
Connecting the Dots: Hypotheses
Generation by Leveraging Semantic Shifts

Menasha Thilakaratne(B), Katrina Falkner, and Thushari Atapattu

The University of Adelaide, Adelaide, South Australia, Australia
{menasha.thilakaratne,katrina.falkner,thushari.atapattu}@adelaide.edu.au

Abstract. Literature-based Discovery (LBD) (a.k.a. Hypotheses Gen-
eration) is a systematic knowledge discovery process that elicit novel
inferences about previously unknown scientific knowledge by rationally
connecting complementary and non-interactive literature. Prompt iden-
tification of such novel knowledge is beneficial not only for researchers
but also for various other stakeholders such as universities, funding bod-
ies and academic publishers. Almost all the prior LBD research suf-
fer from two major limitations. Firstly, the over-reliance of domain-
dependent resources which restrict the models’ applicability to certain
domains/problems. In this regard, we propose a generalisable LBD model
that supports both cross-domain and cross-lingual knowledge discov-
ery. The second persistent research deficiency is the mere focus of static
snapshot of the corpus (i.e. ignoring the temporal evolution of topics) to
detect the new knowledge. However, the knowledge in scientific literature
changes dynamically and thus relying merely on static snapshot limits
the model’s ability in capturing semantically meaningful connections.
As a result, we propose a novel temporal model that captures seman-
tic change of topics using diachronic word embeddings to unravel more
accurate connections. The model was evaluated using the largest avail-
able literature repository to demonstrate the efficiency of the proposed
cues towards recommending novel knowledge.

Keywords: Literature-Based Discovery · Hypotheses generation ·
Diachronic word embeddings · Knowledge discovery · Literature mining

1 Introduction

Due to the massive influx of research publications, examining the published liter-
ature and constructing a novel research hypothesis in a sensible time-frame has
almost become an unachievable endeavour for researchers. For example, con-
sider a researcher who is interested in researching about dementia. To formulate
a novel research hypothesis in the field, the researcher requires to comprehen-
sively analyse and understand the existing body of knowledge. Currently, a sim-
ple search in PubMed alone for dementia results in more than 150,000 records.
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Even though techniques such as text summarisation would assist the users to
glean high-level overview of the field, they fail to elicit implicit interesting con-
nections in disparate and seemingly independent facts that have the potential
in developing novel knowledge.

To this end, Literature-BasedDiscovery (LBD) (a.k.a. HypothesesGeneration)
which is a sub-discipline of text mining aims to infer such interesting cross-silo
associations that bridge uncorrelated fragments of information to provide novel,
actionable and meaningful insights in the field. For instance, consider two disjoint
topics of interest (A and C ); a therapeutic substance (e.g., fish oil) and a disease
(e.g., raynaud) where the LBD process attempts to elicit novel conceptual bridges
[3] (e.g., blood viscosity) that meaningfully connect the two knowledge fragments
(Fig. 1). Hence, the ultimate motive of LBD research is to give new impetus to
deduce new knowledge that will conclusively accelerate scientific productivity and
research innovation. Discovering such conceptual bridges in a cross-disciplinary
manner is the crux of the problem that we intend to address.

Fig. 1. Schematic overview of hypotheses generation

Despite the significant advances gained so far in the discipline, almost all
the LBD systems suffer from two major drawbacks; 1) Domain dependency:
the existing LBD studies are mainly restricted to the medical domain and rely
on medical-related knowledge resources (e.g., MeSH, UMLS ) throughout their
workflow. Some of the LBD studies are not generalisable within the medical
domain itself due to the usage of highly specialised resources [8]. As a result,
extending these techniques in other non-medical LBD settings (e.g., computer
science domain) is infeasible. Consequently, LBD research outside of the medical
domain is in a nascent stage [8], and 2) Static domains: the prior LBD studies
are based on the assumption that the domains remain static. This clearly hinders
the model’s performance in recommending time-aware novel knowledge linkages
as the domains are changing dynamically, and new knowledge is being added to
each domain every single day. Otherwise stated, the contribution of temporal
cues in eliciting novel knowledge has been overlooked in the discipline [3].

