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Abstract. Deep Gaussian process (DGP) is one of the popular proba-
bilistic modeling methods, which is powerful and widely used for func-
tion approximation and uncertainty estimation. However, the traditional
DGP lacks consideration for multi-view cases in which data may come
from different sources or be constructed by different types of features.
In this paper, we propose a generalized multi-view DGP (MvDGP) to
capture the characteristics of different views and model data in different
views discriminately. In order to make the proposed model more effi-
cient in training, we introduce a pre-training network in MvDGP and
incorporate stochastic variational inference for fine-tuning. Experimen-
tal results on real-world data sets demonstrate that pre-trained MvDGP
outperforms the state-of-the-art DGP models and deep neural networks,
achieving higher computational efficiency than other DGP models.

Keywords: Deep Gaussian process · Multi-view learning · Variational
inference · Stochastic optimization · Pre-training technique

1 Introduction

Gaussian process (GP) owns a significant ability of modeling representation and
can estimate the uncertainty of the prediction effectively [5,11,16]. Deep Gaus-
sian process (DGP) is a stack of multi-layer GPs [1,2,13]. Benefitting from the
hierarchical structure, DGP not only retains the excellent features of GP, but
also overcomes the limitations of GP and obtains stronger mapping capability.
However, the difficulty in DGP is mainly located on intractable calculations dur-
ing the training process. The Bayesian training framework based on variational
inference for DGP is a classical method but limited by the scale of data [2].
Doubly stochastic variational inference is a state-of-the-art and widely used
inference technique, which adopts stochastic optimization and makes it possi-
ble for DGP to be applied to large-scale data [13]. Recently, there are some new
works focusing on non-Gaussian posterior in the real-world data to develop DGP
comprehensively [3,14].

Traditional GP models only focus on modeling data from a single source. As
amounts and sources of data are augmented, data integrations from multiple fea-
ture sets are referred to as multi-view data [17,20]. It is improper to treat data
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from different views equally, and thus multi-view learning flourishes. GP-based
models have been extended to multi-view scenarios, in which the multi-view
regularized GP [8] and the sparse multimodal GP [9] are the generalizations
of shallow GP model. A DGP-based work is also developed [18], but limited
in multi-view unsupervised representation learning, where additional classifiers
are needed for classification tasks. Besides, the inference of the unsupervised
DGP [18] is based on the Bayesian training framework with strong mean-field
and Gaussian assumptions, which underestimates variance and makes the model
unable to be applied to large-scale data scenarios. Our goal is to propose a gen-
eral end-to-end multi-view DGP (MvDGP). We build a scalable model without
forcing independence between layers, and apply stochastic variational inference
and re-parameterization techniques to improve the ability of modeling on the
large-scale data.

In addition, we expect that the MvDGP model possesses significant superi-
ority in training speed. In the multi-view scenario, we tune the model according
to the characteristics of each view, which will inevitably introduce more model
parameters and lengthen the training time. Pre-training is a widely used tech-
nique [4,19], in which a large number of data are taken as training samples to
be trained across multiple GPUs. The weights obtained by pre-trained networks
are used as the initial weights for new tasks, and then only a few steps of fine-
tuning are needed to get prediction results. In order to make the proposed model
more competitive in terms of training speed, we introduce a novel pre-training
model for MvDGP. Instead of training with the same model using other data
sets, we use the same data set to train with other models. Because the neural
network with infinite width has been proved equivalent to GP exactly and the
training cost of deep neural network (DNN) is much less than DGP [6,7,10], we
pre-train the DNN with a similar structure of MvDGP to analogize the initial
training process of MvDGP. Through the DNN pre-training, we aim to get a
set of appropriate initial parameters for MvDGP. Since the parameter domains
of the DNN and the MvDGP are not the same, the initial parameters of each
layer in the MvDGP are obtained by auxiliary optimization of single GP. The
optimization efficiency of MvDGP is improved significantly by pre-training.

