
Mining Dynamic Graph Streams
for Predictive Queries Under Resource

Constraints

Xuanming Liu and Tingjian Ge(B)

University of Massachusetts, Lowell, USA
{xliu,ge}@cs.uml.edu

Abstract. Knowledge graph streams are a data model underlying many
online dynamic data applications today. Answering predictive relation-
ship queries over such a stream is very challenging as the heterogeneous
graph streams imply complex topological and temporal correlations of
knowledge facts, as well as fast dynamic incoming rates and statistical
pattern changes over time. We present our approach with two major com-
ponents: a Count-Fading sketch and an online incremental embedding
algorithm. We answer predictive relationship queries using the embed-
ding results. Extensive experiments over real world datasets show that
our approach significantly outperforms two baseline approaches, produc-
ing accurate query results efficiently with a small memory footprint.

1 Introduction

The knowledge graph model is widely used to represent online data [5,13,15].
It consists of (h, r, t) triples, where h is the head entity, t is the tail entity,
and r is their relationship. Each triple is called a knowledge fact, and there are
typically multiple types of vertices and relationships. With an ever-increasing
amount of ubiquitous data captured online, this model also provides rich struc-
tural semantics to data streams. For example, in communication networks, road
traffic graphs, and user-product-purchase real-time graphs used by companies
such as Amazon [4], dynamic knowledge facts stream in. Thus, the model com-
prises a dynamic portion which is a graph stream [18]—a sequence of knowledge-
fact edges with timestamps, as well as an optional static graph portion.

Let us look at some examples. Traffic and commute are an integral part
of people’s life. Dense and dynamic traffic data has been collected and made
available online as a service, such as the New York taxi cab data [2]. It contains
taxi trip information, including pick-up and drop-off locations, trip start time
and duration, number of passengers, among others.

This knowledge graph stream is illustrated in Fig. 1(a). We partition the
whole geographic area into a dense grid, where each vertex corresponds to a 0.5
mile by 0.5 mile square area. Two neighboring vertices are connected by a static

This work is supported in part by NSF grant IIS-1633271.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 31–43, 2020.
https://doi.org/10.1007/978-3-030-47436-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_3

32 X. Liu and T. Ge

Fig. 1. (a) Taxi trip information network, (b) dynamic user-movie information graph.
(Color figure online)

thin edge in the figure, indicating the “proximity” relationship (an undirected
edge is treated as two directed edges in both directions). The bold red edges
denote trip information, i.e., from a grid point to another during a time interval.
These are dynamic edges and can be of two relationships: “fast”, or “slow”
(compared to past statistics).

As an example in a different domain, companies, e.g., Amazon, are collecting
information about users, product items, purchase/rating history as online
data for business and service. Another example is dynamic movie rating and
tagging as in MovieLens [1], illustrated in Fig. 1(b). There are four types of
vertices—users, movies, genres, and tags, and four relationship types: movie →
genre (black solid edges), movie → tag (green dashed edges), user “likes” a movie
(red solid edges), and user “dislikes” a movie (red dashed edges), with the former
two being static and the latter two being dynamic with timestamps.

Predictive Relationship Queries. Given a knowledge graph stream, we focus
on predictive relationship queries. As in previous work such as [13], we follow the
local closed world assumption: for a target knowledge (h, r, t) not in the graph,
if there exists (h, r, t′) where t′ �= t, then we consider (h, r, t) as false; otherwise
it is unknown—indeed, knowledge facts are too abundant and a system may
not have the time/resource to acquire all. The relationship queries are based on
the predictive results of unknown edges; the details are in Sects. 2 and 4. To
see a simple example, for relationship temporal joins, in Fig. 1(a), one may be
interested in querying the correlation of two trips over time—when each trip’s
fastness/slowness property is treated as a sequence. The result of such queries
would be useful for traffic planning and management.

Resource Constraints. In Fig. 1(a), the number of vertices can be thousands or
millions in a large area, and the total number of edges can be a quadratic function
of that. Likewise in Fig. 1(b), there is a large number of high-rate concurrent pur-
chases and rating edges. There are always resource constraints for real-time stream
processing. In order to answer queries online in real time, we may only access a lim-
ited amount of memory, and cannot afford to access disks. This is more so with
the trend of edge computing [14], where more processing is pushed to smaller or

Mining Dynamic Graph Streams for Predictive Queries 33

less powerful devices at the edge of a cloud system. Furthermore, even in memory-
abundant server environment, sketches are needed as a small, lightweight com-
ponent for approximate analysis within a broader stream processing pipeline [9].
Sharing similar motivations as ours, sketches are used for predictive linear classi-
fiers over data streams [21].