To overcome the first limitation, a recent study of Sebastian et al. [7] has
attempted to use WordNet in their LBD process. While this is encouraging,
WordNet typically covers everyday English and limited in terms of scientific ter-
minology. Considering the issues of domain-dependency in LBD studies arose the
questions; how to identify potential knowledge discovery cues whose success does
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not depend on domain-dependent resources such as MeSH and UMLS? and what
are the domain-independent resources that have a wider coverage than WordNet
to perform the initial preprocessing of the literature?

More recently, a few studies [3,4,12] have attempted to mitigate the second
limitation, which is considering the domains to be static through the infusion of
temporal dimension into the LBD process. Even though these studies undoubt-
edly invigorate the traditional LBD setting, they still contain several inherent
limitations. Firstly, the temporal analysis component of these studies is fairly
shallow. For example, Xun et al. [12] have only considered the first and last
values of the temporal sequence to measure the trend of implicit associations by
ignoring the patterns in the overall sequence. Secondly, as of most of the existing
LBD literature, these studies rely on one or two temporal characteristics to dis-
cover potential new knowledge linkages. This is limiting as such methodologies
may excessively be picking only one type of novel knowledge. We believe that the
novel knowledge is in different forms in the literature and thus, should fulfil mul-
tiple factors to broadly discover them. We observed a similar conclusion from the
ARROWSMITH study [11] initiated by the pioneers in LBD discipline and from
a recent LBD review [9]. To alleviate the aforementioned limitations, this study
attempts to answer the following questions; does analysing whole time-series in
a greater detail benefits in eliciting new knowledge?, and does providing a holistic
solution that combines the complementary strengths of multiple characteristics
(e.g., multiple semantic shifts) yield better predictive effects?

In summary, our contributions are; 1) proposing a generalisable LBD frame-
work that can be easily adaptable to non-medical LBD settings, 2) quantifying
semantic change of topics in conjunction with temporal trajectories and word
embedding techniques to capture subtle cues that are robust and highly predic-
tive in suggesting novel knowledge, 3) scrutinising the effect of temporal dynam-
ics with high level of granularity in differentiating the potential connections from
the false positives, and 4) integrating machine learning techniques to amalga-
mate the semantic shift measures to recommend the new knowledge.

2 Related Work

The early work of Swanson demonstrated the potentiality of logically connect-
ing independent information nuggets dispersed across the literature to generate
new practical knowledge [9]. Even though these studies formed the groundwork
in the discipline, the underlying knowledge synthesis was performed manually
requiring a substantial amount of time and effort. Subsequently, several stud-
ies [8] have attempted to automate Swanson’s manual process by incorporating
frequency-based statistical measures. The major limitation of these methods is
their excessive dependency on highly frequent topics. Consequently, RaJoLink
LBD system [8] followed the notion of rarity by only favouring the low frequent
topics. Nevertheless, reliance on high or rare frequencies were progressive, they
do not necessarily capture semantically meaningful connections.

In the meantime, several studies have experimented semantic predica-
tions (subject-predicate-object) using more specialised medical resources such as
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SemRep [6]. Despite being descriptive, the applications of these LBD systems
are highly restrictive due to the following reasons. Firstly, they require to have
a prior knowledge about all the potential predicates related to the problem
and ignore the topics that are outside of the specified predicates. Secondly, the
availability of such specialised resources is highly limited to certain problems
[8]. Subsequently, another line of research [6] has integrated graph theory to
the LBD process by analysing graph properties at; macro-level (e.g., shortest
path), meso-level (e.g., clustering coefficient), and micro-level (e.g., centrality
measures). Even though the graph-theoretic methods remain more successful,
they fail to capture implicit linkages due to their rigid schema [4].