There are three main contributions in our work:

1. Generalized Multi-view Deep Gaussian Process (MvDGP): We pro-
pose a generalized and flexible MvDGP, which considers characteristics of
different views. Deep structure leads to more powerful abilities of uncertainty
estimation and mapping representation compared with shallow models [8,9].
Furthermore, MvDGP is an end-to-end supervised model, which can take
advantage of labels to learn models, and provides stronger robustness and
generalization performance than unsupervised multi-view DGP [18].

2. Scalability: We infer the MvDGP without setting strong mean-field con-
straints and derive stochastic variational inference. Compared to the model
[18] can hardly be applied in large-scale scenarios, our model is capable of
it. Meanwhile, our model can be extended to more views easily and can cus-
tomize the detailed depth of each view according to the view characteristic.
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3. Efficiency: We obtain appropriate initial parameters by DNN pre-training
for MvDGP, which reduces the oscillation and speeds up the training. Exper-
iments demonstrate that the pre-trained MvDGP guarantees higher perfor-
mance and runs several times faster than unpre-trained methods.

2 Deep Gaussian Process

Deep Gaussian process (DGP) is a stack of multiple GPs, which possesses a more
powerful modeling capability than a GP [2]. For a standard DGP, we review
a supervised version as an example. Given a training set, including observed
inputs X ∈ RN×Q and observed outputs Y ∈ RN×D, where N is the number of
samples, Q and D are the dimensionality of input and output vector, respectively.

For a DGP with L layers of hidden units, we define F = {F1, F2, ..., FL}
as the latent variable set, where Fl is the output for layer l and the input for
layer l + 1, l = 1, . . . , L − 1. Furthermore, we add additional sets of inducing
inputs Z = {Z1, Z2, ..., ZL} and inducing points U = {U1, U2, ..., UL} to employ
variational inference [15]. The assumption of the model prior is as follows,

p(U|Z) = N (U|m(Z), k(Z,Z)), (1)

where m(Z) is the mean function and k(Z,Z) is the kernel function. Note that
[k(Z,Z)]ij = k (Zi,Zj), where i, j = 1, . . . , N . We record X as F0, and the con-
ditional distribution, corresponding mean and variance are denoted as follows,

p(Fl|Fl−1, Ul) = N (Fl|μl, Σl), l = 1, . . . , L (2)

μl =m(Fl−1) + k(Fl−1, Zl)k(Zl, Zl)−1(Ul − m(Zl)), (3)

Σl =k(Fl−1, Fl−1) − k(Fl−1, Zl)k(Zl, Zl)−1k(Zl, Fl−1). (4)

The likelihood of model is generally set to a Gaussian distribution,

p(Y|FL) = N (FL, ΣL + ΣY), (5)

where ΣY is the variance of the observation Y. The joint density of the observed
output Y, latent variables F and inducing points U is written as

p(Y,F,U) = p(Y|FL)
L∏

l=1

p(Fl|Fl−1, Ul)p(Ul|Zl). (6)

3 Multi-view Deep Gaussian Process

Due to the characteristics of multi-view data, the general DGP cannot utilize
the rich information in multiple views reasonably. In this section, we propose a
new model named multi-view deep Gaussian process (MvDGP), and introduce
stochastic variational inference for optimization.
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3.1 Multi-view Deep Gaussian Process

We propose an end-to-end multi-view model and take two views of data and
models as an example. For given data {X(1),X(2), Y}, X(1) ∈ RN×Q1 and
X(2) ∈ RN×Q2 are observed inputs of the first and the second view respectively
and Y ∈ RN×D is the observed outputs. For data of each view, there is a deep
structure to model it. The latent variables of intermediate layers are recorded
as F

(v)
l , v = {1, 2}, l = 1, . . . , H(v), where v is the index of view and H(v)

is the depth of view v. The depths of the networks in different views can be
determined according to the data characteristics of each view for better mapping.
The inducing inputs Z

(v)
l and the inducing points U

(v)
l are introduced for each

latent variable F
(v)
l as in Sect. 2. In addition to the separated GP layers for

each view, there are also common layers that share information for both views,
in which variables and model parameters are denoted as F

(S)
l , Z

(S)
l , U

(S)
l , l =

1, . . . , H(S). The graphical model of MvDGP is illustrated in Fig. 1, and the
depth for each view is marked as H(1) = L,H(2) = R,H(S) = H.

