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Abstract. Medical image segmentation is a fundamental and challeng-
ing problem for analyzing medical images due to the approximate pixel
values of adjacent tissues in boundary and the non-linear feature between
pixels. Although fully convolutional neural networks such as U-Net has
demonstrated impressive performance on medical image segmentation,
distinguishing subtle features between different categories after pooling
layers is still a difficult task, which affects the segmentation accuracy.
In this paper, we propose a Mini-Inception-Residual-Dense (MIRD) net-
work named MIRD-Net to deal with this problem. The key point of our
proposed MIRD-Net is MIRD Block. It takes advantage of Inception,
Residual Block (RB) and Dense Block (DB), aiming to make the network
obtain more features to help improve the segmentation accuracy. There
is no pooling layer in MIRD-Net. Such a design avoids loss of information
during forward propagation. Experimental results show that our frame-
work significantly outperforms U-Net in six different image segmentation
tasks and its parameters are only about 1/50 of U-Net.

Keywords: Medical image segmentation * Inception -+ RB - DB

1 Introduction

Medical image segmentation is the key to determining whether medical images
can provide a reliable basis for clinical diagnosis and treatment. However, the
borders between tissues in medical images may be blurred by the imaging acqui-
sition, which increases the difficulty on segmentation. The classical CNN (non-
fully convolutional networks) such as [18] and Residual connections network
(Res-Net) [6] can only classify separate examples and not a whole segmented
pixel, because the fully connected layers are used at the end of the network,
which can only mark the category of the whole image and not per pixel. Nev-
ertheless, in many medical imaging tasks, especially in medical segmentation, a
class label is desired to be assigned to each pixel. The breakthrough by Ciresan
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et al. [3] was due to sliding-window setup which can predict the class label of
each pixel by providing a local context (neighbor region) around that pixel as
input. They won the EM segmentation challenge at ISBI 2012.

However, the approach proposed by Ciresan et al. [3] has some limitations:
(1) it needs a long time to process the training image because the network
must be run for each neighbor region, and there is a slight redundancy due to
overlapping between the neighboring regions. (2) it is hard to keep balance in
context and localization accuracy. Smaller neighbor regions make the network
see context weakly, while larger neighbor regions need more pooling layers that
reduce the localization accuracy. Fully convolutional network (FCN) uses the
convolutional layer to replace the fully connected layer, getting the probability
of each pixel rather than the scalar of the whole image, which improves the
accuracy of segmentation [17]. Moreover, the advantage of FCN is indeed the
possibility to have a whole image and its segmentation as training inputs, rather
than feeding all possible separate sub-images centered on each labelled pixel like
the strategy in Ciresan et al. [3].

Inspired by FCN, U-Net, a symmetrical and fully convolutional network, was
proposed [16] and widely used because of its elegant architecture. The network
has a contracting path and an expanding path that is more or less symmetric
to the contracting path, yielding an architecture like letter U. In the expanding
path, pooling operators are replaced by upsampling operators to increase the
resolution of the output, making the high resolution features from the contract-
ing path combined with the upsampling output through the skip connections,
which allows the network to learn more precise feature based on this information.
However, the U-Net architecture has one drawback that is difficult to improve
performance by shallowing or deepening its depth. Technically, the network with
deeper depth is supposed to learn more features and results in better segmenta-
tion, while gradients may vanish during the training period, making the network
hard to train [8,20].

In recent years, some variants of U-Net have been proposed [9,13,25]. And
these network contain the approximate backbone consisting of downsampling
layers, upsampling layers, and skip connection (see Fig. 1). The differences among
them are the use of different modules and the connected way between layers.
Residual Block (RB) [6] and Dense Block (DB) [7] are widely integrated into U-
Net due to their scalability. And they can also make it is easy to train the network
with deep depth, enabling the network to learn more represented information.
Furthermore, the concatenation in Dense-Net makes the final classifier use fea-
tures from all previous layers (different from classical CNN approaches), resulting
in better performance of classification. The challenge is to create a network that
excels in accuracy without gradient vanishing and with fewer parameters.