Notwithstanding the research progress gained so far in the discipline, almost
all the research studies suffer from the following two major limitations; 1) over-
reliance of domain-dependent resources that restricts the model’s applications,
and 2) neglecting temporal dimension by assuming the literature to be static.
Hence, in this study we extend the state-of-the-art techniques by proposing
a novel domain-independent temporal methodology to unwind new signals to
detect intriguing novel knowledge linkages. Some of the inspiration for this study
was emanated from the recent LBD studies that strived to model temporal
dimension in LBD process [3,4,12]. Nevertheless, we differ from these studies in
multiple ways as discussed in Sect. 1.

3 Overview of the Proposed Model

This section provides a high-level overview of the proposed model by outlining
the key functionalities of main phases. Recall that the input to our model is
two topics of interest (A and C ) and date T, where the goal is to analyse the
literature up to time T and to detect latent top k conceptual bridges that are
most likely to connect the two topics in future (i.e. in time T+1 ).

To facilitate this, a literature corpus collected up to the time T is required.
In this regard, we consider two types of corpora namely; 1) local corpus: this
is the query specific literature retrieved using the input (i.e. topic A and C ) to
obtain the local topics, and 2) global corpus: this is the entire literature set in
the literature database that enables the analysis of local topics in a global scale.
Subsequently, the global corpus is split into equivalent sized time-slices to obtain
a time-specific global corpus that supports evolutionary analysis (see Fig. 2).

Fig. 2. Overview of the proposed model
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In the initial phase of our model, the local corpus is preprocessed (i.e. con-
cept extraction and filtering) to identify the topics that are local to the input.
Subsequently, the evolutionary analysis is performed by considering semantic
change as the primary temporal setting. To quantify the semantic change, we
construct latent embedding spaces for each time window using the global corpus
and analyse the temporal trajectories of local topics in a global context. In this
regard, we propose three broader classes of evolutionary measures; individual
semantic shifts, relative semantic shifts and relative semantic shifts extended.

Next, the derived semantically infused temporal trajectories of each local
topic are analysed using time-series analysis techniques. To this end, we consider
two types of models; Feature-based Time-series Model (FTM) and Dedicated
Time-series Model (DTM). FTM utilises features extracted from each trajectory
that detect patterns in the time-series. Lastly, the features are articulated to
recommend the novel knowledge linkages. DTM follows a similar analysis as FTM
where we consider the recent advances in deep learning, particularly Long Short-
Term Memory (LSTM) to learn the patterns from the temporal trajectories.
Unlike handcrafted features, such models offer the opportunity in discovering
unforeseen structures of novel knowledge.

4 Methodology

4.1 Initial Preprocessing

The first challenge we faced was identifying a suitable multi-domain knowl-
edgebase that has a broader coverage than WordNet [7] to facilitate the initial
preprocessing. In this regard, we selected DBpedia which is the largest multi-
domain ontology lying at the heart of Linked Open Data (LOD) cloud [10] as
the primary structured knowledgebase. DBpedia is also a multilingual resource
which allows this initial preprocessing extendable not only to literature in other
domains but also in other languages1. To date, DBpedia supports 134 languages.
The English version of DBpedia alone includes 1.7 billion facts. We mapped the
typical preprocessing steps used in LBD workflow [9] by using the properties of
DBpedia as summarised in Table 1. The justification for each DBpedia property
selection (in Table 1) and how it is aligned with the LBD workflow are described
in Supplementary material Section B. The remaining phases of our methodology
do not require any knowledge inferences from outside resources, thereby fulfilling
our intention of proposing a generalisable LBD model.

4.2 Semantic Shifts

The focus of this section is to discuss how we quantified the semantic change of
local topics (concepts) to recommend the novel conceptual bridges.