Fig. 1. The graphical model for multi-view deep Gaussian process.

We record F
(S)
0 as the transition layer from the separated views F(1),F(2) to

merged view F(S), and the joint density of MvDGP is written as

p(Y,F,U) =p(Y|F (S)
H )p(F(S),U(S))p(F (S)

0 |F (1)
L , F

(2)
R )

p(F(1),U(1))p(F(2),U(2)), (7)

where p(F (S)
0 |F (1)

L , F
(2)
R ) = N (F (S)

0 |[F (1)
L , F

(2)
R ], Σ(S)

0 ), [F (1)
L , F

(2)
R ] is the concate-

nation of the last layers of two views, and Σ
(S)
0 represents corresponding unit

variance. The joint distribution of latent variables in view v is specifically as

p(F(v),U(v)) =
H(v)∏

l=1

p(F (v)
l |F (v)

l−1, U
(v)
l )p(U (v)

l |Z(v)
l ). (8)

The depth for each view is H(1) = L,H(2) = R,H(S) = H and the symbols of
F

(1)
0 , F

(2)
0 denote the observed inputs X(1), X(2), respectively.



Pre-trained MvDGP 303

3.2 Variational Inference

Directly inferring MvDGP is intractable and complex computationally, we take
stochastic variational inference for optimization. The main idea of variational
inference is to find an approximate posterior distribution q(F,U) that is as close
as possible to the true posterior p(F,U).

We adopt a factorized form for joint posterior distribution as

q(F,U) = q({F
(1)
l , U

(1)
l }Ll=1, {F

(2)
l , U

(2)
l }Rl=1, {F

(S)
l , U

(S)
l }Hl=1)

= p(F (S)
0 |F (1)

L , F
(2)
R )q(F(S),U(S))q(F(1),U(1))q(F(2),U(2)), (9)

where q(F(v),U(v)) is the variational distribution of view v, v = 1, 2, S, and

q(F(v),U(v)) =
∏H(v)

l=1 p(F (v)
l |F (v)

l−1, U
(v)
l )q(U (v)

l ). The depth H(v) and F
(v)
0 for

each view are denoted as Sect. 3.1. We take Gaussian forms for variational dis-
tribution of U as q(U (v)

l ) = N (U (v)
l |m(v)

l , S
(v)
l ), where layer l = 1, . . . , H(v), view

v = 1, 2, S, and m
(v)
l , S

(v)
l are mean and variance of q(U (v)

l ), respectively. Under
this setting, the variational posterior can be obtained analytically as

q(F (v)
l |F (v)

l−1, U
(v)
l ) =

∫
p(F (v)

l |F (v)
l−1, U

(v)
l )q(U (v)

l )dU
(v)
l = N (F (v)

l |μ̃l
(v), Σ̃l

(v)
),

μ̃l
(v) =m(F (v)

l−1) + k(F (v)
l−1, Z

(v)
l )k(Z(v)

l , Z
(v)
l )−1(m(v)

l − m(Z(v)
l )), (10)

Σ̃l
(v)

=k(F (v)
l−1, F

(v)
l−1) − k(F (v)

l−1, Z
(v)
l )k(Z(v)

l , Z
(v)
l )−1

(k(Z(v)
l , Z

(v)
l ) − S

(v)
l )k(Z(v)

l , Z
(v)
l )−1k(Z(v)

l , F
(v)
l−1). (11)

In order to maintain gradients and update layer-wise parameters in the
process of optimization, we introduce the re-parameterization trick and choose
Monte Carlo method to estimate variational posterior q(F) [12]. Firstly, draw
a noise term ε

(v)
l from a standard Gaussian distribution, for view v = 1, 2, S

and layer l = 1, . . . , H(v) − 1. Then, iteratively sample latent variable F̂
(v)
l ∼

q(F (v)
l |F̂ (v)

l−1, U
(v)
l ), in which F̂

(v)
l can be clearly written as

F̂
(v)
l = μl(F̂

(v)
l−1) + ε

(v)
l

√
Σl(F̂

(v)
l−1, F̂

(v)
l−1), (12)

where μl and Σl are mean and covariance functions denoted in (10), (11).

