®

Check for
updates

Exploiting the Matching Information
in the Support Set for Few Shot Event
Classification

Viet Dac Lai'®™) | Franck Dernoncourt?, and Thien Huu Nguyen'!

! Department of Computer and Information Science,
University of Oregon, Eugene, USA
{vietl,thien}@cs.uoregon.edu
2 Adobe Research, Lehi, USA
dernonco@adobe.com

Abstract. The existing event classification (EC) work primarily focuses
on the traditional supervised learning setting in which models are unable
to extract event mentions of new/unseen event types. Few-shot learning
has not been investigated in this area although it enables EC models to
extend their operation to unobserved event types. To fill in this gap, in
this work, we investigate event classification under the few-shot learning
setting. We propose a novel training method for this problem that exten-
sively exploit the support set during the training process of a few-shot
learning model. In particular, in addition to matching the query exam-
ple with those in the support set for training, we seek to further match
the examples within the support set themselves. This method provides
more training signals for the models and can be applied to every metric-
learning-based few-shot learning methods. Our extensive experiments on
two benchmark EC datasets show that the proposed method can improve
the best reported few-shot learning models by up to 10% on accuracy
for event classification.

Keywords: Event classification + Auxiliary loss + Few-shot learning

1 Introduction

Event Classification (EC) is an important task of Information Extraction (IE)
in Natural Language Processing (NLP). The target of EC is to classify the
event mentions for some set of event types (i.e., classes). Event mentions are
often associated with some words/phrases that are responsible to trigger the
corresponding events in the sentences. For example, consider the following two
sentences:

(1) The companies fire the employee who wrote anti-diversity memo.
(2) The troops were ordered to cease fire

© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 233-245, 2020.
https://doi.org/10.1007/978-3-030-47436-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_18

234 V. D. Lai et al.

In these examples, an EC system should be able to classify the word “fire”
in the two above sentences as an Employment-Termination event and an Attack
event, respectively. As demonstrated by the examples, a notable challenge in
EC is that the similar surface forms of the words might convey different events
depending on the context. Two main methods have been employed for EC. The
first approach explores linguistic features (e.g., syntactic and semantic proper-
ties) to train statistical models [9]. The second approach, on the other hand,
focuses on developing deep neural network models (e.g., convolutional neural
network (CNN) and recurrent neural network (RNN)) to automatically learn
effective features from large scale datasets [5,13]. Due to the development of the
deep learning models, the performance for EC has been improved significantly
[14,16,17,19,23].

The current EC models mainly employ the traditional supervised learning
setting [17,19] where the set of event types for classification has been pre-
determined. However, once a model is trained on the datasets with the given set
of event types, it is unable to detect event mentions of unseen event types. To
extend EC to new event types, a common solution is to annotate additional train-
ing data for such new event types and re-train the models, which is extremely
expensive. It is thus desirable to formalize EC in the few-shot learning setting
where the systems need to learn to recognize event mentions for new event types
from a handful of examples. This is, in fact, closer to how humans learn to do
tasks and make the EC models more applicable in practice. However, to our
knowledge, there has been no prior work on few-shot learning for EC.

In few-shot learning, we are given a support set and a query instance. The
support set contains examples from a set of classes (e.g. events in EC). A learning
model needs to predict the class, to which the query instance belongs, among
the classes presented in the support set. This is done based on the matching
information between the query example and those in the support set. To apply
this setting to extract the examples of some new type, we need to collect just a
few examples of the new type and add them to the support set to form a new
class. Afterward, whenever we need to predict whether a new example has the
new type or not, we can set it as the query example and perform the models in
this setting.

In practice, we often have some existing datasets (denoted by D) with exam-
ples for some pre-defined types. The previous work on few-shot learning has
thus exploited such datasets to simulate the aforementioned few-shot learning
setting to train the models [26]. Basically, in each episode of the training pro-
cess, a subset of the types in D is sampled for which a few examples are selected
for each type to serve as the support set. Some other examples are also chosen
from the remaining examples of each sampled type to establish the query points.
The models would then be trained to correctly map the query examples to their
corresponding types in the support set based on the context matching of the
examples [7].