1 Please refer Section A of Supplementary material.
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Table 1. Mapping typical preprocessing steps used in LBD using DBpedia

Task Typical setting DBpedia setting

Concept
identification

Using MeSH or UMLS DBpedia entities

Synonyms
identification

Using synonyms in
MeSH or UMLS

“is dbo:wikiPageRedirects of”
property

Discipline-
related
terminology

Using controlled
vocabulary
terminologies such as
MeSH, UMLS

“dct:subject” and “skos:broader”
properties

Granularity of
the concept

Using MeSH
hierarchical levels

In-degree page links

The URI prefixes in DBpedia setting can be resolved at http://prefix.cc/

Skip Gram with Negative Sampling (SGNS): Since word embeddings can
be viewed as a potential diachronic tool [2], we learnt distributed representa-
tion of concepts in each distant time-slices of global corpus to analyse how the
concepts semantically changed over time. To this end, we utilised the popular
neural word embedding; word2vec [5] (more specifically SGNS ) to construct the
vector space for each snapshot of global corpus. In these representations each
concept w i has a vector representation w(t) at each time-slice.

Embedding Alignment: Due to the stochastic nature of SGNS, the con-
structed word vectors for each time period could be in arbitrary orthogonal
transformations. Hence, it is important to align the word vectors to the same
co-ordinate axes to facilitate semantic comparison of a same concept across time
(e.g., for measures such as global semantic shifts). Defining a matrix of word
embeddings trained at time period t as W(t)∈Rd×|V|, the orthogonal procrustes
alignment was performed across time-periods using Eq. 1 where R(t)∈Rd×d . The
solution corresponds to the best rotational alignment while preserving cosine
similarity [2].

R(t) = arg min
Q�Q=I

‖QW(t) − W(t+1)‖F (1)

Measuring Semantic Change: This section outlines how we disentangled
multiple types of semantic changes using three broad classes of evolutionary
measures to distinguish potential novel knowledge linkages2.

Individual Semantic Shifts (ISS): In this category, we propose two different ways
to measure the semantic shift of an individual concept.

– Global Semantic Shift: The global semantic shift quantifies how far a
concept has moved in semantic space between two consecutive time periods.

2 Please refer Section C of Supplementary material.

http://prefix.cc/
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For this purpose, we simply measure the cosine distance of the word vectors
of the concept in the aligned vector spaces of time periods t and t + 1 as in
Eq. 2. This measure is sensitive to subtle usage drifts and other global effects
[1].

dISS-G(w(t)
i , w

(t+1)
i ) = cos-dist(w(t)

i ,w(t+1)
i ) (2)

– Local Semantic Shift: The local semantic shift measures the change of
the concept’s local neighbourhood. Thus, this measure is sensitive to drastic
shifts in core meaning and less sensitive to global shifts. Since, the measure is
based on the local semantic neighbours, initially, the concept wi’s K nearest
neighbours at time t are obtained (NK(w(t)

i )). Subsequently, to quantify the
change between the two time-periods t and t + 1, a second-order similarity
vector for w

(t)
i is computed from these nearest neighbour sets as defined in

Eq. 3. The computed vectors for w
(t)
i and w

(t+1)
i are used to quantify the local

neighbourhood change as in Eq. 4 (see [1] for details).

s(t)(j) = cos-sim(w(t)
i ,w(t)

j ) where ∀wj ∈ NK(w(t)
i )∪NK(w(t+1)

i ) (3)

dISS-L(w(t)
i , w

(t+1)
i ) = cos-dist(s(t)i , s(t+1)

i ) (4)

Relative Semantic Shifts (RSS): In this category, we measure the semantic shifts
of the concepts relative to the input topic A and C.