3.3 Stochastic Optimization and Predictions

To minimize the KL divergence of q and p, we maximize the lower bound L of
the logarithm marginal likelihood log p(Y), which is formulated as

L = Eq(F,U)

[
log

p(Y,F,U)
q(F,U)

]
. (13)

By substituting the joint density (7) and posterior distribution (9) to lower

bound expression (13), the term
∏H(v)

l=1 p(F (v)
l |F (v)

l−1, U
(v)
l ) in the numerator and
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denominator can be offset. The variational lower bound of model evidence in
MvDGP can be rearranged to

L =Eq(F,U)[log p(Y|F (S)
H )p(F (S)

0 |F (1)
L , F

(2)
R )

v∈{1,2,S}∏

v

H(v)∏

l=1

p(U (v)
l |Z(v)

l )

q(U (v)
l )

]

=E
q(F

(S)
H )

[log p(Y|F (S)
H )p(F (S)

0 |F (1)
L , F

(2)
R )] −

v∈{1,2,S}∑

v

KL(v), (14)

where KL(v) represents
∑H(v)

l=1 KL[q(U (v)
l )‖p(U (v)

l |Z(v)
l )], v = 1, 2, S.

The expection about q(F (S)
H ) in the variational lower bound can be written

in the form of additions for samples as follows,

L =
N∑

i=1

E
q(F

(S)
Hi )

[log p(yi|F (S)
Hi )p(F (S)

0i |F (1)
Li , F

(2)
Ri )] −

v∈{1,2,S}∑

v

KL(v), (15)

where yi is observed outputs, and F
(S)
Hi , F

(S)
0i , F

(1)
Li , F

(2)
Ri are corresponding latent

variables for sample i, i = 1, . . . , N . The addition expression of lower bound
allows stochastic optimization to be employed in inference. The samples of mini-
batch can be regarded as an unbiased estimation of all samples.

Model parameters are optimized with the Adam optimizer during
training, which include inducing inputs {Z

(v)
l }H(v)

l=1 , variational parameters
{m

(v)
l , S

(v)
l }H(v)

l=1 of inducing points {U
(v)
l }H(v)

l=1 , and kernel parameters {θ
(v)
l }H(v)

l=1 ,
v = 1, 2, S. Stochastic optimization and unbiased minibatch samples ensure the
scalability of MvDGP. Our model can be easily generalized to large-scale data.

For predictions, we take the mean of multiple samples of F
(S)∗
H as the predict

outputs Y∗ for test inputs X∗ = {X(1)∗,X(2)∗}, and q(F (S)∗
H ) is distributed as

q(F (S)∗
H ) ≈ 1

K

∑K
k=1 q(F (S)∗

H |F̂ (S)∗
H−1, UH), where K is the number of samples, and

the value of F̂
(v)
0 is set as X(v)∗, v = 1, 2. The samples can be obtained according

to the re-parameterization Monte Carlo sample steps (12) iteratively.
If there are more than two views in data, the MvDGP is easily to be gener-

alized to multiple views by adding separated multi-layer GPs structure for new
views.

4 Pre-training Technique for MvDGP

In order to better model the function approximation of each view, MvDGP intro-
duces more latent variables and model parameters than single-view DGP. The
training time of the model with a large number of parameters is not optimistic
even with doubly stochastic optimization. Due to the initial parameters of the
model have a significant impact on the training efficiency, the training speed
of the model with proper initial parameters is faster than the random one. We
consider introducing a novel technique of pre-training to MvDGP by training a
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Fig. 2. The schematic diagram of pre-trained MvDGP.

computational cost-dominant model and getting a suitable set of initial param-
eters for MvDGP.

