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Abstract. Machine learning algorithms have been widely used for pre-
dicting kinase-specific phosphorylation sites. However, the scarcity of
training data for specific kinases makes it difficult to train effective
models for predicting their phosphorylation sites. In this paper, we pro-
pose a deep transfer learning framework, PhosTransfer, for improv-
ing kinase-specific phosphorylation site prediction. It banks on the hier-
archical information encoded in the kinase classification tree (KCT)
which involves four levels: kinase groups, families, subfamilies and pro-
tein kinases (PKs). With PhosTransfer, predictive models associated
with tree nodes at higher levels, which are trained with more sufficient
training data, can be transferred and reused as feature extractors for
predictive models of tree nodes at a lower level. Out results indicate that
models with deep transfer learning out-performed those without transfer
learning for 73 out of 79 tested PKs. The positive effect of deep trans-
fer learning is better demonstrated in the prediction of phosphosites for
kinase nodes with less training data. These improved performances are
further validated and explained by the visualisation of vector representa-
tions generated from hidden layers pre-trained at different KCT levels.
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1 Introduction

Phosphorylation is the most common post-translational modification. It plays
an important role in gene expression and cellular processes. The identification of
phosphorylation sites in substrate sequences represents an important step toward
a deeper understanding of cell singling processes. Dozens of computational tools
have been developed to automatically identify phosphorylation sites from pro-
tein sequences [9,12,15,19,23]. They are generally categorised into two types,
general phosphorylation site (GPS) prediction and kinase-specific phosphoryla-
tion site (KPS) prediction. In GPS prediction, any Serine(S), Threonine(T) and
Tyrosine(Y) site is classified either as a phosphorylation site or not, irrespective
of the specific kinase that catalyses the phosphorylation. However, due to struc-
tural differences among different kinases, their target substrates have to meet
kinase-specific requirements, including residue patterns. With KPS prediction,
such patterns are taken into account.

It is challenging to structurally characterise kinases for the purpose of
KPS prediction. Yet, kinases are classified into groups, families and subfami-
lies according to the sequential pattern of their catalytic domains, resulting in
a kinase classification tree (KCT) [14]. In GPS 2.0, this KCT was used as
heuristic for KPS prediction for the first time [22]. It provided a new hierarchi-
cal perspective for investigating kinase-specific phosphorylation. However, due to
the lack of phosphosites annotated for specific kinases, few methods approached
KPS prediction in such a hierarchical manner. A more recently work Musit-
eDeep [18] implemented the idea of transfer models in GPS prediction for KPS
prediction. But it did not explore the effect of transfer learning using heuristic
from the hierarchy of the KCT.

In this paper, we propose a deep transfer learning framework, PhosTrans-
fer, for KPS prediction. With PhosTransfer, we observed improved perfor-
mance for kinases with limited annotated phosphosites. We also analysed the
factors that affect its prediction performance and visualised the vector represen-
tations generated by PhosTransfer at different tree levels. A benchmark is
constructed and released for hierarchical KPS prediction. The source codes for
PhosTransfer is available at: https://github.com/yxu132/PhosTransfer

2 Methodology

The lack of annotated phosphosites is a common issue in building model for pre-
dicting KPS. This issue is even more problematic for deep learning models that
in general involve more parameters and therefore are more likely to suffer from
overfitting. In this section, we introduce PhosTransfer in which deep learning
models are trained and transferred for predicting sites that are phosphorylated
by kinases at each level of the KCT.

2.1 Deep Transfer Learning in Hierarchy

According to Manning et al. [14], there are 8 major kinase groups, each of which
has multiple kinase families and subfamilies with individual PKs clustered to

https://github.com/yxu132/PhosTransfer
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Fig. 1. Deep transfer learning for KPS prediction.

different subfamilies, forming a KCT of four levels. For simplicity, we refer to
any tree node in the KCT as a kinase node. GPS 2.0 [22] proposed to use the
annotated phosphosites of kinase nodes at lower levels to train models for their
ancestor kinase nodes at higher levels. In this case, the training data is reused
in a bottom-up manner. In contrast, we adopted the general idea of transfer
learning [16] to transfer the knowledge learned for kinase nodes at higher levels
to descendant kinase nodes at lower levels, in a top-down manner.