We first devise a novel sketch called a Count-Fading (CF) sketch (Sect. 3);
then we extend previous work on knowledge graph embedding [22] to the context
of graph streams, using CF. This in turn helps us answer relationship queries
(Sect. 4). Finally, we perform comprehensive experiments that demonstrate the
effectiveness and efficiency of our solution (Sect. 5).

Related Work. Sketches, as data summaries, have been studied for data
streams. It starts from Bloom filters [6]. Later ones include AMS sketch [3] and
Count-Min (CM) sketch [12]. There has also been attempt to add time decay
into a sketch. Cafaro et al. [10] combine a “forward decay” model with CM
sketch and a Spacing-Saving algorithm to solve the problem of mining frequent
items. Our CF sketch is significantly different from previous work, and targets
a completely different problem—serving dynamic graph stream embedding. We
study the choice of sketch size based on dynamic incoming rate and allowed
false-positive rate. Moreover, CF sketches dynamically grow/shrink in response
to the fluctuation of stream rates, which has not been addressed in previous
work.

Knowledge embedding refers to a technique that models multi-relational data by
constructing latent representations for entities and relationships. Researchers
developed translation-based embedding model to jointly model entities and
relationships within a single latent space, such as translational embedding
(transE) [7], translation on hyperplanes (transH) [23], and relation-specific entity
embedding (transR) [16]. However, graph stream embedding is an open prob-
lem [11]. Our work is an endeavor towards this direction. Moreover, we target a
more diverse set of predictive relationship queries than link prediction. To our
knowledge, these have not been studied before.

2 Problem Formulation

A knowledge graph stream is represented as G = (V,Es ∪ Ed, R), where V is the
set of vertices, Es is a set of static edges, Ed is a set of dynamic edges, and R is
a set of relationships. Every edge e ∈ Ed has a timestamp ts(e) corresponding
to the edge’s arrival time. Each edge e ∈ Es ∪Ed is in the form of (h, r, t), where
h ∈ V and t ∈ V are called the head and tail, respectively, and r ∈ R is a
relationship. Given G, we answer predictive relationship queries below.

A basic one is local relationship queries. At time t, given vertices u, v ∈ V ,
and a relationship r ∈ R, a local relationship query asks for the probability that a
knowledge fact (u, r, v) holds at time t. Another close one is called a relationship
ranking query. Given multiple edges (u1, r1, v1), ..., (uk, rk, vk) (e.g., a special
case is r1 = r2 = ... = rk), the query asks to rank these k predictive edges

34 X. Liu and T. Ge

in the order of their probabilities. We call the above two types basic predictive
relationship queries. In Sect. 4, we also discuss relationship temporal joins, user
defined relationships, and global relationship queries as extended types.

3 A Count-Fading Sketch

Basic Scheme. We devise a novel time-adaptive dynamic-size sketch based
on the Count-Min (CM) sketch [12], and call it a Count-Fading (CF) sketch.
Some background on CM is in the Supplementary Material [17]. CF signifi-
cantly extends the CM in Fig. 2(a). Our goal is to track ever-increasing con-
tinuous counts of items (knowledge fact edges), with higher weights for recent
ones. Secondly, we need our sketch to last, remaining low errors, and adapt to
data stream bursts. As illustrated in Fig. 2(b), CF has dynamic versions that
grow/shrink over time. Let us first focus on a single version, version 1 in Fig. 2(b)
(to the left of a vertical divider corresponding to time up to some value T1). Each
row i corresponds to a hash function hi(1 ≤ i ≤ d), and there are w1 columns
for version 1.

Fig. 2. (a) A Count-Min sketch, (b) A CF sketch.

Each cell has two fields, a count c ∈ R and a timestamp t. By design, logically,
at each time step, we deduct 1 from the count c in each cell of the CF with
probability p−. Intuitively, old counts decay over time, while new counts keep
being added—so our embedding learning will be adaptive. Additionally, as shown
below, it has an important purpose—the count errors become bounded and fade
out with time, in contrast to the unbounded/accumulated errors without the
fading. However, it is too costly to update all the counts at every time step. We
defer the deductions and batch them until a particular cell is needed. This is
achieved by adding a “time” field to each cell (t in Fig. 2(b)), indicating the last
time step when the count c is up to date.