Deep neural network (DNN) is a type of powerful model for representation
learning and model mapping. Inspired by the similar characteristics of DNN and
DGP [7,10], we adopt the DNN with a similar structure to MvDGP to simulate the
initial training process ofMvDGP.Wemodel theDNNseparately for twoviews and
build common network layers whose inputs are the concatenation of the outputs
of the separated networks. The number of parameters is related to the number and
dimension of hidden units. The number of model parameters in the DNN we used
is much smaller than MvDGP, which leads to faster training speed.

Since it is not possible to directly use the parameters such as the network
weights of the DNN in MvDGP, we use some single-layer GPs as auxiliary pre-
training models. We take the values of the adjacent two layers in the DNN as the
input and output of the single GP to obtain a set of initial parameters suitable for
corresponding layers in MvDGP. Since the training difficulties of DNN and single
GP are much lower than that of MvDGP, the pre-training step can be quickly cal-
culated and is reasonable for roughly selecting the initial parameters of MvDGP.
Then, taking advantage of powerful uncertainty estimation and robust character-
istics of MvDGP, we can perform more precise probability learning in multi-view
data. In the processes of training DNN, single GP, as well as MvDGP, stochastic
optimization is all adopted to facilitate the generalization of massive data.



306 H. Zhu et al.

The schematic diagram of pre-trained MvDGP (PreMvDGP) is depicted in
Fig. 2. The basic MvDGP model is framed in orange lines. The gray node in the
outermost circle represents the DNN with a similar structure to MvDGP as the
first stage of pre-training. The middle layers of the DNN, F

(v)
l−1, F

(v)
l , are used as

the observed inputs and observed outputs to train the parameters of each single
GP, where v = 1, 2, l = 1, . . . , H(v), and F

(1)
0 = X(1), F

(2)
0 = X(2). The yellow

blocks in the second column of the left and the second column of the right are
both single GPs as the second stage of pre-training. The training results of each
GP are taken as the initial parameters of the corresponding layer in MvDGP.
At last, a precise mapping learning is performed through MvDGP.

5 Experiments

In this section, we evaluate the performance of the proposed model in four real-
world data sets. Our concerns about model performance include accuracy and
training speed. We analyze experimental results compared with the state-of-the-
art DGP models and deep neural network.

5.1 Data Sets

1. WebKB University Data Set (WebKB). The WebKB data set1 is com-
posed of four universities, Cornell, Texas, Washington, and Wisconsin, in
which data are captured from two views, words in web pages and hyperlinks.
The web page can be divided into five categories, where we denote the cate-
gory of the largest number of samples as positive class and the rest as negative
class.

2. Multiple Feature Data Set (MFeat). There are 200 samples as well as six
features for each handwritten number (‘0’–‘9’) in MFeat data set2. We adopt
these features as six views. The data is divided into ten partitions denoted
as M-0∼M-9, in which partition M-i represents the samples labeled ‘i’ as
positive class and others as negative class samples.

3. Internet Advertisements Data Set (Ads). The Ads data set3 is com-
posed of the features extracted from five aspects. We consider five features as
five views of data. There is a unique label to mark if the sample is an ad.

4. Forest CoverType Data Set (CoverType). The data4 are composed of
quantitative real variables and binary one-hot variables, for which we adopt
two views to model. We use samples labeled Spruce-Fir or Lodgepole as posi-
tive samples to form two data sets, respectively (marked as partition C-1 and
C-2).

1 WebKB data set is available at http://www.cs.cmu.edu/afs/cs/project/theo-20/
www/data/.

2 Multiple feature data set is available at https://archive.ics.uci.edu/ml/datasets.php.
3 Ads data set is available at http://archive.ics.uci.edu/ml/datasets.php.
4 CoverType data set is available at http://archive.ics.uci.edu/ml/datasets.php.

http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
https://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php
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Table 1. Detailed data set information.

The total number of samples, dimension of each view, and the sample number
of each class for four data sets and partitions are presented detailed in Table 1.

