , y
s
i }ms

i=0, where ms refers to the number
of samples. The number of features is given by ns, the features are given by
Xs ∈ R

ms×ns

and the labels by Y s ∈ R
ms×1. Let’s also define A ∈ R

m×1 as the
vector of applicants, where m represents the total number and a ∈ A represents
a single applicant. The feature vector for a single applicant a in stage s are
given by the vector xs

a ∈ R
1×ns

. A prediction matrix P̂ ∈ R
m×S can be defined,

where pa ∈ R
1×S is the prediction vector for an applicant a in all stages, and

ps
a ∈ [−1, 1] represents the prediction for a single stage s.
Underfitting in Earlier Stages - In each stage s, only features xs up to

that stage are available. Therefore, a prediction for an applicant with data up to s
is given by pi

a = f(xs
a), i = {s, s+1, ..., S}, where f(·) is a classification function.

For example, for an applicant with information in s = 0, all predictions will be
made using x0

a.
Since the features in early stages are more general and less discriminative,

models trained in these stages have poor performance predicting the applicant’s
future in the process. A method to address this problem could incorporate future
features in the early stages. More specifically, a data imputation process can be
used to fill missing information and generate a complete dataset for all stages.
In other words, X̂ = g(Xs), where Xs is the input features in stage s and g(·)
is a data imputation function.

Overfitting in Later Stages - For each new stage, new data is received
while the number of samples decrease, which means Xs+1 �= Xs, ms+1 < ms and
ns+1 > ns. As ms gets significantly smaller in absolute value and in comparison
to ns, classifiers trained on the specific stage data tend to overfit. One possible
way to address this problem is to use the generated complete dataset X̂. Since
any stage Xs can be mapped to X̂, more training samples can be used to train
classifiers in later stages. However, X̂s+1 = g(Xs) only generate new samples but
no labels, since the applicants in s were not evaluated in s+1. Hence, Y s+1 �= Y s

and ms+1 < ms for the label matrix. In this case, semi-supervised learning can
be applied so that labeled and unlabelled data are combined to create a better
classifier than by just using the labeled data.

Finally, with S stages, the traditional way would be to construct S classifiers
to predict the outcomes in each stage. However, we believe that these tasks in
each stage are related and they could be combined to share knowledge during
training. This problem can be addressed by an MTL that seeks to improve the
generalization performance of multiple related tasks by learning them jointly.
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4 Methods

Our method is based on two components: data imputation using adversarial
autoencoders (AAE) and multi-task semi-supervised learning (MTSSL). Here
we explain each of these components as well as the combination of them to form
our approach.

4.1 Data Imputation Using Adversarial Autoencoders (AAE)

In each stage, we have a combination of numerical and categorical features
(encoded using one-hot encode). For data imputation, our method is based
on [19] and it is shown in Fig. 2. We use an adversarial approach in which the
generator G receives as input features X ∈ R

m×n, a binary mask B indicating
the positions of the missing data in X, and a source of noise. We create the
dataset X̃ by filling the missing positions in X with the random noise. The goal
of G is to generate the data X̂ with values as close as possible to the original
values X. We also have a discriminator D that receives X̂ and tries to guess if
each variable value is either original or imputed.

Additionally, a hint mechanism is added by using a random variable H to
depend on B. For each (imputed) sample (x̂, b), we draw h according to the
distribution H|B = b, and h is passed as an additional input to the D. The
hint H provides information about B so that we can reduce the number of
optimal distributions with respect to D that G could reproduce. Therefore, the
discriminator tries to predict a binary mask B̂ = D(X̂,H) that is as close as
possible to B. We define the cross-entropy loss function as

Lx(a, b) =
d∑

i=1

ai log bi + (1 − ai) log(1 − bi), (1)

In the adversarial approach, D maximizes the probability of correctly predicting
B while G minimizes the probability of D predicting B, which is given by:

min
G

max
D

E[Lx(B, B̂)], (2)

where G influences the loss by generating X̂ in the term B̂ = D(X̂,H). To solve
this problem, we first optimize the discriminator D with a fixed generator G.
For a mini-batch kD, the discriminator D is trained to optimize

min
D

∑

j∈kD

LxD(Bj , B̂j), (3)

Second, we optimize the generator G with the newly updated discriminator D
using

LG(b, b̂, z) = −
∑

i:zi=0

(1 − bi) log b̂i, (4)
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where z ∈ Z and Z ∈ {0, 1}n is a random variable defined by first sampling k
from {1, ..n} uniformly at random. The reconstruction error for the non-missing
values is