Motivated by previous work and existing problem in U-net, we propose a
new symmetrical network named MIRD-Net. It integrates Residual Block (RB)
[6] and Dense Block (DB) [7] into the inception architecture [20], aiming to
excel in accuracy with fewer parameters. The exploration of our network con-
sists of four steps. First, we choose ten layers (including the pooling layers, the
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Fig. 1. Approximate backbone in the variants of U-Net.

convolutional layers, the upsampling layers) as a backbone of the network. Sec-
ondly, we try to add RBs as functional modules to the up-down sampling path,
and the positions of blocks are discussed through experiments. Thirdly, the back-
bone is equipped with two DBs when the best positions of RBs are determined.
We combine two DBs with RBs, getting two Mini-Inception-Residual-Dense
Blocks (MIRD) to replace two RBs which are located in downsampling path.
Finally, the pooling layers are replaced with 3 x 3 convolutional layers. The main
contributions are as follows: (1) a shallower backbone to decrease the number of
parameters. The combination of inception architecture, RB and DB makes the
network learn more represented features; (2) simple and flexible implementa-
tion of our proposed network architecture; (3) great performance for challenging
medical image segmentation tasks.

2 Related Work

2.1 FCN in Medical Images

CNNs have reached the-state-of-the-art in medical segmentation after FCN was
proposed, consisting of symmetrical backbone with downsampling path and
upsampling path, which allows combining the feature extracted by downsam-
pling with the feature recovered by upsampling through skip connections. Korez
et al. [10] proposed a 3D version of FCN to process the MRI image of the human
spine. Zhou et al. [24] combined 2D FCN with 3D Majority voting algorithm,
achieving great performance in Three-Dimensional segmentation task of human
torso CT. Olaf Ronneberger et al. [16] extended FCN to a symmetrical U-Net
and won the first prize on the ISBI cell tracking challenge 2015.

2.2 Improvements Based on U-Net

Comparing U-Net with FCN, one important modification in U-Net is skip con-
nections, making the network to fuse the information of the up-down sampling
path, which can generate high resolution and more accurate mask. In addition,
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the U-shaped architecture can be straightened into Line-shaped network approx-
imately, which is similar to the Dense-Net where skip connections are used [7].
Inspired by Dense-Net, Z. Zhou et al. [25] altered U-Net by transforming skip
connections into dense skip connections, which makes each node connected with
all previous nodes like Dense-Net. Drozdzal et al. [4] demonstrated the impor-
tance of skip connections in U-Net and combined cross entropy and dice coef-
ficient as a loss function. Cicek et al. [2] proposed a 3D version of U-Net to
implement 3D image segmentation by inputting continuous 2D slices. Fausto et
al. [14] converted the 3D version of U-Net to V-net and used dice coefficient
instead of binary cross entropy as a loss function to segment the prostate MRI
image. Brosh et al. [1] added skip layers to the first downsampling layer and
the last upsampling layer in U-Net individually, which can discover the lesion of
brain MRI precisely. X. Li et al. [12] proposed H-DenseUnet with mixed dense
connections, reducing the memory consumption of GPU during the training step
and excelling in Liver MICCAI 2017. Steven Guan et al. [5] designed FD-Unet to
remove artifacts of 2D PAT images reconstructed from sparse data and compared
FD-Unet with the standard U-Net in terms of reconstructed image quality.