When implemented with deep convolutional neural network (CNN)1, the
transferable knowledge refers to the hidden layers that are learned to extract
high abstractive features in the source task, which are latter reused or fine-
tuned for target tasks [1]. Generally speaking, source tasks and target tasks are
usually related tasks where the former has more training data and its model can
be properly trained while the latter has limited training data and potentially
suffers from overfitting during the process of training.

For KPS prediction, we transfer hidden layers trained for kinase nodes at
higher levels to those at lower levels. We map the level t in the KCT to the
hidden layer i in the generic deep CNN as in Fig. 1. Let x be the input of the
deep CNN and hi the convolutional filter at the i-th hidden layer, the binary
output yi of KPS prediction for kinase nodes at the t-th level is represented as,

yt = σ(Wth
θt
t (ht−1(...(h1(x)))) + bt); θt (1)

where h1 . . . ht−1 are convolutional filters pre-trained by phosphosites of kinase
nodes at level 1 . . . t − 1, respectively, hθt

t is the convolutional filter for kinase
nodes at level t whose parameters θt are to be learned, σ is the activation function
at the output layer, and Wt and bt are the weight and bias parameters for the
fully connected layer, respectively. Note that only parameter θt, Wt and bt are
trainable for ht while parameters for h1 . . . ht−1 are pre-trained and fixed.

1 We used a sliding window of size w to extract the neighbouring residues of the target
residue ri. The local sequence segment is represented as ri−w, . . . , ri, . . . , ri+w with
the length of L = 2w + 1. Here, 1-dimensional CNN is used.
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2.2 Level-by-Level Representation Extraction

We trained the above deep transfer learning framework for KPS prediction using
a level-by-level strategy.

Level 1 (Kinase group). For each of the 8 kinase groups in the KCT, we
trained a CNN with their respective training data sets. Each of these CNNs has
a single hidden layer hg

1 where g ∈ {AGC,CAMK, . . . , CMGC,STE, and TK}.

Level 2 (Kinase family). For any kinase family f in group g, we reused the
hidden layer hg

1 (fixed) for feature extraction and top-up a second hidden layer
hf
2 (trainable) for kinase family f . For example, when g = AGC kinase family

f ∈ {DMPK,GRK,NDK,PKA, ...}.

Level 3 (Kinase subfamily). For any subfamily s in kinase family f , we
reused the hidden layer hg

1 and hf
2 (fixed) for feature extraction and top-up

a third hidden layer hs
3 (trainable) for kinase subfamily s. For example, when

g = AGC and f = PKC subfamily s ∈ {Alpha, . . .}.

Level 4 (Protein kinase). For PK k in kinase subfamily s, we reused the
hidden layer hg

1, hf
2 and hs

3 (fixed) and top-up a fourth hidden layer hk
4 (train-

able) for protein kinase k. For instance, when g = AGC, f = PKC and s = Alpha,
protein kinase k ∈ {PKCα,PKCβ}.

In order to explore the large amount of S/T/Y phosphorylation sites that
are not specifically annotated for any kinase, we added an extra level on top of
the level kinase group in the KCT, namely, the Level 0 (AA type), for which
the single hidden layer haa

0 is inserted and trained as the feature extractor for
subsequent hidden layers hg

1, hf
2 , hs

3 and hk
4 . Here, the amino acid type AA ∈

{S/T, Y }. Among the 8 kinase groups, only the model of TK is trained based
on hY

0 while the models of other groups are trained based on h
S/T
0 .

2.3 Feature Vectors

Previous studies have highlighted multiple factors that are relevant to GPS/KPS
prediction [9,12,15,23]. In this study, we construct the feature vector V by com-
bining the following three feature categories: a) Evolutionary-based features. We
incorporated two evolutionary features calculated from the weighted observed
percentage (WOP), namely the Shannon entropy and the relative entropy [9].
b) Structural-based features. We incorporated two structural properties of pro-
teins, including protein secondary structures generated using the PSIPRED tool
[6] and disordered protein states generated using DISOPRED3 [13]. c) Physic-
ochemical properties. We incorporated Taylor’s overlapping properties and the
average cumulative hydrophobicity described in PhosphoSVM [9].

The above six features were concatenated to form a 26-dimensional feature
vector for each S/T/Y site.