To increment the count of an item x, we first locate the cell in row i and
column hi(x) mod w1, for each 1 ≤ i ≤ d. For each of these d cells with content
(c, t), we update its c to max(ε, c−p− · (tnow − t))+1 and its t to tnow, where tnow

Mining Dynamic Graph Streams for Predictive Queries 35

is the current time, and ε is a tiny constant (e.g., 0.01). Similarly, tolook up the
count of an item x, for each of those d cells, we get a count max(ε, c−p− ·(tnow−t)),
and update its t to tnow. The minimum of these d values is returned. We save the
update cost by batch updates using expectations, sufficient for our incremental
embedding. The reason for the constant ε is to record the fact that the edge did
once exist. We hash a triple (u, r, v) for an item. We may choose to clear ε cells to
0 after a certain amount of time. We now quantify the errors from CF. The proofs
of all theorems are in the technical report [17].

Theorem 1. Let the load factor of a CF (i.e., the fraction of cells that are
nonzero) be ρ, and the graph stream edge incoming rate be λ per time step. Then
the probability that the count of an item x has any error is ρd. Moreover, the
probability that the error is greater than α is no more than (λwp−+λ2

2w2αp−
)d.

Dynamic Growth/Shrinkage. We propose the dynamic growth/shrinkage of
CF based on the incoming rate. The basic idea is to make CF “elastic” to the
incoming edge rate λ and the required load factor ρ. Intuitively, when the stream
rate is high, we increase the width of CF, as illustrated in version 2 in Fig. 2(b),
and decrease the width when the rate is too low.

Theorem 2. Setting the width of CF sketch to w = λ
ρp−

gives an expected load
factor ρ of the sketch, where the graph stream average input rate is λ edges per
time step, and p− is the fading parameter.

We start with width w1 as shown in Fig. 2(b). When Theorem 2 suggests a
w > w1, we increase it to w2 = 2w1. Later on, when we access an edge e in version
1, we get the count ce of e from version 1 as before, and deduct ce from each of
the d cells in version 1 for e. Then we add e with count ce into version 2. Each
version i is associated with a cut-off timestamp Ti, i.e., version i contains edges
inserted up to time Ti. A version i is removed when cmax − p− · (tnow − Ti) ≤ 0,
i.e., tnow ≥ Ti + cmax

p−
, where tnow is the current time, and cmax is the maximum

count of any cell in version i. Intuitively, it is the time when the maximum cell
count fades to 0. The version sequence can either grow or shrink (i.e., halve in
width) from version i to version i+1, depending on the change direction of λ. At
any time we keep at most k versions (e.g., k = 5). When we look up the count of
an edge, we examine the versions in reverse order starting from the latest, and
return the count as soon as it is found to be non-zero. We increase p− according
to Theorem 2 if we reach the memory constraint.

4 Graph Stream Embedding and Query Answering

To answer predictive relationship queries, we devise a general method based on
graph embedding. However, it is an open problem to do embedding for dynamic
graphs or graph streams [11]. There are a number of embedding algorithms for
static knowledge graphs, including TransE, TransH, and TransR, among others

36 X. Liu and T. Ge

[22], and the list is still growing. However, this is an orthogonal issue, as our
techniques are independent and can be readily plugged into any of them. For
clarity, we present our techniques with TransE [7]. Let us start with the static
knowledge graph embedding. The goal is to give an embedding vector (e.g., a
vector of 100 real values) to each node in the knowledge graph, as well as to each
relationship. The idea is to convert a knowledge fact edge (u, r, v) in the training
set into a soft constraint u + r = v. Thus, the following conditional probability
is a key component of our objective function:

P (v|u, r) =
exp ((u + r) · v)

∑
v ′∈V exp ((u + r) · v′)

(1)

Intuitively, if nodes u and v satisfy the relationship r, then the vector u + r
should be close to vector v; hence the numerator in Eq. 1 should be large, and
the conditional probability is high. We optimize the log likelihood of the observed

Algorithm 1: OnlineKGStreamEmbedding (G)
Input: G: the graph stream
Output: evolving embedding-vectors of nodes and relationships