2.3 Functional Operations

In addition to the improvements in architecture, advances are being made in
some functional operations. Pooling layers as a basic module are widely used in
CNNs, which can enlarge the Receptive Field (RF) to make network get more
effective information during the training period. However, Pooling operations
also lose some spatial information due to reducing the size of images. Theoret-
ically, we cannot remove pooling layers and enlarge the size of convolutional
kernels directly, because the larger kernel would result in increasing computa-
tional consumption. The larger kernel can be replaced by multiple smaller kernel,
keeping the parameter low, which can be seen as imposing a regularization on
the larger kernel [18]. Assuming that now we have the 3 x 3 kernel and the 7 x 7
kernel, and separately implementing the 3 x 3 kernel three times, the 7 x 7 kernel
once on the same image. According to (1), we can get the same size of output
if other conditions (S and P) are consistent. Moreover, F is assumed to be the
channels both of input and output, then a single 7 x 7 convolution would require
7x7x F x F = 49F? parameters, the triple 3 x 3 convolutions are parametrized
by 3(32F?) = 27F2.

N=(W-F+2P)/S+1 (1)
where W is the size of an input image, N is the size of an output image through
convolutional operations, F' is the size of kernels, P is padding size and S is
sliding step. Yu. F et al. [22] used the dilated convolution to replace the pooling
operation, which has two advantages. First, it can enlarge the RF without losing
information like the pooling operation. Secondly, it can be applied in well situ-
ations where the image requires global information. Conditional Random Field
(CRF) has been used in the field of image segmentation since 2011 [11]. Later,
the CRF was added as a functional module to the back end of the neural network
to optimize the segmentation result [23].
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(a) RSU-Net(3.5,8,10) (b) RSU-Net(2,5.8,11) (c) RSU-Net(3,5.,8,12) (d) RSU-Net(2,5.8,12)
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Fig. 2. Brief description of U-Net, Residual-Shallow U-Net (RSU-Net), MIRD-Net.
Residual Block, Dense Block and MIRD Block are shown in Fig. 3, Fig.4 and Fig.5
respectively. And (3,5,8,10), (2,5,8,11), (3,5,8,12), (2,5,8,12) represent the positions of
Residual Block in the Residual-Shallow U-Net.

3 MIRD-Net

3.1 Overview

The MIRD-Net proposed by us is briefly shown in Fig.2(f). It consists of skip
connections, downsampling path and upsampling path, but has four different
points from U-net: (1) a shallower backbone is used in MIRD-Net, aiming to keep
parameter low; (2) the MIRD-Net has no pooling layers, such a design avoids loss
of information during forward propagation; (3) MIRD-Net is also designed with
MIRD Blocks (Mini-Inception-Residual-Dense Block), which makes the network
learn more represented features; (4) two Residual Blocks (RB) are embedded in
the upsampling path.

3.2 MIRD Block

Residual Block. Experiments have shown that the extraction of features is
affected by the depth of the network [19,20]. Increasing the layers of a network
can make it learn more features, but it can also be accompanied by over-fitting,
gradients vanishing and other issues, which leads to the extracted features not
being fully used. K. He et al. [6] proposed a residual network, which can reuse
the feature from the previous layer (see in Fig. 3) and ease the training of deeper
networks.

x; = Fy(xi—1) + 211 (2)

where x; represents the output of the current layer, x; 1 is the output of the
previous layer, and H;(-) is the non-linear calculation including Conv, ReLU [21],
BN [8] in the Residual Block.

Inspired by that, we first reduce the number of layers of U-Net [16] to keep the
parameters low, then depositing four Residual Blocks (RB) on up-down sampling
path (two RBs on upsampling path and another two RBs on downsampling
path) to optimize the performance of the network. Theoretically, the number
of Residual Blocks can be chosen alternatively but guided by the target of low
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Fig. 3. The Residual Block used in the experiment, 3 x 3 and 1 X 1 are the size of filers
with N channels, and F'(z;—1) includes Conv, ReLU [21] and BN (Batch Normalization

[81)

parameters and good performance, four Residual Blocks are a more reasonable
choice. In the case of four Residual Blocks, we have a further discussion on the
position where the Residual Blocks are located (see Fig.2(a—d)). And after the
position determined, we optimize the Residual Block to get a more elegant block
in the same position.