5.2 Experimental Settings

We conduct a series of experiments on four data sets to verify the performance
of our PreMvDGP model. For each experiment, we take 5-fold cross-validation
to obtain 80% samples for the train set and 20% samples for the test set. We
perform ten repeated experiments to each sample partition and take the average
as the final experimental results. We adopt 20 samples as a minibatch and 128
inducing points for every layer in the experiments. The number of hidden layers
of different views and the shared layers can be customized by the characteristics
of each view data. To illustrate the general characteristics of PreMvDGP, we
show the experimental results with L = 1, R = 1,H = 1.

To demonstrate the superior performance of our model, we compare with two
state-of-the-art DGP methods, including doubly stochastic variational inference
DGP (DSVI-DGP) [13] and stochastic gradient Hamilton Monte Carlo DGP
(SGHMC-DGP) [3], and the deep neural network (DNN) which is designed to
adapt to multi-view data in this experiments. Since the single-view DGP meth-
ods cannot utilize multi-view data directly, we consider separately taking the
data of view 1 (V1), view 2 (V2), and the concatenation of two view data (Con)
as three types of inputs for WebKB data set to verify the necessity of multi-view
modeling.

Experiments using multiple single-source data are redundant and incomplete,
so we concatenate the data from all views as the inputs of the other three data
sets to make the most of the data. For single-view DGP methods, we abbre-
viate the methods as DSVI-DGP-Con, SGHMC-DGP-Con. To ensure adequate
training and convergence, we use 500 epochs to train DSVI-DGP and SGHMC-
DGP, respectively. In the pre-training phase of PreMvDGP, we set the number
of hidden units as 64 and the dimension of hidden units as 10 to get a rough
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Table 2. The average classification accuracies (%), standard deviations, and compu-
tational time(s) of comparison methods and PreMvDGP on the WebKB data sets.

Model Dataset

Cornell Texas Washington Wisconsin

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

DSVI-DGP-V1 69.2 ± 6.0 306 93.1 ± 2.1 297 81.7 ± 4.3 345 90.3 ± 1.6 414

DSVI-DGP-V2 56.7 ± 4.2 46 62.1 ± 2.4 40 65.2 ± 1.6 55 73.2 ± 1.2 68

DSVI-DGP-Con 70.0 ± 5.8 455 94.0 ± 1.7 434 82.0 ± 4.3 523 91.5 ± 1.7 563

SGHMC-DGP-V1 62.5 ± 3.4 1597 83.1 ± 2.9 1572 77.3 ± 3.7 1655 91.3 ± 1.7 1686

SGHMC-DGP-V2 57.9 ± 2.8 206 59.7 ± 2.8 197 63.0 ± 0.9 228 62.2 ± 3.0 273

SGHMC-DGP-Con 62.8 ± 3.2 1846 77.8 ± 4.1 1821 68.0 ± 3.2 1940 89.4 ± 1.7 1948

DNN 67.1 ± 6.9 61 91.5 ± 3.7 47 72.1 ± 4.9 67 85.6 ± 3.2 81

PreMvDGP 84.4 ± 4.4 141 95.7 ± 1.3 131 88.6 ± 5.6 172 92.8 ± 1.6 200

set of parameters as quickly as possible. Meanwhile, we set 300 epochs for DNN
pre-training, 100 epochs for training single GPs, and 100 epochs for training
MvDGP. In practice, the number of iterations set in this way can ensure that
each step is completely trained. All parameter settings in our experiments remain
fixed in each dataset and comparison method.

5.3 Results and Analysis

The experimental results on the four WebKB data sets, including average classi-
fication accuracies, standard deviations, and computational costs, are presented
in Table 2. Experimental results show that the representation with only view 1
is significantly better than the representation with only view 2 in this data set.
Concatenating data from two views (Con) has no significant effect on improv-
ing accuracy compared to results with view 1 (V1). In Table 2, the results of
(Con) achieves better than (V1) for DSVI-DGP, while the results of (V1) take a
bit advantage than (Con) for SGHMC-DGP. Concatenating data from different
views causes an increase in the dimensions of the inputs, making the training
process more expensive. The experiments prove that PreMvDGP achieves better
classification performance than comparison methods, indicating that single-view
methods cannot model the data characteristics of different views properly.