1 for each incoming edge (u, r, v) ∈ G do
2 increment the count of (u, r, v) in CF
3 if (u, r, v) /∈ Em then
4 if c(u,r,v) > min

e∈Em

ce then

5 add (u, r, v) into Em, and remove one with min
e∈Em

ce

6 while time remains do
7 N

+ ← Ø, N− ← Ø
8 sample an edge (x, r, y) from Em weighted by counts
9 N

+ ← N
+ ∪ {(x, r, y)}

10 with probability pS

11 sample edge eS from ES(x) ∪ ES(y)
12 N

+ ← N
+ ∪ eS

13 repeat
14 sample y′ ∈ V
15 if c(x,r,y′

) > 0 in CF then

16 N
+ ← N

+ ∪ {(x, r, y
′
)}

17 else

18 N
− ← N

− ∪ {(x, r, y
′
)}

19 until |N−| = k−

20 update node and relationship embeddings w.r.t. the gradients of∑
(x,r,y)∈N+ log σ((x + r) · y) +

∑
(x,r,y)∈N− log σ(−(x + r) · y)

21 embedding vectors of all vertices and relationships are returned upon queries

Mining Dynamic Graph Streams for Predictive Queries 37

edges using Eq. 1:

log L(G) =
∑

(u,r,v)∈G log P (v|u, r) (2)

Our goal is to perform online, adaptive, and incremental graph embedding as
edges stream in, as an anytime algorithm [25]. Any memory constraint must also
be satisfied. Thus, we maintain the following data structures: (1) the embed-
ding vectors of each node and each relationship type, (2) the top-m edges Em

with respect to the accumulated counts, and (3) the CF sketch of all edges. We
use a CF sketch to hash stream edges, and maintain an accumulated/decayed
count for each edge. In addition, using a priority queue, we maintain a buffer
that consists of the top-m edges with the highest dynamic counts. The algorithm
is in OnlineKGStreamEmbedding.

Lines 3–5 of the algorithm maintain the top-m edge buffer Em. The loop
in lines 6–20 performs stochastic gradient descent (SGD) [8] to optimize Eq. 2,
using both positive samples (stream edges) and negative samples [19]. The loop
continues as time allows; when a new edge arrives, the algorithm will pause the
loop and handle the new edge first, before returning to SGD loops. The sets N+

and N
− in line 7 are for positive and negative edges, respectively. In lines 10–12,

with some probability we sample a static edge that intersects with either node
x or node y. ES(x) denotes the set of static edges with one endpoint being x,
which are neighbors of the current dynamic edge used in optimization. Lines 17–
18 follow the aforementioned local closed world assumption [13]—the unobserved
(x, r, y′) is considered negative since we have (x, r, y) in the stream. In line 19,
k− is the number of negative edges required in each round. Line 20 does the
SGD update based on Eq. 2, where σ(x) = 1

1+e−x is the sigmoid function. The
following lemma follows from the edge buffer maintenance of the algorithm.

Lemma 1. The edges in the top-m store are always the edges with top-m highest
expected weight conditioned on all the readings of edges from the CF.

In summary, our algorithm prioritizes the top-m edges based on the decayed
counts for adaptive and incremental embedding. Importantly, CF keeps the
counts of all edges, not just those in top-m, which is essential as we need to
know if an edge is negative for the negative sampling.

Answering Predictive Queries. Based on the embedding, we now discuss sev-
eral types of analytical predictive queries. The first two types are closely related,
namely local relationship queries and relationship ranking queries. Their
formal semantics are already presented in Sect. 2. An example of relationship
ranking query in Fig. 1(a) is to rank several trips from one source node (e.g.,
home) to several destination nodes based on the probabilities of being slow. Or
for the same pair nodes, rank the probabilities that the trip will be slow versus
fast. To answer such queries, we use the embedding vectors and Eq. 1, where
the denominator is estimated based on negative sampling discussed earlier (i.e.,
estimating the average of exp((u+ r) · v′

), and hence the sum). For ranking we
may only need to compare the numerators when the denominators are the same.