388 Y. Xu et al.

3 Datasets

We constructed datasets by combining phosphorylation sites from UniProt [7]
and Phospho.ELM (v9) [8]. First, we downloaded 555,594 reviewed proteins
from UniProt and extracted all the proteins that had at least one phosphosite
annotation, resulting in a total of 14,458 proteins. We then collected triple-
record annotations (protein identification, site position, kinase) from UniProt
for these 14,458 proteins and removed 2,155 that were labeled as ‘by similarity’.
The resulting 56,772 triple-record annotations contained 43,785 S sites, 10,397 T
sites, and 4,711 Y sites, among which 7,021, 2,515 and 2,066 were annotated for
specific kinases, respectively. We performed similar steps for Phospho.ELM,
resulting in 43,027 S sites, 9,556 T sites, and 4,723 Y sites, among which 2,961,
943, and 1,031 sites were kinase-specific, respectively.

The combined annotations are cross-referenced to the hierarchical structure
introduced in Table S1 of the GPS 2.0 paper [22]. We removed kinases that had
less than 15 triple-record annotations and obtained consolidated phosphorylation
sites for 8 kinase groups, 50 families, 52 subfamilies and 69 PKs. In addition, to
fully explore the annotated phosphorylation sites, we also include S/T and Y sites
(even if they are not annotated for specific kinases), resulting in an extra amino-
acid (AA) level on top of the group level. Finally, we constructed the training
and independent test sets for each of the 179 groups/families/subfamilies/PKs
by randomly partitioning the datasets using a size ratio of 4:1. Please refer to
Table S1–S8 in supplementary materials for details dataset statistics.

4 Experiments

4.1 Experimental Settings

In order to investigate the effect of using deep transfer learning for KPS predic-
tion, we conducted a comparison among multiple models for each kinase node in
the KCT. Figure 2 demonstrates a partial tree surrounding the tree path A-B-
C-D-E. For model 3′, 5′–6′, 8′–10′, and 12′–15′, there are more than one hidden
layer and deep transfer learning was applied. For example, in model 13′, the first
hidden layer hf

2 was trained using phosphosites of family C (transferred from
model 4′), based on which the second hidden layer hs

3 was trained using phospho-
sites of subfamily D (transferred from model 8′). Based on these two pre-trained
hidden layers, the third hidden layer hk

4 was trained using phosphosites of protein
kinase E. Therefore, Eq. 1 is represented as y4 = σ(W4h

k
4(h

s
3(h

f
2 (x))) + b4); θ4.

Among the 15 compared models, the last hidden layers of models 11′–15′

were trained using phosphosites of protein kinase E, which we refer to as the
direct models of E. Since the models of its ancestors (e.g. A, B, C, and D) can
also be applied to predict phosphorylation sites of protein kinase E, model 1′–10′

are referred to as indirect models of protein kinase E.
In phosphorylation site prediction, datasets are strongly unbalanced. There-

fore, we evaluated the prediction performance of PhosTransfer using the area
under the ROC curve (AUC), the Matthew’s coefficients of correlation (MCC)
[4] and the balanced accuracy (BACC) [5].
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Fig. 2. Compared models for kinase nodes in hierarchies of the KCT.

4.2 Results for PKs in Different Groups

We first compared the prediction performance of direct models 11′–15′ for the 69
PKs in 8 different groups. Heat maps in Fig. 3 correspond to the the normalised
AUC scores of the five models, with 1, 2, 3, 4 and 5 hidden layers respectively,
for each of the PKs. Better performance is in lighter colour.

Results demonstrated that for most PKs in kinase groups AGC, CMGC and
Atypical, prediction performance was improved with the increase of hidden lay-
ers. It indicates that the hidden layers transferred from models of ancestor nodes
play a positive role in improving the prediction performance. For most PKs in
the group Other, the best performance was achieved by model 14′ while the per-
formance of model 15′, which also included haa

0 , (aa = S/T ) as the first hidden
layer, was inferior. This demonstrates that the phosphosites of S/T sites nega-
tively affected the prediction performance. Considering that the PKs in group
Other are structurally different from PKs in other groups, it makes sense that
the annotated S/T sites, among which most were from other groups, did not
help in improving the performance.

In group CAMK, STE and CK1, better performance was achieved by among
model 12′–15′ for most PKs, demonstrating the positive effect of deep transfer
learning. However, for kinases LKB1, CHK1 and DAPK3, the best performance
was achieved by model 11′ that was trained solely on the phosphosites of PKs
themselves. Especially for kinase LKB1, the prediction performance decreased
with the increase of the number of hidden layers. It indicates that phosphosites
of LKB1 may be well distinguished from phosphosites of others.