Dense Block. Within the Dense Block [7], each layer is connected to all pre-
vious layers through concatenation as used in U-Net [16], which has several
advantages: (1) it strengthens feature propagation; (2) it alleviates the gradient
vanishing during the training period; (3) it makes the feature reused. Figure4
shows the layout of a Dense Block. Formally, the x; layer are connected with all
previous layers (x;—1,xj—2,...,Z0):

x; = flx(zi=1, 21-2,...,20)] (3)

where x; represents the output of the current layer, z;_1,x;_o,...,z¢ are the
output of all previous layers connected to x;, *(+) is the concatenation operation,
f[] is the non-linear calculation including Conv, ReLU [21], BN [8] in the Dense
Block.

m
co+ th
i=1

3
cotl Co+li+l, BN + ReLU + Conv
\ —— Concatenation

Fig. 4. The architecture of a Dense Block with m convolution layers, co is the channel
of input image and I; (growth rate) is the channel of the convolved image. ReLU [21]
and BN [8] are attached to each convolution layer in a Dense Block.
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The Dense Block is effective for our proposed network, which mainly leads
to three major advantages: (1) the parameter space can be managed simply
through the [; (growth rate); (2) generally, it is hard to make sure that gradients
flow smoothly in back propagation. But the dense connections in Dense Block
can alleviate the gradient vanishing; (3) the datasets used in our experiments
are small. Therefore, it is important to reuse the features, which can make the
network get more information. The dense connections comprehensively utilize
features from previous layers (instead of only the last layer), thus making it
easier to get a smooth decision function with better performance.

Motivated by Residual Block and Dense Block, we integrate them into the
inception architecture [20], which is named Mini-Inception-Residual-Dense Block
(see in Fig.5). And depositing two MIRD Blocks on downsampling path where
two Residual Blocks are located to replace them, while removing pooling layers.
The reason that drives us to remove the pooling layers is because pooling oper-
ations could discard some pixel-level information. Let us assume the z; is the
output of MIRD Block, and the x;_1 is the input of MIRD Block, the relation
between xz; and x;_; is defined in (4):

z; = F(H(G(71-1))) + 211 (4)

where G(+) is the function of Inception Block, H(-) is the calculation in Dense
Block, F() is the calculation in Residual Block.

1
\ 1
1 1
1 1
,—l 1 1
1 1
1 I N
I RAvZa]
1 1
- - 1 !
1
Lo
1
/' !
7’ U
___________________________________ .
IT’ Conv + BN + ReLU — Concatenation —»@ Shortcut + Add
) Residual Block ! Inception Block Dense Block

Fig. 5. Mini-Inception-Residual-Dense Block.

3.3 Evaluation Metrics

We use the number of parameters of each network and a well-known Dice coeffi-
cient for evaluation. The size of each dataset used in our experiment is small like
the cells dataset used in U-net (only 30 images), which is inappropriate to divide
them into three parts including training set, validation set and test set. There-
fore, we split each dataset into five subsets (F1-F5) equally and run a 5-fold
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cross-validation used in [15]. The MDice (Mean Dice coefficient) and StdDice
(Std of Dice coefficient) are defined in (5) (6):

| 214, By
MDice = e el
Z Z A, 1By (5)

(6)

where A;; is the predicted image, B;; is the ground truth corresponding to A,
and m is the number of images in one subset, r is the fold used in cross-validation.
The medical segmentation tasks in our experiments are binary classification
problem, so the ground truth B;; is the 0-1 matrix.

roo1 xmo 20A; N Big| V2
StdDice = \/Zi_l(m 2= [Aij[+]Bi;] M Dice)
r—1

4 Experiments

4.1 Experimental Platform and Datasets

The experiment was conducted on a computer with Intel(R) Core (TM) i7-7700
CPU @ 3.60 GHz, Nvidia GeForce GTX 1080 Ti, 16 GB RAM, and Samsung SSD
850 EVO 500 GB. The operating system is Windows 10(1801). All experiments
were run under the Keras framework.