– Pairwise Semantic Displacement: This measure quantifies how the
semantic similarity of a concept changes over the time relatively to the A
and C topics. Thus, this measure verifies if there is a growing semantic simi-
larity of the concept towards topic A and C (see Eq. 5).

s RSS-S(w(t)
i , w

(t)
A , w

(t)
C ) = avg(cos-sim(w(t)

i ,w(t)
A ), cos-sim(w(t)

i ,w(t)
C )) (5)

– Pairwise Distance Proximity: This measure verifies whether a concept’s
temporal trajectory is leaning towards to a close proximity of both the input
topic A and C (Eq. 6). i.e. whether the concept’s trajectory is not favouring A
or C individually, but both at the same time. The intuition for this measure
is that we are seeking for conceptual bridges that implicitly connects A and
C, thus, the trajectory should favour both the topics.

d RSS-D(w(t)
i , w

(t)
A , w

(t)
C ) = max(cos-dist(w(t)

i ,w(t)
A ), cos-dist(w(t)

i ,w(t)
C )) (6)

+ β | cos-dist(w(t)
i ,w(t)

A ) − cos-dist(w(t)
i ,w(t)) | where β ≥ 0
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Relative Semantic Shifts Extended (RSSEx): In this category, we extend the two
measures proposed in RSS category using the recent neighbours of topic A and
C namely; Neighbourhood Semantic Displacement and Neighbourhood
Semantic Proximity. The recent neighbours of topic A (NA) and C (NC) in
a time window W are calculated as in Eq. 7.

NA =
T⋂

t=T−W
NK(w(t)

A ), NC =
T⋂

t=T−W
NK(w(t)

C ) (7)

4.3 Semantically Infused Temporal Trajectories

For each local topic in the corpus, we compute the six semantic shift measures
discussed in Sect. 4.2. i.e. every local topic has six temporal trajectories that
showcase how the topic semantically changed over the time. The derived seman-
tically infused temporal trajectories are analysed at two levels;

Feature-based Time-series Model (FTM): This model employs descrip-
tive statistics of each temporal trajectory such as variance, median as the main
temporal features3. Considering the variations of semantic shifts, we consider
two types of FTM models; 1) FTM-D: This type considers ISS and RSS as the
key temporal trajectories, and 2) FTM-Ex: This type employs ISS and RSS-Ex
with the intention of evaluating the contribution of local neighbourhood in the
relative measures. The potentially of the knowledge linkage is decided by the
estimated probability of FTM when the knowledge linkage is in the testing slice.

Dedicated Time-series Model (DTM): In recent years, LSTM models
have shown promise in many application areas including time-series and sequen-
tial data analysis. Inspired from these research outside of LBD, we employed a
sequential LSTM model to analyse the derived temporal trajectories (see foot-
note 3). Similar to FTM model types, we analyse two types of DTM models
namely; DTM-D and DTM-Ex. The estimated probability of DTM is considered
to decide the potentiality of the knowledge linkage when it is in the testing slice.

5 Experiments

Dataset and Test cases Description: We selected MEDLINE as the main
dataset of our experiments. It is considered to be the largest scientific repository
that provides access to more than 25 million time-stamped scientific articles
(mainly in bio-medicine and life sciences) and commonly used as the primary
data source of the previous LBD studies [4]. To evaluate the effectiveness of
our model and to compare it with the existing models, the following five real-
world test cases reported by the pioneers of LBD discipline were selected for re-
discovery4; 1) Fish-oil (FO) and Raynaud’s Disease (RD), 2) Magnesium (MG)
and Migraine Disorder (MIG), 3) Somatomedin C (IGF1) and Arginine (ARG),

3 Please refer Section D of Supplementary material.
4 Please refer Section E of Supplementary material.
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4) Alzheimer Disease (AD) Indomethacin (INN), and 5) Schizophrenia (SZ) and
Calcium - Independent Phospholipase A2 (PA2).

The main reason for the selection of these test cases is that they are commonly
used for LBD evaluation and treated as the golden datasets in the discipline. The
significance of these test cases in LBD context is that they are complementary
but disjoint. This means the articles in the two topics of each test case have never
been mentioned, cited or co-cited each other. Therefore, the aforementioned test
cases validate the model’s ability in accumulating existing disperse knowledge
in literature to develop novel semantic relationships that have never drawn any
awareness before (i.e.hypotheses generation).