Lrec(x, x̂) =
n∑

i=1

birec(xi, x̂i), (5)

rec(xi, x̂i) =
{

(x̂i − xi)
2 if xi is continuous

−xi log x̂i if xi is binary
(6)

The final equation for G in a mini-batch kG and a hyperparameter α is given by

min
G

kG∑

j=1

LG(bj , b̂j , zj)) + α(Lrec(x̃j , x̂j)), (7)

4.2 Multi-Task Semi-Supervised Learning (MTSSL)

In this component, we use a SSL approach to create a model that can use both
the labeled and unlabeled data together for model training. We combine SSL and
MTL, so that different tasks can be learned simultaneously in a joint framework.
Let’s define the input feature X ∈ R

m×n with labeled samples, XL ∈ R
mL×n

with corresponding labels Y ∈ R
mL×1 and unlabeled samples XU ∈ R

mU×n.
Let’s define a task t as the task to predict the label for a applicant in a given
stage. For S stages, we have T tasks, hence T = S. For supervised learning in a
task t, we use the cross-entropy loss

LL(Xt
L, Y t) = −

mt
L∑

i=1

yt
i log ŷt

i + (1 − yt
i) log(1 − ŷt

i). (8)

To achieve semi-supervised learning, we rely on the common assumption that
if two feature vectors xi and xj are close in a weighted graph, their predictions
f(xi) and f(xj) should be similar [4]. Therefore, we can use a graph regulariza-
tion term that depends on the affinity similarity matrix O, where the affinity
similarity between xi and xj is given by

oij =

{
exp(− ||xi−xj ||2

σiσj
), xi ∈ NK(xj) or xj ∈ NK(xi),

0, otherwise,
(9)

where NK(xi) denotes the K nearest neighborhood set of xi. The tuning param-
eters σi and σj can be set as the standard deviation of the related K nearest
neighbor set. By using the affinity matrix, we can calculate the semi-supervised
term as:

LU (Xt
U ) = γ1

mt
U∑

i,j∈t

ot
ij ||f t(xt

i) − f t(xt
j)||2F . (10)

As shown in [4], Eq. 10 can be simplified in a closed form solution as

LU (Xt
U ) = γ1tr(f tΔt(f t)T ), (11)
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where γ10 is a model tuning hyperparameter; Δt = Dt − Ot is the graph Lapla-
cian Matrix and Dt is a diagonal matrix with dii =

∑
j ot

ij and t = {0, 1, ..., T}.
For regularization, we introduce a temporal structure to encourage sequential

tasks to share knowledge. This is achieved with a graph regularization similar
to the affinity matrix but applied to tasks. An edge r ∈ R can be defined as

rij =

{
1, j = i + 1 or i = j + 1,

0, otherwise,
(12)

Putting everything together, the multi-task semi-supervised loss function is given
by

min
W

T∑

t=1

mt
L∑

j=1

LL(yt
j ,W

T xt
j)+LU (Xt

U )+λ1||W ||2F +λ2||WR||2F +λ3||W ||2,1, (13)

where xt
j denotes sample j of the t-th task, yt

j denotes its corresponding label, Xt
U

is the unlabeled dataset, W are the model parameters, λ1 controls the l2-norm
penalty to prevent overfitting, λ2 is the regularization parameter for temporal
smoothness and λ3 controls group sparsity for joint feature selection.

Fig. 2. DECISIVE framework. On top-left, input features {Xt}Tt=0 are concatenated
to form the general matrix X, which is fed to the Adversarial Autoencoder (AAE)
component. Inside AAE, A generator G, a discriminator D and a hint generator HG

are trained to learn the representation of the data and produce the weights WAAE for
data imputation. On top-right, AAE produces the complete dataset X̂, which is fed to
the multi-task semi-supervised (MTSSL) component. MTSSL uses labeled {Xt

L, Y
t
L}Tt=0

and unlabeled {Xt
U}Tt=0 datasets for each task as well as an affinity matrix O to train

the classifier for all tasks. The weights W are regularized using a temporal graph R
that enforces temporal smoothness. On the bottom, the prediction flow uses WAAE to
generate the complete dataset X̂ and WMTSSL to generate the prediction matrix P̂ .
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4.3 Adversarial Autoencoder and Multi-Task Semi-Supervised
Learning

Figure 2 shows our entire method. We first use the AAE component to generate
X̂, which will be the input in the MTSSL component to obtain the predictions.
This framework allows us to (1) create a dataset common to all stages that can
be used for other tasks and (2) train a single classifier for all stages promoting
contribution among correlated tasks and better generalization using labeled and
unlabeled data.