38 X. Liu and T. Ge

We also find it useful to answer relationship temporal join queries. Such
a query asks for the correlation of these two predictive edges (relationships) over
time. Specifically, every Δt time, r is either true or false for (u1, v1), giving us
a binary sequence s1. Similarly, we get another binary sequence s2 for (u2, v2)
at the same time. Then the query asks to measure the correlation/similarity
between s1 and s2. For example, in Fig. 1(a), we may want to find out the
temporal correlation between the traffic of a pair of locations (l1, l2) and (l3, l4),
helpful for traffic analysis, planning, and management. To answer such a query, at
every Δt time, we estimate the probabilities that (u1, r, v1) and (u2, r, v2) hold
using the embedding vectors. Then we can use Pearson correlation coefficient
[20] to measure their similarity. Alternatively, we compare the binary sequences
s1 and s2 using the Sokal-Michener similarity [24], which is defined as S11+S00

N ,
where N is the length of the two sequences, and S11 (resp. S00) is the number
of time instants when both values are true (resp. false).

A novel type of analytical predictive query that we study is based on what
we call a user defined relationship (UDR). A user may first define a new
relationship r, based on existing ones. Then the system learns the embedding
vectors of r along with other relationships and nodes to answer queries. For
instance, in Fig. 1(b), one may define a relationship (user, tag) which indicates
that the user likes movies bearing the tag. Essentially this corresponds to a
two-edge path in the original graph. UDR gives users flexibility and convenience
in querying novel relationships.

Finally, we also extends our study to what we call global relationship
queries. The idea is that we treat each relationship as a relational table with
three columns: from (vertex), to (vertex), and time. Each observed edge cor-
responds to one tuple in one of the tables. Thus, each table has an observed
part and an extended part predicted to be likely (e.g., from embedding vectors).
Such queries would be useful for a global view of relationships. In the example
in Fig. 1(b), a global query may ask the fraction of the user population who will
“like” a particular movie, which may include both the observed and predicted
tuples. The result can be estimated by sampling all user nodes and perform-
ing a local relationship query with the movie node. One may also ask a join
query between two such global tables. We have more examples in the experi-
ment section.

5 Experiments

5.1 Datasets and Setup

We use two real datasets, New York taxi data and movie data as described
in Sect. 1 (Fig. 1). Some statistics are shown in Table 1. We implement all the
algorithms in Java (with maximum heap size 256 MB), as well as two baseline
algorithms described below. For graph embedding, as in previous work [7], we
use a default dimensionality of 50 and a learning rate of 0.01. The experiments
are performed on a MacBook Pro machine with OS X version 10.11.4 and a
2.5 GHz Intel Core i7 processor.

Mining Dynamic Graph Streams for Predictive Queries 39

Table 1. The statistics of the two datasets.

Dataset #vertices #edges Time span Data size

NY taxi 5,654 169,100,000 1 year 11 GB

Movie 317,887 26,914,247 22.5 years 1.08 GB

5.2 Experimental Results

We first use the taxi data, preprocessed as described in Sect. 1 (for Fig. 1(a)), to
evaluate local queries. For predictive local queries, in every 1000 incoming edges,
we predict 20 edges uniformly at random—whether an edge is a fast trip (the
algorithms have a warm start after running the first 10,000 edges). We remove all
the occurrences of these 20 test edges from the dataset when answering queries.

Baselines. We compare against two baseline algorithms. Baseline 1 performs
embedding without using edge time information, as in previous work—note that,
although there is no absolute winner of link prediction for all applications, net-
work embedding is currently considered as the state-of-the-art method for link
prediction [11]. For each type of edge, it stores the occurrence count as the weight,
which is used for weighted sampling of edges for iterative training. Baseline 2
maintains a sliding window of the most recent edges (using the same amount of
memory as our approach), and iteratively performs embedding over those edges.

We vary the edge inter-arrival time and show the result accuracy in Fig. 3. As
our query processing is an anytime algorithm, the inter-arrival time specifies a
time budget, exploring the tradeoff between efficiency and accuracy. Our method
has an accuracy between 0.85 and 0.9, and the accuracy improves when the edge
inter-arrival time increases because there is time for more iterations over the
SGD optimization. The improvement eventually levels off as the iterations near
convergence. Our method has a clear advantage over the two baselines. Baseline
1 is inaccurate because it does not consider the trip property’s dynamic changes
over time. Baseline 2, although on a sliding window, does not use CF sketch, and

0 1 2 3 4
Inter-arrival time (sec)

0.5

0.6

0.7

0.8

0.9

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y Baseline 1
Baseline 2
Our method

Fig. 3. Local relation-
ship (taxi)

0 1 2 3
Edge buffer size 104

0.7

0.75

0.8

0.85

0.9

0.95

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

Baseline 1
Baseline 2
Our method

Fig. 4. Local relationship
(movie)

0 1 2 3 4
Inter-arrival time (sec)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

Baseline 1
Baseline 2
Our method

Fig. 5. Relationship rank.
(taxi)

40 X. Liu and T. Ge

hence it only has very limited edge temporal count information. For instance,
for negative sampling, it lacks information on which edges are negative.