Quantitative Evaluation: To evaluate the validity of the generated output, a
ground truth formation is required. Unfortunately, LBD discipline does not have
any standard ground truth datasets available and constructing such ground truth
remains to be an open issue in the discipline. One reason for this is due to the
fact that it is unrealistic to build a copious ground truth that will presumably
contain all the future discoveries. Hence, the most objective and commonly used
quantitative evaluation technique in LBD discipline is to check if the predicted
novel discoveries have actually taken place in the future (a.k.a. time sliced eval-
uation) [9]. For this purpose, the literature is divided into two segments using a
cut-off-date namely; 1) pre-cut-off segment: where the literature in this segment
are used as the input to the LBD models to discover the novel knowledge and
2) post cut-off segment: where the literature in this segment are used to verify
if the predicted discoveries of the LBD models have actually been discovered
and published. In other words, a generated discovery is considered to be valid
only if it is absent in pre cut-off segment (i.e. the predicted discovery has not
taken place until the cut-off-date) and present in the post cut-off segment (i.e.
the predicted discovery has been discovered and published after the cut-off-date)
(see footnote 4).

Evaluation Setting: In the evaluation setup we validate the coverage of ground
truth conceptual bridges in the top k recommendations. In other words, it is vital
to prioritise the detected conceptual bridges in a way where the topmost rec-
ommendations represent accurate novel knowledge. For this purpose, similar to
previous LBD studies, [3] the two evaluation metrics; Precision@k (P@k) and
Mean Average Precision@k (MAP@k) are used to quantify the results.

Evaluation Baselines: Same as prior LBD studies [3,4,12], the following eight
baseline algorithms were used for performance comparison; 1) Dynamic Embed-
dings (DE)5, 2) ARROWSMITH (AR), 3) Mutual Information (MM), 4) Apriori
algorithm (AP), 5) TF-IDF (TI):, 6) Literature Cohesiveness (COH), 7) Static
Embeddings (SE), and 8) Static Networks (SN).

5 How our model differs from this recent work [12] is discussed in Sect. 1.



Connecting the Dots: Hypotheses Generation by Leveraging Semantic Shifts 337

5.1 Results and Discussion

Table 2 reports the P@k for the golden datasets; (1) and (2) where k is progres-
sively increased from 10 to 100. The P@k result tables for all the five golden
test cases are reported in Section F of Supplementary material. While P@k indi-
cates the coverage of correct recommendations, MAP@k (which is the arithmetic
mean of Average Precision@k) measures the overall performance of the models
considering their ranking order of correct recommendations. Table 3 reports the
MAP@k of the five golden test cases. The results of both P@k and MAP@k
indicate that all the variants of the proposed model consistently outperform
the existing baselines which demonstrates the ability of detailed semantic shifts
analysis in detecting meaningful novel knowledge linkages.

We revealed the following trends through the analysis of the proposed vari-
ants of the our model. In terms of the coverage of correct recommendations (i.e.
P@k), DTM-D reports the highest overall performance across datasets. This
showcase the ability of LSTMs in detecting unforseen structures in the temporal
trajectories that are useful in differentiating potential new knowledge from false