Since DNN is used as the initializer in our model, we also list the average time
required for 300 iterations of DNN and the average classification accuracy only
using the DNN optimizer. It can be found that the computational time of the pre-
trainer takes a small part of the total time, and the training results of the DNN
are suitable for the initialization of the MvDGP. PreMvDGP with appropriate
initial parameters speeds up the training and learns function approximation more
subtly than only using the DNN, resulting in more competitive results.

We model the data from six and five views separately for MFeat and Ads
data sets, which means that our approach can be easily generalized to more
views instead of using combinations of any two views. The experimental results
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Table 3. The average classification accuracies (%), standard deviations, and compu-
tational time (s) on multiple data sets and partitions, i.e., MFeat (M-0∼M-9), Ads,
CoverType (C-1, C-2).

Data set DSVI-DGP-Con SGHMC-DGP-Con DNN PreMvDGP

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

M-0 99.43 ± 0.17 3541 90.23 ± 3.33 4091 99.36 ± 0.19 513 99.55 ± 0.25 1273

M-1 99.05 ± 0.39 3527 83.43 ± 9.10 4120 98.81 ± 0.23 489 99.63 ± 0.14 1164

M-2 98.75 ± 1.92 3607 89.01 ± 4.05 4230 99.52 ± 0.08 584 99.58 ± 0.11 1261

M-3 98.05 ± 1.71 3606 86.05 ± 2.45 4326 99.42 ± 0.16 552 99.20 ± 0.35 1240

M-4 99.37 ± 0.14 3476 90.82 ± 5.70 4560 99.81 ± 0.08 584 99.98 ± 0.12 1238

M-5 98.25 ± 1.75 3627 87.45 ± 1.78 4765 98.62 ± 0.21 586 98.92 ± 0.33 1256

M-6 99.20 ± 0.25 3511 86.68 ± 2.27 4764 99.47 ± 0.11 590 99.60 ± 0.22 1328

M-7 99.97 ± 0.03 3499 85.80 ± 4.94 4771 99.60 ± 0.23 584 99.98 ± 0.08 1238

M-8 99.55 ± 0.29 3570 88.00 ± 1.64 4292 99.40 ± 0.28 538 99.60 ± 0.14 1272

M-9 99.37 ± 0.24 3481 87.20 ± 3.09 4385 99.35 ± 0.15 529 99.50 ± 0.21 1264

Ads 95.15 ± 0.33 3352 94.75 ± 0.26 3154 95.87 ± 0.23 458 97.13 ± 0.36 1290

C-1 63.95 ± 1.01 21474 63.93 ± 1.26 9764 78.57 ± 0.41 3071 80.61 ± 1.29 7360

C-2 59.88 ± 3.49 21672 57.51 ± 7.79 9771 76.61 ± 0.97 3164 78.84 ± 2.06 7411

including accuracies and computation time in the other three data sets are shown
in Table 3. Our method almost achieves the best accuracy and is dominant in
running time in all data sets and partitions, which means that discriminately
modeling data of different views is necessary and the pre-training technique plays
an important role in optimizing the initial parameters. Significantly, PreMvDGP
also works well in the large forest CoverType data set. Stochastic optimiza-
tion and inducing points help save the computational overhead of our model.
Experiments prove that our method is appropriate for multi-view scenarios of
large-scale data.

6 Conclusions

In this paper, we propose an end-to-end multi-view deep Gaussian process (MvD-
GP) model, which is suitable for modeling multi-view data. The inference is
based on doubly stochastic optimization and can be applied in large-scale data
scenarios. To speed up the training, we introduce a pre-training deep neural net-
work in MvDGP. The initial parameters obtained by the pre-training are proper
for MvDGP, and more precise learning is performed by MvDGP. Experimen-
tal results demonstrate that pre-trained MvDGP (PreMvDGP) outperforms the
state-of-the-art DGP methods in multi-view data modeling, and achieves better
performance in training speed. Our work is a generalization of DGP in multi-
view scenarios, which helps to develop the MvDGP under the trend of large-scale
data with its superior computational performance.
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