For most PKs in kinase group TK, the best prediction performance was
achieved by models 14′. According to the normalised results, the pre-trained
layer hs

3 and hf
2 played little positive effect in improving the performance. The

prediction performance was only improved in model 14′ when the hidden layer
hg
1 trained for group TK was added. At the same time, adding the hidden layer

haa
0 (aa = Y) trained on amino acid Y in model 15′ played a negative effect in

improving the performance, which can be explained by the diverse local sequen-
tial patterns of Y phosphosites [2].
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Fig. 3. Prediction performance of models with 1–5 hidden layers for PKs.

4.3 Results for Kinases with Insufficient Annotations

Transfer learning was designed in part to improve the performance for prediction
tasks with insufficient training data. Among all the tested 179 kinase nodes, 84%
had no more than 200 annotated phosphosites, 45% had no more than 50 anno-
tated phosphosites and 10% had no more than 20 annotated phosphosites. Here,
we investigated the performance improvements due to deep transfer learning
with respect to the number of phosphosites for each kinase node.

Given the prediction performance of various kinase nodes were different even
without deep transfer learning, we defined the performance improvement rate
(PIR): Let M and M ′ denote the model with and without deep transfer learning
respectively, the measurement PIR is defined as

PIR(M,M ′) =
sM − sM ′

sM ′
(2)

where sM and s′
M represent the prediction performance of model M and M′,

respectively. Here, the AUC was used as the performance evaluation score.
According to Fig. 2, models 1′, 4′, 7′ and 11′ are based on the single-layer feed-

forward neural network (SLFN), to which no deep transfer learning was applied.
All other models are deep transfer learning models with different numbers of pre-
trained hidden layers. Therefore, models 1′, 4′, 7′ and 11′ correspond to model
M ′ while all others correspond to model M . For each tested kinase node n, we
then calculated the PIR between the best performing deep transfer learning
model and the corresponding SLFN-based model, and plot the calculated PIR
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score with respect to the number of phosphosites of n. Figure 4 depicts the scat-
ter plot, with each point representing a node’s relationship between performance
improvement rate and number of annotated phosphosites.

Fig. 4. The correlation between PIR and the number of annotated phosphosites.

According to the results, the prediction performance for kinases with insuffi-
cient annotated sites are more likely to improve when deep transfer learning was
applied. While for kinases with more than 400 annotated sites, the prediction
performance was improved by no more than 10% compared to the performance
of the SLFN-based models. However, there is no guarantee for kinases with less
annotated sites to have their prediction model’s performance improved, when
deep transfer learning is applied. Other factors, such as the local sequential pat-
terns, may also affect the PIR of deep transfer learning models. Nevertheless,
the results confirmed the positive effect of deep transfer learning in predicting
phosphorylation sites for kinases with insufficient annotations.

4.4 Visualisation of Layer-by-Layer Feature Extraction

In PhosTransfer, hidden layers pre-trained based on phosphosites of kinase
nodes in higher levels of the KCT are used as the feature extractors for models of
kinase nodes in lower levels. Therefore, in model 15′, the first four hidden layers
haa
0 , hg

1, hf
2 , and hs

3 were pre-trained in model 1′, 3′, 6′ and 10′, respectively. In
order to evaluate these hidden layers as the feature extractor, we generated the
vector representations from haa

0 , hg
1, hf

2 , hs
3 and hk

4 in model 1′, 3′, 6′, 10′ and
15′, respectively, for phosphosites of five PKs including CDK2, CDK5, GRK2,
PLK1 and SRC. Figure 5 demonstrated the scattered plot of the vector repre-
sentations generated by different hidden layers (feature extractors), where each
vector representation was mapped to a 2-dimensional vector using t-SNE.