Table 2. Precision@k for FO-RD and MIG-MG golden test cases

Methods 10 20 30 40 50 60 70 80 90 100

Fish-oil and Raynaud’s Disease

DE 0.2 0.2 0.2 0.2 0.2 0.25 0.2286 0.225 0.2222 0.22

AR 0.4 0.5 0.5333 0.475 0.46 0.4667 0.5 0.475 0.4778 0.51

MM 0.4 0.25 0.2667 0.25 0.28 0.3333 0.3286 0.3625 0.3889 0.38

AP 0.1 0.15 0.3333 0.35 0.38 0.4 0.3571 0.35 0.3444 0.35

TI 0.6 0.45 0.3 0.275 0.26 0.2333 0.2714 0.275 0.2778 0.27

COH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

SE 0.0 0.15 0.2333 0.2 0.2 0.2667 0.2714 0.2875 0.2889 0.32

SN 0.0 0.15 0.2 0.175 0.24 0.2833 0.3 0.3125 0.3222 0.34

FTM-D 0.7 0.8 0.8333 0.875 0.84 0.8167 0.7714 0.7625 0.7556 0.76

FTM-Ex 0.9 0.95 0.9333 0.925 0.9 0.8167 0.8 0.8 0.8111 0.81

DTM-D 1.0 0.95 0.9 0.9 0.9 0.9 0.9 0.8875 0.8778 0.88

DTM-Ex 0.9 0.85 0.8667 0.825 0.86 0.8167 0.8143 0.8 0.8111 0.81

Magnesium and Migraine Disorder

DE 0.2 0.2 0.1667 0.2 0.2 0.2 0.2143 0.1875 0.1889 0.21

AR 0.6 0.5 0.5333 0.525 0.54 0.5167 0.5143 0.55 0.5444 0.58

MM 0.2 0.4 0.4667 0.475 0.42 0.4 0.3571 0.3375 0.3222 0.33

AP 0.0 0.1 0.1333 0125 0.12 0.15 0.1714 0.175 0.2 0.22

TI 0.2 0.4 0.5 0.475 0.46 0.45 0.4286 0.4125 0.3778 0.36

COH 0.0 0.0 0.0 0.0 0.0 0.0167 0.0286 0.0375 0.0556 0.05

SE 0.4 0.35 0.2333 0.25 0.24 0.2667 0.2714 0.3 0.2889 0.28

SN 0.0 0.0 0.0333 0.05 0.04 0.05 0.0429 0.0375 0.0667 0.07

FTM-D 0.5 0.65 0.7 0.775 0.76 0.7833 0.8 0.8 0.7889 0.8

FTM-Ex 0.6 0.7 0.7333 0.8 0.82 0.8333 0.8429 0.8 0.7667 0.74

DTM-D 0.8 0.85 0.8333 0.75 0.74 0.7667 0.7571 0.775 0.7889 0.8

DTM-Ex 0.7 0.75 0.7333 0.775 0.78 0.7833 0.7714 0.8 0.7889 0.77
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Table 3. Mean Average Precision@k (MAP@k) for all golden test cases