5 Experiments

To demonstrate the application of our method in a real-world setting, we perform
experiments using 3 datasets from 3 different multi-stage selection processes.

Datasets - For privacy requirements, we are going to refer to the companies
with indexes such that C1 refers to Company 1. The companies have a similar
process but they have distinct goals: C1 is an organization that selects students
for a fellowship; C2 is a big retail company and its process focus on their recent-
grad hire program; C3 is a governmental agency that select applicants to work
in the public administration.

Each dataset contains sub-datasets. For example, in C1, the process happens
annually and we have data for three years, year1C1, year2C1, year3C1. The dual
funnel structure from this process is shown in Fig. 1. The process in C2 happens
every semester and data for 6 semesters is available, on average, 13000 applicants
start the process and 300 are selected. The process in C3 happens annually and
data from 2 years are available. In this case, 5000 applicants start the process
and 35 are selected.

Each stage in the process contains its own set of variables. For example, in
the stage Demographics, information about state and city is collected. Therefore,
we refer to Demographics features for those collected in the Demographics stage.
The data collected in each process is very similar in stages such as Demographics
and Education, both in the form of content and structure. For stages with open
questions such as Video, each process has its own specific questions (See Table 1
for details). Additionally, in all datasets, the Video stage marks the last part
where data is collected automatically.

Feature Preparation - Early stages have structured data in a tabular
format. Categorical variables are converted to numerical values using a standard
one-hot encode transformation. In the later stages, such as video, the speech
is extracted and the data is used as a text. To convert this data to numerical
values, we create word embeddings using Word2Vec [9], where we assign high-
dimensional vectors (embeddings) to words in a text corpus but preserving their
syntactic and semantic relationships.

Validation and Performance Metrics - We perform longitudinal experi-
ments, in which we use a previous year as a training and test set and the following
year as a validation set. For C1 for example, we split the dataset from year1C1 in
train and test, find the best model and validate its results using the dataset from
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Table 1. Stages in the multi-stage selection process

Stages Company 1 (C1) Company 2 (C2) Company 3 (C3)

Demo Provide country, state, city Same as C1 Same as C1

Payment Pay application fee Not applicable Not applicable

Education Provide university, major and

extra activities

Same as C1 Same as C1

Profile test Online tests to measure

profile characteristics such as

ambition and interests

Online tests to measure

big 5 characteristics

Same as C1

Experience Write on professional

experience using the model

(S: situation, T: task, A:

action, R: result)

Write about important

professional experience

Same as C1

Logic test Perform online tests to map

levels in problem-solving

involving logic puzzles

Same objective as C1 but

with specific test for C2

Same objective as C1 but

with specific test for C3

Video submission 2-min, explaining why they

deserve the fellowship

5-min, making a case to

be selected for the

position

1-min, explaining a

problem that motivates

the applicant

Video evaluation Applicants are evaluated

based on their entire profile

submitted

Same as C1 but with

different criteria

Same as C1 but with

different criteria

Interview 1-on-1 interview to clarify

questions about the

applicant’s profile

Same as C1 but with

different criteria

Same as C1 but with

different criteria

Panel Former fellows interview 5 to

6 applicants at the same time

in a group discussion

Managers interview 4

applicants in a group

discussion

Not applicable

Committee Senior fellows and selection

team select applicants to

move to the final step

Not applicable Not applicable

Final Applicants are interviewed by

the board of the company

Applicants are

interviewed by a group of

directors

Applicants are

interviewed by a group of

managers

year2C1. The model is trained in year1C1 and has never seen any data in year2C1.
We repeat the process for all other years. Finally, we also combine the datasets
from year1C1 and year2C1 and validate the results in year3C1, which results in
4 groups. For the train and test split, we also perform 10-fold cross-validation
resulting in a total of 40 runs. In C2, we obtain 33 groups (330 runs) and for
C3 we have only 1 group (10 runs). In all experiments, we compare the models
in terms of F1-score for the positive class, which balances precision and recall
specific for the applicants that are selected in each stage.