In Fig. 5 (a), no hidden layer was used and the distribution of phosphosites
of all five PKs overlap with each other. In Fig. 5 (b), hidden layers pre-trained at
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Fig. 5. t-SNE plot of vector representations generated from hidden layers.

amino-acid level was applied, and the phoshposites of SRC was clustered to the
left side of the vector space, while the distributions of phosphosites of other four
kinases still overlap. Here, SRC is the only PK that catalyses the Y sites. It indi-
cates that the hidden layer hST

0 trained with S/T sites and the hidden layer hY
0

trained with Y sites are capable of distinguishing phosphosites of kinases catalyze
S/T sites and Y sites, respectively. In Fig. 5 (c), the hidden layers were trained
at the group level, and the phosphosites of GRK2, PLK1, and CDK2/CDK5
were separated from each other. Here, GRK2, PLK1 and CDK2/CDK5 belong
to group AGC, Other and CMGC, respectively. It indicates that the hidden
layers pre-trained at the group level are capable of distinguishing phosphosites
of kinases from different groups. In Fig. 5 (d), the distribution of phosphosites
of CDK2 and CDK5 still overlap with each other, which is consistent with the
KCT where both CDK2 and CDK5 belong to the same kinase family CDK. In
Fig. 5 (e), the distribution of phosphosites of CDK2 and CDK5 were separated
from each other, which is consistent with the KCT where CDK2 and CDK5 were
classified to have different subfamily CDK2s and CDK5s. Finally, in Fig. 5 (f),
phosphosites of all five kinases were clustered into five groups, which corresponds
to the five PKs, respectively.

4.5 Comparison with Baseline Methods

We further compared the prediction performance of PhosTransfer to 5 base-
line phosphorylation site prediction methods, among which GPS 3.0 [21–23]
uses hierarchical clustering to perform both GPS and KPS prediction based
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Fig. 6. Prediction performance comparison among multiple KPS prediction methods.

on similarities between local sequences around phosphosites; KinasePhos 2.0
[19] perform both GPS and KPS prediction based on HMM profile [10] and the
coupling pattern of the surrounding sequence segment using the support vec-
tor machines; NetPhos 3.1 [2,3] used a neural network to combine sequential
and structural motifs in a unified prediction model to predict KPS; Phospho-
Pick [15] incorporated the protein interaction networks for KPS prediction; and
PPSP [20] and phos pred [11] predicts KPS using Bayesian decision theory
and random forest, respectively.

Considering the inconsistent sets of kinases that are available in the different
prediction methods, we selected the group CAMK, family AGC/PKC, subfamily
CGMC/CDK/CDK5, and PK Other/PLK/-/PLK1 as the representative kinase
nodes from each level of the KCT. Figure 6 demonstrates the ROC plots and
corresponding AUC scores of different prediction methods for each of the repre-
sentative kinase nodes. According to the results below, PhosTransfer achieved
the best performance for the four representative kinase nodes in different levels
of the KCT, when compared to that of the baseline methods.

5 Conclusions

In this study, we introduced the deep transfer learning framework PhosTrans-
fer for KPS prediction. This framework was inspired by the hierarchical
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classification system of kinases and transfer learning. The basic idea is that
phosphorylation sites of protein kinases within the same subfamily, family and
group are likely to share similar local sequential and structural patterns, there-
fore models trained for higher level kinase nodes, which have more sufficient
training data, can be transferred (reused) as feature extractors for lower level
kinase nodes. When combined with deep learning, this idea is implemented in
form of convolutional neural networks with multiple hidden layers, where each
layer was trained individually based on the annotated phosphosites of kinase
groups, families, subfamilies and PKs that are on the same tree path.

According to our investigation, the improved performance achieved by Phos-
Transfer is affected by the following factors. First, the performance improve-
ment rate of PhosTransfer is related to the number of annotated phosphosites
of the kinase node itself. For protein kinases with sufficient training data (more
than 400 annotated phosphosites), the prediction performance was improved
no more than 10% when PhosTransfer was applied. This indicates that the
application of PhosTransfer does address the issue of overfitting during the
process of model training for kinase nodes with insufficient training data. Sec-
ond, the number of phosphosites of the group itself can affect the prediction
performance for families, subfamilies and PKs within this group. The basic idea
of PhosTransfer is that the models trained for kinase nodes (especially, kinase
groups) with more sufficient training data can be reused as feature extractors for
kinase nodes with insufficient training data. However, if the kinase group itself
does not have enough annotated phosphosites, this idea may not work prop-
erly. This explains the unsatisfactory performance of PhosTransfer in groups
STE and Atypical, which had the least annotated phosphosites among all kinase
groups. Third, the prediction performance of PhosTransfer is negatively cor-
related to the motif diversity of the phosphorylation sites in the training data.
According to [2], PROSITE motifs could recognise only 10% of annotated Y
phosphorylation sites [17], which may explain the unsatisfactory performance of
PhosTransfer for kinases in group TK.
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