One potential issue with this training procedure is that the training signals
for the models only come from the matching information between the query

Matching Information in the Support Set for Few Shot Event Classification 235

examples and the examples in the support set. The available matching infor-
mation between the examples in the support set themselves is not yet explored
in the existing few-shot learning work [26,28], especially for the NLP tasks [7].
While this approach can be acceptable for the tasks in computer vision, it might
not be desirable for NLP applications, especially for EC. Overall, datasets in
NLP are much smaller than those in computer vision, thus limiting the variety
of the context for training purposes. The ignorance of the matching information
for the examples in the support set might cause inefficiency in using the train-
ing data for EC where the models cannot fully exploit the available information
and fail to achieve good performance. Consequently, in this work, we propose
to simultaneously exploit the matching information between the examples in
the support set and between the query examples with the examples in the sup-
port set to train the few-shot learning models for EC. This is done by adding
additional terms in the loss function (i.e., the auxiliary losses) to capture the
matching knowledge between the examples in the support set. We expect that
this new training technique can better utilize the training data and improve the
performance of few-shot learning in EC.

We extensively apply the proposed training method on different metric learn-
ing models for few-shot learning on two benchmark EC datasets. The experi-
ments show that the new training technique can significantly improve all the
considered few-shot learning methods over the two datasets with a large per-
formance gap. In summary, the contribution of this work includes: (i) for the
first time in the literature, we study the few-shot learning problem for event
Classification, (ii) we propose a novel training technique for the few-shot learn-
ing models based on metric learning. The proposed training method exploits
the matching information between the examples in the support set as additional
training signals, and (iii) we achieve the state-of-the-art performance for EC on
the few-shot learning setting, functioning as the baselines for the future research
in this area.

2 Related Work

Early studies in event classification mainly focus on designing linguistic features
[1,9,12] for statistical models. Due to the development of deep learning, many
advanced network architectures have been investigated to advance the event
classification accuracy [5,13,17-19,21,22]. However, none of them investigates
the few-shot learning problem for EC as we do in this work. Although some
recent studies have considered a related setting where event types are augmented
with some keywords [3,11,24], these works do not explicitly examine the few-shot
learning setting as we do in this work. Some other efforts on zero-shot learning
for event classification [8] are also related to our work in this paper.

Few-shot learning facilitates the models to learn effective latent features with-
out large scale data. The early studies apply transfer learning to fine-tune the
pre-trained models, exploiting the latent information from the common classes
with adequate instances [2,4]. Metric learning, on the other hand, learns to

236 V. D. Lai et al.

model the distance distribution among the observed classes [10, 26, 28]. Recently,
the idea of a fast learner that can generalize to a new concept quickly is intro-
duced in meta-learning [6,25]. Among these methods, metric-learning is more
explainable and easier to train and implement compared to transfer learning
and meta-learning. Notably, the prototypical networks in metric learning achieve
state-of-the-art performance on several FSL benchmarks and show its robust-
ness against noisy data [7,26]. Although many FSL methods are proposed for
image recognition [6,10,25,26,28], there have been few studies investigating this
setting for NLP problems [7,29)].

3 Methodology

3.1 Notation

The task of few-shot event classification is to predict the event type of a query
example x given a support set S and a set of event type T = {t1,t2,...,tn} (N
is the number of event types). In few-shot learning, S contains a few examples
for each event type in T'. For convenience, we denote the support set as:

S :{(5},a},t1), ce (sfﬁ,a{(l,tl)
(1)

(s}Vaa}VvtN)v~-~>(8§Naa§NatN)}a

where (sf, a{,ti) indicates that the a{-th word in the sentence s{ is the trigger
word of an event mention with the event type t;, and K, Ko,..., Ky are the
numbers of examples in the support set for each type t1,ts,...,tN respectively.
For simplicity, we use wi,ws,...,w; to represent the word sequence for some
sentence with length [in this work.

Similarly, the query example = can also be represented by x = (g, p, t) where
q, p and t represent the query sentence, the position of the trigger word in the
sentence, and the true event type for this event mention respectively. Note that
t € T is only provided in the training time and the models need to predict this
event type in the test time.