Benchmark Methods - We compare the results with other established
methods such as: Support Vector Machines (SVM) [2] with C = 0.1; and neural
networks (NN) with dropout regularization, p = 0.5 [13]. We apply them in the
standard setting, i.e. without AAE (N), Single Task Learning (STL) and Super-
vised Learning (SL), N-STL-SL. In our second setting, we add data imputation
and run experiments with semi-supervised learning, AAE-STL-SSL. For this set-
ting we use: Laplacian Support Vector Machines (LapSVM) [8] with Gaussian
kernel, σ = 9.4, nn = 10, p = 2, γA = 10−4, γI = 1; and DNN with Virtual
Adversarial Training (VAT) [10] with K = 1, ε = 2, α = 1. For NN methods, we
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Fig. 3. LEFT - Averaged results for C1 in later stages (Video E. to Final); RIGHT -
Results for a single year in all stages for C1. On the right, for each new stage, the num-
ber of applicants drops while more data is obtained. Methods perform better while the
number of samples is relatively high but the performance worsens drastically in the later
stages (Video E. to Final).

use dense NNs with fully connected layers and the structure is chosen such that
the number of parameters is similar in all settings.

Our third setting uses the MTL component in the SL case, hence AAE-
MTL-SL. We use: Infinite Latent SVM (MT-iLSVM) [22] with α = 0.5, C = 1,
σ2

m0 = 1; and Deep Multi-Task Representation Learning with tensor factorization
(DMTRL) with Tucker method [18]. Finally, in the fourth setting, AAE-MTL-
SSL, we use DMTRL in the SSL setting and Semi-Supervised Multi-task Learning
(S2MTL) [4] with λ1 = 10, λ2 = 10, k = 4. For our approach, DECISIVE, we
use λ1 = 0.1, λ2 = 1, λ3 = 10 and γ1 = 10. All hyperparameters are found using
cross-validation and the performance is robust for values chosen in the interval
[10−2, 10−1, 1, 10, 100].

6 Results

In this section we present the results obtained in all experiments, which can be
seen in Fig. 3 for C1 and in Table 2 and Table 3 for C2 and C3, respectively. Data
refers to the number of features in each stage compared to the final dataset. App
refers to the number of applicants in each stage compared to the number in the
first stage.

6.1 General Results Across Companies

We investigate the general results in all experiments. SVM achieved the best
result in the N-STL-SL (to save space we omit NN), however, this group had
the worst performance mostly due to overfitting, since each classifier is trained
individually and knowledge across stages is not shared. The second-best group



Adversarial Autoencoder and Multi-Task Semi-Supervised Learning 13

Table 2. Average results for each stage in terms of F1 for C2.

N-STL-SLAAE-STL-SSLAAE-MTL-SL AAA-MTL-SSL

Data (%)App (%) SVM VAT LapSVM MT-iLSVM S2MTLDMTRLDECISIVEMEAN

Initial

Demo 8.6 100 0.75 0.74 0.79 0.71 0.7 0.84 0.8 0.76

Edu. 23.7 62 0.6 0.75 0.84 0.82 0.71 0.81 0.85 0.77

Profile 28.2 54 0.78 0.55 0.67 0.71 0.67 0.7 0.72 0.69

Star 62.1 38 0.87 0.81 0.79 0.79 0.78 0.9 0.87 0.83

Logic 66.1 31 0.91 0.78 0.93 0.9 0.88 0.91 0.88 0.88

Video S. 100.0 15 0.46 0.68 0.59 0.7 0.62 0.7 0.67 0.63

MEAN 0.73 0.72 0.77 0.77 0.73 0.81 0.80

Late

Video E. 100.0 12 0.17 0.48 0.55 0.58 0.53 0.65 0.64 0.51

Interview 100.0 6 0.13 0.38 0.43 0.63 0.61 0.62 0.64 0.49

Panel 100.0 4 0.14 0.31 0.25 0.35 0.41 0.43 0.55 0.35

Final 100.0 1.5 0.08 0.12 0.12 0.25 0.3 0.29 0.47 0.23

MEAN 0.13 0.32 0.34 0.45 0.46 0.50 0.58

is VAT and LapSVM in AAE-STL-SSL. Classifiers in this group are still trained
individually, but the additions of data imputation and unsupervised data help
the classifier to better generalize in the later stages. SVM methods (LapSVM)
have better performance than NN (VAT) especially when the sample size is
relatively small.

When MTL is introduced in the third setting, AAE-MTL-SL, results are
improved since knowledge is shared in all tasks. The parameters for the multi-
task classifier are updated based on the loss for all predictions which helps miti-
gate the challenge of small sample size in the later stages (Video E. to Final). In
this setting, the NN-based method (DMTRL), can perform similar to the SVM-
based method (iLSVM), since the NN can learn more complicated patterns and
decision boundaries without overfitting as in previous cases. However, the best
results for DMTRL are in the SSL case.