Likewise, we work with the movie data, and define two static relationships—
movie → its genres and movie → its tags with a relevance score at least 0.9.
Most of the edges are dynamic with a timestamp—a user’s rating to a movie.
We define two relationships: a user “likes” a movie if the rating is at least 4 (in
the range [0, 5.0]); a user “dislikes” a movie if the rating is ≤ 2. We predict
the “like” relationship. The result is in Fig. 4, varying the number of edges in
the edge buffer. Again our method has a clear advantage over the two baselines
for the same reason. All the three algorithms have slightly better accuracy than
the taxi data. This is because the taxi data is even more dynamic with faster
changes, and is hence harder to predict.

We now examine relationship ranking queries, first with taxi data. As a trip
edge e = (u, v) comes in, we take its from vertex u. In subsequent edges, we take
the first two edges that also start from u, i.e., edges e′ = (u, v′) and e′′ = (u, v′′).
Our relationship ranking query is to rank e, e′, and e′′ in the order of their
“fastness” (relative to the average statistics). We answer the predictive query by
removing the three edges from data. Since the query result is a permutation of
three edges, we define a metric for result accuracy: 1 − inv

P , where P =
(
3
2

)
= 3

is the total number of pairs out of the three edges, and inv is the number of
pair-wise inversions between query result and ground truth. For instance, if the
ground truth ranking is e, e′, e′′, while the query result ranking is e′, e, e′′, then
the accuracy is 1− 1

3 = 2
3 , as there is only one pair (e, e′) whose order is inverted

in the query result. In Fig. 5, we show the average ranking query result accuracy
over 200 such queries. The accuracy from our method is significantly higher
than the two baselines. One thing to note is that all three methods’ accuracy
for relationship ranking queries is slightly lower than that of the local queries.
This is because relationship ranking result involves multiple pairs of edges and
is more difficult to be all correct. Similarly, we show the ranking query result
accuracy for movie data in Fig. 6, where we vary the edge buffer size.

0 1 2 3
Edge buffer size 104

0.6

0.65

0.7

0.75

0.8

0.85

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

Baseline 1
Baseline 2
Our method

Fig. 6. Relationship rank.
(movie)

1 2 3 4 5
Trip pair

0

0.2

0.4

0.6

0.8

1

S
ok

al
-M

ic
he

ne
r

si
m

ila
rit

y Our method
Ground truth

Fig. 7. Temporal join
queries

thriller fight tech funnytouching
Tag

0

0.2

0.4

0.6

0.8

1

M
ea

su
re

Precision
Recall

Fig. 8. UDR user–tag
(movie)

Mining Dynamic Graph Streams for Predictive Queries 41

Titanic Leaving LV M. I. II
Movie

0

0.1

0.2

0.3

0.4

0.5

0.6
R

at
io

 o
f l

ik
es

Estimated all
Rated

Fig. 9. Global rel.
(movie)

Period 1 Period 2 Period 3
Time periods

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
 o

f s
lo

w
 tr

ip
s

Estimated all
Reported

Fig. 10. Taxi data

0 500 1000
Edge arrival rate

52

54

56

58

60

62

64

M
em

or
y

fo
ot

pr
in

t (
M

B
)

Fig. 11. Memory
(movie)

0 1 2 3
54.85

54.9

54.95

55

55.05

55.1

55.15

M
em

or
y

fo
ot

pr
in

t (
M

B
)

Fig. 12. Memory
(movie)

We next examine temporal joins, user defined relationships, and global rela-
tionship queries. We begin with temporal joins using taxi data. We randomly
pick a pair of trips (edges), e.g., (e1, e2). Then the query measure the correla-
tion between e1 and e2 over time—between the two binary variables indicating
whether they are “slow”. We use the Sokal-Michener similarity [24] as described
in Sec. 4. We repeat the query for five random pairs of trips, and show the result
in Fig. 7 from our method, compared to the ground truth. Our result is accurate,
due to the fact that our dynamic graph embedding using CF and top-m edges
adaptively captures the edge transitions.