Electron microscope image of cells dataset used in U-Net contains 30 images
[16]. The size of each image is 512 x 512 pixels. To compare with U-Net, we
choose 30 images in other five datasets (Retinal extraction vessel, Nuclei, Lung,
Cervical Cytology, Skin Lesion) respectively, which makes the size of datasets
consistent. The detailed information about datasets is presented in Table 1.

Table 1. Detailed information of datasets.

Data name Source Image size Modality

Retinal vessel grand-challenge.org 512 x 512 x 3 | Non-mydriatic camera
Cells ISBI 2012 512 x 512 Microscopy

Nuclei Data Science bowl 2018 | 360 x 360 Microscopy

Lung Kaggle 512 x 512 CT

Cervical cytology | grand-challenge.org 512 x 512 Microscopy

Skin lesion ISIC 2017 512 x 512 x 3 | Dermoscopy

4.2 Implementation Details

To start with, we explore the impact of depth on U-Net [16] by reducing and
increasing the layers of U-Net. Secondly, based on shallower U-Net, we reduce
more layers to get smaller backbone and add four Residual Blocks (RB) into
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up-down sampling path (two RBs on upsampling path and another two RBs on
downsampling path) and have a discussion on the position of Residual Block.
Thirdly, based on the best position where the RBs are located; Inception, Dense
Block and Residual Block are incorporated into Mini-Inception-Residual-Dense
Block to replace the RBs in downsampling path, while the pooling layers also
are removed.

For hyperparameters, each convolution in the block is followed by BN [8] and
ReLU [21], using Adam optimizer with the following parameters: 5; = 0.9, 82 =
0.999, ¢ = 1e—8. The sigmoid function is used in the last layer because our target
was a binary classification problem. Due to the small size of Computer’s graphics
memory, a batch size of 3 was used while setting the epochs to 30. The training
image and its corresponding labels are simultaneously rotated counterclockwise
by 90°, 180°, and 270° to enlarge the dataset, the kernel size is 3 x 3 and the
stride is 1 in convolutional layers except the specific layer in the block.

For the block we used in the experiment, 1 x 1 convolutional layer is attached
to the output of MIRD Block. And f(-) in the Dense Block (Eq.(2)) actually
includes BN-ReLU-Conv(1 x 1)-BN-ReLU-Conv(3 x 3). The cross-entropy is used
as the loss function for all the networks.

4.3 Results and Comparison

We apply deeper U-Net (DU-Net), U-Net, shallower U-Net (SU-Net), Residual-
Shallow U-Net with different positions of Residual Blocks (see Fig. 2(a—d)) and
MIRD-Net on six segmentation tasks (see Table1). The Dice coefficient and
the parameters of networks discussed are reported in Table 2 and Table 3. The
segmented results on some example images are shown in Fig. 6.

Table 2. Average Dice coefficient and its standard deviation for 5-fold cross validation.

Models Skin Lung Nuclei Cervical Vessel Cells

Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std
DU-Net 0.455 | 0.063 | 0.632 | 0.069 | 0.851 | 0.085 | 0.844 | 0.025 | 0.651 | 0.105 | 0.847 | 0.032
U-Net 0.514 | 0.044 | 0.748 | 0.087 | 0.897 | 0.102 | 0.886 | 0.077 | 0.698 | 0.087 | 0.869 | 0.115
SU-Net 0.469 | 0.085 | 0.667 | 0.041 | 0.902 | 0.068 | 0.882 | 0.058 | 0.721 | 0.098 | 0.866 | 0.076