In practice, the numbers of support examples in S (i.e., Ki,...,Ky) may
vary. However, to ease the processing and speed up the training process with
GPU, similar to recent studies in FSL [7], we employ the N-way K-shot FSL
setting. In this setting, the numbers of instances per class in the support set are
equal (K =...= Ky =K > 1) and small (K € {5,10}).

Note that to evaluate the few-shot learning models for EC, we would need
the training data Dy.q;, and the test data Dies. For few-shot learning, it is
crucial that the sets of event types in Dyyqin and Dyess are disjoint. The event
type set T in each episode would then be a sample of the sets of event types
in Dipgin Or Dyegt, depending on the training and evaluation time respectively.
Also, as mentioned in the introduction, in one episode of the training process, a
set of query examples (i.e., the query set) would be sampled so it involves the

Matching Information in the Support Set for Few Shot Event Classification 237

similar event types T as the support set, and the examples for each type in the
query set would be different from those in the support set. At the test time, the
classification accuracy of the models over all the examples in the test set would
be evaluated.

3.2 Few-Shot Learning for Event Classification

The few-shot learning framework for EC in this work follows the typical metric
learning structures in the prototypical networks [7,26], involving three major
components: instance encoder, prototypical module, classifier module.

Instance Encoder: Given a sentence s = {wq, wa, ..., w;} and the position of
the trigger word a (i.e., w, is the trigger word of the event mention in s and (s, a)
can belong to an example in S or the query example), following the common
practice in EC [5,19], we first convert each word w; € s into a real-valued vector
to facilitate the neural computation in the following steps. In particular, in this
work, we represent each word w; using the concatenation of the following two
vectors:

— The pre-trained word embedding of w;: this vector is expected to capture the
hidden syntactic and semantic information for w; [15].

— The position embedding of w;: this vector is obtained by mapping its relative
distance to the trigger word w, (i.e., i — a) to an embedding vector in the
position embedding table. The position embedding table is initialized ran-
domly and updated during the training process of the models. The purpose
of the position embedding vectors is to explicitly inform the models of the
position of the trigger word in the sentence [5].

After converting w; into a representation vector e;, the input sentence s
becomes a sequence of representation vectors £ = ej,es,...,¢e;. Based on this
sequence of vectors, a neural network architecture f would be used to transform
E into an overall representation vector v to encode the input example (s,m)
(i.e., v = f(s,m)). In this work, we investigate two network architectures for the
encoding function f, i.e., one early architecture for EC based on CNN and one
recent popular architecture for NLP based on Transformers:

CNN Encoder: This model applies the temporal convolution operation with
some window size k and multiple filters over the input vector sequence FE, pro-
ducing a hidden vector for each position in the input sentence. Such hidden
vectors are then aggregated via the max-pooling operation to obtain the overall
representation vector v for (s,m) [5,7].

Transformer Encoder: This is an advanced model to encode sequences of
vectors based on attention mechanism without recurrent neural network [27].
The transformer encoder involves multiple layers; each of them consumes the
sequence of hidden vectors from the previous layer to generate the sequence of
hidden vectors for the current layer. The first layer would take F as the input

238 V. D. Lai et al.

while the hidden vector sequence returned by the last layer (i.e., the vector
at the position a of the trigger word) would be used to constitute the overall
representation vector v in this case. Each layer in the transformer encoder is
composed of two sublayers (i.e., a multi-head self-attention layer and a feed-
forward layer) augmented with a residual connection around them [27].

Prototypical Module: The prototypical module aims to compute a single
prototype vector to represent each class in T of the support set. In this work,
we consider two versions of this prototypical module in the literature. The first
version is from the original prototypical networks [26]. It simply obtains the
prototype vector ¢; for a class ¢; using the average of the representation vectors
of the examples with the event type t; in the support set .S:

1 '
C; = K Z f(si,ai) (2)

(s],a] t:)€S

The second version, on the other hand, comes from the hybrid attention-
based prototypical networks [7]. The prototype vector is a weighted sum of the
representation vectors of the examples in the support set. The example weights
(i.e., the attention weights) are determined by the similarity of the examples in
the support set with respect to the query example x = (¢, p, t):

ci= Y oyf(sl,al)
(s?,al.t;)€S

exp(bij) (3)
D5k t)es exP(bik)

K3

b; = o(f(s,al) © f(q.p))

In this formula, ® is the element-wise multiplication and sum is the summa-
tion operation done over all the dimensions of the input vector.

where a;; =

Classifier Module: In this module, we compute the probability distribution
over the possible types for x in T using the distances from the query example
x = (¢,p,t) to the prototypes of the classes/event types T in the support set:

P(y —_ t1|$, S) —]\?Xp(_d(f(%p)7ci))

> j=1 exp(=d(f(a:p), ;)

where d is a distance function, and ¢’ and ¢’ are the prototype vectors obtained
in either Eq. (2) or Eq. (3).