The best performing methods are in the AAE-MTL-SSL setting. DMTLR
performs slightly better than the S2MTL method, in which, knowledge is shared
at the feature level. In general, our method (DECISIVE) can outperform the
other methods and the difference is higher in later stages (see Sect. 6.2). Com-
paring to DMTRL and S2MTL, the temporal regularization introduced in our
method enforces tasks close together in time to contribute more with each other.
This allows our model to share knowledge among all tasks in the multi-task
framework, but still, preserve some of the temporal components of the process.

6.2 Company Results

Figure 3-left shows that the results among methods are consistent for C1 as we
vary the training data. Interestingly, predicting the data in year3C1

using year1C1

is better than using year2C1
. This shows that the profile for applicants changes

from year to year and the applicants approved in year3C1
are more similar to the

ones approved in year1C1
. Therefore, it is important to have data from different

years to improve generalization. When we combine data from year1C1
and year2C1

,
the results improved due to the increase in sample size and the combination
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Table 3. Average results for each stage in terms of F1 for C3.

N-STL-SLAAE-STL-SLAAE-MTL-SL AAE-MTL-SSL

Data (%)App (%) SVM VATLapSVM MT-iLSVM S2MTLDMTRLDECISIVEMEAN

Initial

Demo. 9.16 100 0.8 0.75 0.79 0.78 0.72 0.83 0.87 0.79

Edu. 18.07 40 0.69 0.84 0.88 0.88 0.79 0.9 0.89 0.84

Profile 24.1 20 0.75 0.6 0.66 0.7 0.57 0.68 0.76 0.67

Star 60.24 10 0.87 0.88 0.87 0.92 0.86 0.91 0.92 0.89

Logic 63.86 6 0.92 0.87 0.9 0.91 0.83 0.93 0.95 0.90

Video S. 100 4 0.56 0.66 0.64 0.77 0.74 0.79 0.82 0.71

MEAN 0.77 0.77 0.79 0.83 0.75 0.84 0.87

Late

Video E. 100 2 0.41 0.41 0.52 0.51 0.52 0.54 0.56 0.50

Interview 100 >0.5 0.2 0.2 0.23 0.37 0.38 0.44 0.47 0.33

Final 100 >0.1 0.09 0.08 0.08 0.11 0.09 0.14 0.22 0.12

MEAN 0.23 0.23 0.28 0.33 0.33 0.37 0.42

of profiles from different years. In terms of stages, it is clear from the right
figure that algorithms can perform well while there is enough data to generalize.
However, in later stages, there is a drop in performance caused by the small
sample size. Algorithms based on AAE-MTL-SSL perform significantly better
than others. They achieved a gain of 4x compared to the best standard case
(SVM) for later stages. Additionally, our method outperforms the second best
with a 12% gain.

Results for C2 are shown in Table 2. This process contains more longitudi-
nal data (6 semesters), which makes our model more robust to changes across
years. Additionally, the number of applicants is more evenly distributed and
more applicants reach the final stages, which causes the average performance
to be more similar across all stages. In other words, the drop in performance is
less steep for later stages compared to C1. We also see that learning from unsu-
pervised samples is less impactful, as methods from AEE-MTL-SL (MT-iLSVM)
have similar performance to methods in AEE-MTL-SSL (DMTRL, DECISIVE).
Our method outperforms the other methods in this case (16% gain), which shows
the importance of the multi-task and regularization in our structure. Compared
to SVM, the gain is about 3.46x. Both gains related to the later stages.

Table 3 shows the results for C3. This process has an overall smaller sample
size and only two years are available. We reason that the methods could overfit
the training set and not generalize so well to the validation set. Nevertheless,
the algorithms in the AAE-MTL-SSL setting still have the best performance,
but the difference from the standard case is smaller when compared to the other
experiments in later stages (80% gain). Our approach can outperform the other
methods with a 13% gain over DMTRL.

7 Conclusion

We presented a framework that combines adversarial autoencoders (AAE) and
multi-task semi-supervised learning (MTSSL) to train an end-to-end neural
network for all stages of a selection problem. We showed that the AAE makes
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it possible to create a complete dataset using data imputation, which allows
downstream models to be trained in SL and SSL settings. We also introduced
a temporal regularization on the model to use information from different stages
but still conserve the temporal structure of the process. By combining MTL and
SSL, our method can outperform other STL and SL methods. Our validation
includes real-world data and our method is able to achieve a gain of 4x over
the standard case and a 12% improvement over the second best method. For
future research, we want to introduce interpretability techniques to understand
the profiles learned by the model and investigate the effect of bias. We also want
to apply the framework to other multi-stage processes in different fields.
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