RSU(25812) | 0.603 | 0.095 | 0.709 | 0.077 | 0.896 | 0.064 | 0.855 | 0.133 | 0.715 | 0.105 | 0.892 | 0.034
RSU(25811) | 0.617 | 0.117|0.731 | 0.124 | 0.909 | 0.125| 0.864 | 0.058 | 0.714 | 0.094 | 0.887 | 0.072
RSU(35812) | 0.624 | 0.047 | 0.772 | 0.076 | 0.911 | 0.118 | 0.897 | 0.029 | 0.730 | 0.098 | 0.895 | 0.046
RSU(35810) | 0.656 | 0.126 | 0.794 | 0.089 | 0.928 | 0.097 | 0.902 | 0.047 | 0.742 | 0.086 | 0.902 | 0.021
MIRD-Net |0.742 | 0.076 |0.810 | 0.067 | 0.954 | 0.075|0.925 | 0.017 | 0.765 | 0.047 | 0.919 | 0.029

Table 3. The parameters of each network (x10°).

DU-Net | U-Net | SU-Net | RSU(25812) | RSU(25811) | RSU(35812) | RSU(35810) | MIDR-Net
40.61 |31.03 |25.42 |0.47 0.51 0.47 0.51 0.59
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Table 2 shows average Dice coefficient and its standard deviation for 5-fold
cross validation. When compared to U-Net, DU-Net decreases the accuracy, but
SU-Net has better performance on Nuclei and Vessel. It shows that DU-Net is
likely to overfit. The Residual Blocks in different positions of up-downsampling
path can affect the performance of the network. RSU(35810) (Fig. 2(a)) performs
best in all four RSU-Nets we discussed and outperforms U-Net in six datasets.
Moreover, it can be seen that there is obvious improvement by MIRD-Net, which
achieves elegant results. The parameters of MIRD-Net are only about 1/50 of
U-net (Table 3), which saves the storage memory.

©
L2
>.
c
@
o

Vessel

2 - ; 2y
orlglnal label DU Net U-Net SU-Net RSU(25812) RSU(25811) RSU(35812) RSU(35810) MIRD-| Net

Fig. 6. Some results processed by DU-Net, U-Net, SU-Net, RSU-Net(2,5,8,12), RSU-
Net(2,5,8,11), RSU-Net(3,5,8,12), RSU-Net(3,5,8,10) and MIRD-Net. (Color figure
online)

For the slight differences which are hard to see directly, we use red and green
circles to highlight each of them (Fig.6). The region in red circles represents
incomplete correct mask which is compared to the label, the green circles in the
results of MIRD-Net show the better performance than that of other networks
in the same region. Despite a few incomplete correct masks still exist in the final
results, MIRD-Net outperforms the other networks discussed by us in segmenting
tiny structure and the edge of target.

The reasons why MIRD-Net has a better segmentation result than that of U-
Net are as following: (1) there are no pooling layers in MIRD-Net, such a design
helps alleviate loss of information during forward propagation; (2) the different
kernels (1 x 1 and 3 x 3) used in MIRD-Block can make the network obtain
large-structure information and tiny-structure information simultaneously; (3)
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MIRD-Net not only use the standard skip connections used in U-Net but also
reuse the feature from previous layer in MIRD-Block, which results in more
represented features learned by the network; (4) the connections used in MIRD
Block can alleviate the gradient vanishing during the training period.

5 Conclusions

In this paper, we propose a new symmetric deep neural network for medical
image segmentation. The new network takes advantage of Inception, Res-Net
and Dense-Net, outperforming U-Net in six different image segmentation tasks.
Its parameters are only about 1/50 of U-Net. Furthermore, the MIRD Block
of our proposed architecture can also be simply added to other backbones as a
functional module. The shortcoming is the way to select the position of MIRD
Block, and we have not proven that the position of MIRD Block is the best
choice in theory. In the future, the research would focus on the relevance between
performance and the position of MIRD Block in different backbones, finding a
better strategy to determine the position of MIRD Block and simplifying this
structure.
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