In this paper, we consider three popular distance functions in different few-
shot learning models using metric learning:

(4)

Matching Information in the Support Set for Few Shot Event Classification 239

— Cosine similarity in matching networks (called Matching) [28]

— Euclidean distance in the prototypical networks. Depending on whether the
prototype vectors are computed with Eq.2 or 3, we have two variations of
this distance function, called as Proto [26], and Proto+Att (i.e., in hybrid
attention-based prototypical networks [7]) respectively.

— Learnable distance function using convolutional neural networks in relation
networks (called Relation)

Given the probability distribution P(y|z,.S), the typical way to train the few
shot learning framework is to optimize the negative log-likelihood function for x
(with ¢ as the ground-truth event type for x) [7,26]:

Lquery(xy S) = - 10g P(y = t|$7 S) (5)

Matching the Examples in the Support Set: The typical loss function
for few-shot learning in Eq.5 aims to learn by matching the query example x
with the examples in the support set S via the prototype vectors. An issue
with this mechanism is it only employs the matching signals between the query
example and the support examples for training. This can be acceptable for large
datasets (e.g., in computer vision) where many examples can play the role of the
query examples to provide sufficient training signals for the learning process.
However, for EC, the available datasets are often small (e.g., the ACE 2005
dataset with only about a few thousands of annotated event mentions), making
the sole reliance on the query examples for training signals less efficient. In
other words, the few-shot learning framework might not be trained well with
the limited data for the query matching for EC. Consequently, in this work,
we propose to introduce more training signals for few-shot learning for EC by
additionally exploiting the matching information among the examples in the
support set themselves. In particular, as there are multiple examples (although
only a few) per class/type in the support set, we select a subset of such examples
for each type in S and enforce the models to be able to match such the selected
examples to their corresponding types in the remaining support set.

Formally, let S; = {(s},al,t;),...,(s%, a6 t)}V1 < i < Nso S = S U
Sa...USy. Let @ be some integer that is less than K (i.e., 1 < Q < K). For
each type t;, we randomly select) examples from S; (called the auxiliary query
examples), forming the auxiliary query set SZQ (i.e., SZ-Q C S;, \SlQ| = Q). The
remaining set of S; is then denoted by S7 = S; \ SZ-Q. We unify the sets S?
to constitute an auxiliary support set S° while the union of SZQ serves as the
auxiliary query set: ¥ = S7 U Sy U...U Sy, S9 = S? U 5’;2 U...u SJ?,.

Given the auxiliary support set S°, we seek to enhance the training signals
for the few-shot models by matching the examples in the auxiliary query set S@
with S¥. Specifically, we first use the same networks in the instance encoder and
prototypical modules to compute the auxiliary prototypes for the classes in T' of
the auxiliary support set S°. For each auxiliary example z = (s,,a,,t,) € S%
(sz, a, and t, are the sentence, the trigger word position and the event type
in z respectively), we use the network in the classifier module to obtain the

240 V. D. Lai et al.

probability distribution P(.|z,S%) over the possible event types for z based on
the auxiliary support set S°. Afterward, we enforce that the models can correctly
predict the event types for all the examples in the auxiliary query sets SiQ given
the support set S¥ by introducing the auxiliary loss function:

N
Lawe(S) ==Y Y. logP(y=tilz5%) (6)

i=1 Z:(Szyﬂzvti)esiQ

Eventually, the overall loss function to be optimized to train the models in
this work is: L(z, S) = Lguery(,S) + ALquz(S) where X is a trade-off parameter
between the main loss function and the auxiliary loss function. For convenience,
we call the training method with the auxiliary loss function for few shot learning
in this section LoLoss (i.e., leave-out loss) in the following experiments.