Methods 10 20 30 40 50 60 70 80 90 100

DE 0.0768 0.0647 0.0648 0.0599 0.0534 0.0561 0.0529 0.0480 0.0466 0.0461

AR 0.2701 0.2722 0.2738 0.2573 0.2520 0.2511 0.2552 0.2574 0.2558 0.2703

MM 0.1526 0.1510 0.1559 0.1546 0.1622 0.1786 0.1723 0.1726 0.1746 0.1710

AP 0.0480 0.0407 0.0569 0.0606 0.0609 0.0610 0.0576 0.0570 0.0573 0.0612

TI 0.1593 0.1329 0.1098 0.0973 0.0877 0.0810 0.0777 0.0747 0.0697 0.0662

COH 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.0002 0.0005 0.0004

SE 0.0433 0.0462 0.0510 0.0471 0.0491 0.0613 0.0652 0.0718 0.0742 0.0805

SN 0.02 0.0194 0.0240 0.0209 0.0253 0.0292 0.0294 0.0331 0.0347 0.0341

FTM-D 0.4630 0.5671 0.5742 0.5951 0.5830 0.5762 0.5591 0.5515 0.5420 0.5348

FTM-Ex 0.6283 0.6813 0.6639 0.6895 0.6760 0.6391 0.6303 0.6067 0.6004 0.5943

DTM-D 0.6096 0.5596 0.5407 0.5135 0.5174 0.5297 0.5272 0.5288 0.5391 0.5455

DTM-Ex 0.6054 0.6018 0.5647 0.5384 0.5360 0.5073 0.5094 0.5028 0.4985 0.5001

connections. The MAP@k results indicate that FTM-Ex consistently outper-
form the remaining models by often front-loading the correct recommendations.
i.e. this model tend to have a better ordering of the knowledge recommenda-
tions. This highlights that the LBD model is sensitive not only to the topic A
and C alone, but also to their core meaning. In recommendation tasks such as
LBD, it is unrealistic to expect that the user will examine and experiment the
entire list of proposed new knowledge linkages. In other words, better ordering
of the knowledge recommendations is crucial compared to coverage. Therefore,
we believe that the slight P@k loss incurred using FTM-Ex in most of the test
cases can be indemnified through its performance gain in MAP@k.

Overall, we consider the following reasons as the main strengths of the proposed
model compared to the baselines; 1) Multiple characteristics: Even though most of
the LBD studies strictly rely on one or two characteristics to elicit new knowledge,
it is observed that new knowledge can be in multiple forms due to complexity of the
knowledge structures in the scientific literature. For instance, Davies [9] has iden-
tified five forms of novel knowledge in FO-RD and MG-MIG test cases. Thus, our
model take the advantage of detecting novel knowledge in different forms by cap-
turing the semantic change at multiple levels; individual shifts, pairwise shifts and
neighbourhood shifts, 2) Global analysis: Unlike most of the prior LBD research
that merely focus on cues at local scale, we analysed the concepts’ trajectories
in a global context. This facilitates the analysis of concepts neighbourhood in a
wider scope. For example, consider “blood viscosity” conceptual bridge of FO-RD
test case. This conceptual bridge may also be associated with other chemical sub-
stances of FO (such as eicosapentaenoic acid). However, query specific local cor-
pus often limits in accommodating such implicit interactions, 3) Detailed temporal
analysis: While almost all the prior LBD research are based on the static liter-
ature, we considered the temporal behaviour of concepts to discover new knowl-
edge. This allows the model to detect time-aware knowledge recommendations
that have higher semantic meaning. Moreover, it is also evident that analysing the
time-series in detail benefits in LBD workflow (in contrast to baselines such as DE
[12]), and 4)Generalisability: Theproposed temporal clues are free fromknowledge
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inferences from domain-dependent resources (unlike baselines such as AR [11]).
This meets our objective of generalisabe cues whose predictive effects do not rely
on the specialised knowledgebases.Moreover, our initial preprocessing phase is also
adaptable to multiple domains and languages due to strengths of DBpedia. Thus,
our solution can be easily integrated to non-medical LBD settings.

Further analysing the results, we observe that AR performs the best among
the baselines. AR is arguably the most popular and well-maintained LBD sys-
tem in the discipline that currently has nearly 1200 of monthly user-base [6]. We
observe two main reasons for its performance gain compared to the remaining
baselines. Firstly, it considers seven characteristics to determine the potential-
ity of the novel knowledge (i.e. the use of multiple characteristics). Secondly,
three of their characteristics include global literature analysis which benefits in
identifying the concept’s global properties that are not visible to local corpus.
However, three of its features require the analysis of UMLS and MeSH, which
restricts the suitability of AR baseline only to the medical domain.

6 Conclusion and Future Work

In this study, we have described, evaluated and systematically compared our
semantically infused temporal model in detecting novel knowledge linkages. The
results indicate the challenge associated in detecting such novel linkages and
emphasis the need of developing circumstantial solutions to handle the prob-
lem. Overall, the holistic integration of semantics and temporal information
significantly outperformed all the existing baselines in the discipline. The sup-
plementary material of this paper is also available at: https://tinyurl.com/lbd-
supplementary.

In future research, we intend to take the advantage of the power of the pro-
posed semantic shifts and the domain-independency of the model to contribute
to LBD research in non-medical domains such as computer science (thus far,
there exists only one LBD study in computer science [8]). Therefore, we believe
that our model will be a successful first step towards promoting generalisable
LBD systems.
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