4 Experiments

4.1 Datasets and Hyper-Parameters

We evaluate all the models in this study on the ACE 2005. ACE 2005 involves
33 event subtypes which are categorized into 8 event types: Business, Contact,
Conflict, Justice, Life, Movement, Personnel, and Transaction. The TAC KBP
dataset, on the other hand, contains 38 event subtypes for 9 event types. Due
to the larger numbers of the event subtypes, we will use the subtypes in these
datasets as the classes for our few-shot learning problem.

As we want to maximize the numbers of examples in the training data, for
each dataset (i.e., ACE 2005 or TAC KBP 2015), we choose the event subtypes
in 4 event types that have the least number of examples in total and split at the
ratio 1:1 into the test and development classes. Following this heuristics to select
the classes, the event types used for training data in ACE 2005 involve Business,
Contact, Conflict, and Justice while the event types for testing and development
data are Life, Movement, Personnel, and Transaction. For TAC KBP 2015, the
training classes include Business, Contact, Conflict, Justice, and Manufacture
while the test and development classes consist of Life, Movement, Personnel,
and Transaction. Finally, due to the intention to follow the prior work on few-
shot learning with 10 examples per class in the support set and 5 examples per
class in the query set for training [7], we remove the examples of any subtypes
whose have less than 15 examples in the training, test and development sets of
the datasets.

For the hyper-parameters, similar to the prior work [7], we evaluate all the
models using N-way K-shot FSL settings with N, K € {5,10}. For training, we
avoid feeding the same set of event subtypes in every batch to make training
batches more diverse. Thus, following [7], we sample 20 event subtypes for each
training batch while still keeping either 5 or 10 classes in the test time.

We initialize the word embeddings using the pre-trained GloVe embeddings
with 300 dimensions. The word embeddings are updated during the training
time as in [20]. We also randomly initialize the position embedding vectors with

Matching Information in the Support Set for Few Shot Event Classification 241

50 dimensions. The other parameters are selected based on the development data
of the datasets, leading to similar parameters for both ACE 2005 and TAC KBP
2015. In particular, the CNN encoder contains a single CNN layer with window size
3 and 250 filters. We manage to use this simple CNN encoder to have a fair compar-
ison with the previous study [7]. The Transformer encoder contains 2 layers with a
context size of 512 and 10 heads in the attention mechanism. The number of exam-
ples per class in the auxiliary query sets @ is set to 2 while the trade-off parameter
A in the loss function is 0.1.

4.2 Results

Table1 shows the accuracy of the models (i.e., Matching, Proto, Proto+Att,
and Relation) on the ACE 2005 test dataset, using the CNN encoder and Trans-
former encoder. There are several observations from the table. First, comparing
the instance encoders, it is clear that the transformer encoder is significantly
better than the CNN encoder across all the possible few-shot learning mod-
els and settings for EC. Second, comparing the few-shot learning models, the
prototypical networks significantly outperform Matching and Relation with a
large performance gap across all the settings. Among the prototypical networks,
Proto+Att achieves better performance than Proto, thus confirming the benefits
of the attention-based mechanism for the prototypical module. Third, comparing
the pairs (5-way 5-shot vs 5-way 10-shot) and (10-way 5 shot vs 10 way 10 shot),
we see that the performance of the models would be almost always better with
larger K (i.e., the number of examples per class in the support set) on different
settings, consistent with the natural intuition about the benefit of having more
examples for training.

Table 1. Accuracy of event classification on ACE-2005 dataset. +LoLoss indicates
the use of the auxiliary loss.

FSL setting 5 way 5 way 10 way | 10 way | 5 way 5 way 10 way | 10 way
5 shot 10 shot | 5 shot 10 shot | 5 shot 10 shot | 5 shot 10 shot
CNN encoder Transformer encoder
Matching 45.81 49.01 30.41 35.66 71.83 76.51 61.2 66.79
Matching+LoLoss 51.78 52.64 32.48 39.15 78.13 83.42 68.91 75.30
Proto 70.92 74.40 57.59 62.67 78.07 82.64 68.77 74.99
Proto+LoLoss 76.98 82.19 66.92 73.63 81.27 86.20 73.07 79.63
Proto+Att 72.26 74.22 57.28 64.36 80.77 83.96 72.78 77.97
Proto+Att+LoLoss | 76.93 75.59 67.54 66.70 83.38 87.20 76.03 81.79
Relation 36.33 33.75 24.21 18.04 51.22 55.47 36.98 39.89
Relation+LoLoss 37.86 38.52 25.99 23.47 54.74 56.60 39.74 41.69

Most importantly, we see that training the models with the LoLoss proce-
dure would significantly improve the models’ performance. This is true across
different few-shot learning models, N-way K-shot settings, and encoder choices.
The results clearly demonstrate the effectiveness of the proposed training proce-
dure to exploit the matching information between examples in the support set

242 V. D. Lai et al.

for few-shot learning for EC. For simplicity, we only focus on the best few-shot
learning models (i.e., the prototypical networks) and the Transformer encoder
under 5-way 5-shot and 10-way 10-shot in the following analysis. Even though
we show the results in fewer settings and models in Table 2 and 3, the same
trends are observed for the other models and settings as well.

Table 2 additionally reports the accuracy of Transformer-based models on the
TAC KBP 2015 dataset. As we can see from the table, most of our observations
for the ACE 2005 dataset still hold for TAC KBP 2015, once again confirming
the advantages of the proposed LoLoss technique in this work.

Table 2. Accuracy of the models with the Transformer encoder on the TAC-KBP test
dataset. +LoLoss indicates the use of the auxiliary loss.

Model 5 way 5 shot | 10 way 10 shot
Matching 72.78 65.55
Matching+LoLoss | 75.58 68.53
Proto 78.08 73.23
Proto+LoLoss 78.88 74.82
Proto+Att 75.35 71.28
Proto+Att+LoLoss | 79.93 76.37
Relation 50.97 34.91
Relation+LoLoss 51.65 35.13

4.3 Robustness Against Noise

In this section, we seek to evaluate the robustness of the few-shot learning models
against the possible noise in the training data. In particular, in each training
episode where a set of examples is sampled for each type in T to form the query
set), we simulate the noisy data by randomly selecting a portion of the examples
in @ for label perturbation. Essentially, for each example in the selected subset
of @, we change its original label to another random one in 7', making it a noisy
example with an incorrect label. By varying the size of the selected portion in)
for label perturbation, we can control the level of noise in the training process
for FSL in EC.

Table 3. The accuracy on the ACE-2005 test set with different noise rates.

Noise rate | Model 5 way 5 shot | 10 way 10 shot

20% Proto+Att 70.08 59.55
Proto+Att+LoLoss | 74.61 64.66

30% Proto+Att 67.38 57.08
Proto+Att+LoLoss | 72.45 62.65

50% Proto+Att 60.50 50.67
Proto+Att+LoLoss | 65.29 55.21

Matching Information in the Support Set for Few Shot Event Classification 243

Table 3 shows the accuracy of the Proto+Att model on the ACE 2005 test set
that employs the Transformer encoder with or without the LolLoss training pro-
cedure for different noise rates. As we can see from the table, the introduction of
noisy data would, in general, degrade the accuracy of the models (i.e., comparing
the cells in Table 3 with the Proto+Att based model in Table 1). However, over
different noise rates and N way K shot settings, the Proto-+Att model trained
with LoLoss is still always significantly better than those without LoLoss. The
performance gap is substantial that is at least 4.5% over different settings. In
fact, we see that LoLoss can improve Proto+Att in the noisy setting (i.e., at
least 4.5%) more significantly than those in the setting without noisy data (i.e.,
at most 3.3% on the 5 way 5 shot and 10 way 10 shot settings in Table 1). Such
evidence further confirms the effectiveness and robustness against noisy data of
LoLoss for few-shot learning due to its exploitation of the matching information
between the examples in the support set.

5 Conclusion

In this paper, we perform the first study on few-shot learning for event clas-
sification. We investigate different metric learning methods for this problem,
featuring the typical prototypical network framework with several choices for
the instance encoder (i.e., CNN and Transformer). In addition, we propose a
novel technique, called LoLoss, to train the few-shot learning models for EC
based on the matching information for the examples in the support set. The
proposed LoLoss technique is applied to different few-shot learning methods for
different datasets and settings that altogether help to significantly improve the
performance of the baseline models. In the future, we plan to examine LoLoss for
few-shot learning for other NLP and vision problems (e.g., relation extraction,
image classification).

Acknowledgments. This research has been supported in part by Vingroup Innova-
tion Foundation (VINIF) in project code VINIF.2019.DA18 and Adobe Research Gift.
This research is also based upon work supported in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via IARPA Contract No. 2019-19051600006 under the Better Extraction
from Text Towards Enhanced Retrieval (BETTER) Program. The views and conclu-
sions contained herein are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of ODNI, IARPA,
the Department of Defense, or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright annotation therein. This document does not contain technology or tech-
nical data controlled under either the U.S. International Traffic in Arms Regulations
or the U.S. Export Administration Regulations.

244

V. D. Lai et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Ahn, D.: The stages of event extraction. In: Proceedings of the Workshop on Anno-

tating and Reasoning about Time and Events, pp. 1-8 (2006)

. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.

In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning (2012)
Bronstein, O., Dagan, 1., Li, Q., Ji, H., Frank, A.: Seed-based event trigger labeling;:
how far can event descriptions get us? In: ACL-IJCNLP (2015)

. Caruana, R.: Learning many related tasks at the same time with backpropagation.

In: NIPS (1995)

Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-
pooling convolutional neural networks. In: ACL-IJCNLP (2015)

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017)

Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In: AAAT (2019)

Huang, L., Ji, H., Cho, K., Voss, C.R.: Zero-shot transfer learning for event extrac-
tion. In: ACL, pp. 2160-2170 (2018)

Ji, H., Grishman, R.: Refining event extraction through cross-document inference.
In: ACL (2008)

Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

Lai, V.D., Nguyen, T.: Extending event detection to new types with learning from
keywords. In: Proceedings of the 5th Workshop on Noisy User-generated Text
(W-NUT 2019) (2019)

Li, Q., Ji, H., Hong, Y., Li, S.: Constructing information networks using one single
model. In: EMNLP (2014)

Liu, S., Chen, Y., Liu, K., Zhao, J.: Exploiting argument information to improve
event detection via supervised attention mechanisms. In: ACL (2017)

Lu, W., Nguyen, T.H.: Similar but not the same: word sense disambiguation
improves event detection via neural representation matching. In: EMNLP (2018)
Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS (2013)
Nguyen, T.H., Meyers, A., Grishman, R.: New york university 2016 system for
KBP event nugget: a deep learning approach. In: TAC (2016e)

Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural
networks. In: NAACL (2016)

Nguyen, T.H., Fu, L., Cho, K., Grishman, R.: A two-stage approach for extending
event detection to new types via neural networks. In: Proceedings of the 1st ACL
Workshop on Representation Learning for NLP (RepL4NLP) (2016b)

Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convo-
lutional neural networks. In: ACL-IJCNLP (2015)

Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional
neural networks. In: Proceedings of the 1st NAACL Workshop on Vector Space
Modeling for NLP (VSM) (2015a)

Nguyen, T.H., Grishman, R.: Modeling skip-grams for event detection with convo-
lutional neural networks. In: EMNLP (2016d)

Nguyen, T.H., Grishman, R.: Graph convolutional networks with argument-aware
pooling for event detection. In: AAAT (2018a)

Matching Information in the Support Set for Few Shot Event Classification 245

23.

24.

25.

26.

27.
28.

29.

Nguyen, T.M., Nguyen, T.H.: One for all: neural joint modeling of entities and
events. In: AAAT (2019)

Peng, H., Song, Y., Roth, D.: Event detection and co-reference with minimal super-
vision. In: EMNLP (2016)

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML (2016)

Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NIPS (2017)

Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: NIPS (2016)

Yu, M., et al.: Diverse few-shot text classification with multiple metrics. arXiv
preprint arXiv:1805.07513 (2018)

http://arxiv.org/abs/1805.07513

	Exploiting the Matching Information in the Support Set for Few Shot Event Classification
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Notation
	3.2 Few-Shot Learning for Event Classification

	4 Experiments
	4.1 Datasets and Hyper-Parameters
	4.2 Results
	4.3 Robustness Against Noise

	5 Conclusion
	References