We now study UDR queries with movie data, and define a relationship
(user,tag) to indicate that user likes a movie bearing tag. This is a two-edge path.
We arbitrarily pick five tags “thriller”, “fight scenes”, “technology”, “funny”, and
“touching”, and evaluate the five queries for users seen in the stream. Once a
UDR is defined, the rest is similar to a local query using the auxiliary edge. The
accuracy results are in Fig. 8. Last we study global queries. For movie data, we
query the fraction of the user population who will “like” a particular movie. The
result is estimated by sampling all user nodes and performing a local relation-
ship query with the movie node. We arbitrarily pick three movies, “Titanic”,
“Leaving Las Vegas”, and “Mission Impossible II”, and show the result in Fig. 9
(the first bar of each movie). We also compare it against the ratio calculated
from the dataset but only based on those users who gave a rating to the movie
(the second bar of each movie). The query results are all slightly smaller than
those calculated from the users who rated the movies. A possible reason is that
those who rated a movie were motivated to watch the movie in the first place,
and hence had a higher chance to like the movie than the general population.

Similarly, using taxi data, we query the fraction of all possible (source, des-
tination) pairs that are slow at some point within a time period of 10 min. We
estimate the result of this query by sampling a pair of location nodes. Figure 10
shows the results for three time periods (first bar of each time period), where we
also compare with the ratio of slow trips among those that are reported during
that time period in the dataset. The estimated ratios are slightly higher, with
the intuition that a randomly picked pair is more likely to hit a slow link.

42 X. Liu and T. Ge

0 500 1000
Edge arrival rate

30

35

40

45

50

M
em

or
y

fo
ot

pr
in

t (
M

B
)

Fig. 13. Memory
(taxi)

0 1 2 3
Edge buffer size 104

31.45

31.5

31.55

31.6

31.65

31.7

31.75

M
em

or
y

fo
ot

pr
in

t (
M

B
)

Fig. 14. Memory
(taxi)

0 1 2 3
Edge buffer size 104

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

CF sketch
CM sketch

Fig. 15. CF vs CM
(movie)

0 1 2 3 4
Inter-arrival time (sec)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

CF sketch
CM sketch

Fig. 16. CF vs CM
(taxi)

We next look into the memory footprint. The results for movie data are
in Fig. 11 and 12 as we vary the edge arrival rate and the edge buffer size,
respectively, and in Fig. 13 and 14 for the taxi data. For both datasets, as the
edge arrival rate increases, the width of CF also increases, and so does the
memory footprint. In general, the movie data has a higher memory footprint
than taxi data. This is because the movie data has significantly more vertices.
Hence, with the movie data, more vertices tend to be loaded into memory, along
with the embedding vectors of each vertex. Overall, our approach has a very small
footprint. Finally, we evaluate the usage of CF in our scheme, compared to the
off-the-shelf CM sketch. We examine the result accuracy of local relationship
queries for the movie data in Fig. 15, and for the taxi data in Fig. 16. Using CF
gives much more accurate results. This is because CM always accumulates its
counts in each cell, and the false positive errors are never erased, compromising
its accuracy. In addition, it does not dynamically adjust its size as CF does.

6 Conclusions

Knowledge graph streams are a common model for many applications. Predic-
tive relationship queries are important for data analytics. We devise an approach
that performs online incremental embedding using a novel sketch. Our approach
is general enough to answer many types of predictive relationship queries. The
experimental results show that our approach gives accurate query results effi-
ciently and has a small memory footprint.

References

1. Movielens data (2019). https://grouplens.org/datasets/movielens/latest/
2. New york taxi data (2019). http://chriswhong.com/open-data/foil nyc taxi/
3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci. 58, 137–147 (1999)
4. Amazon: Amazon neptune (2019). https://aws.amazon.com/neptune/
5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic

Web Inf. Syst. (2009)

https://grouplens.org/datasets/movielens/latest/
http://chriswhong.com/open-data/foil_nyc_taxi/
https://aws.amazon.com/neptune/

Mining Dynamic Graph Streams for Predictive Queries 43

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

8. Bottou, L.: Stochastic learning. In: Bousquet, O., von Luxburg, U., Rätsch, G.
(eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28650-9 7

9. Boykin, O., Ritchie, S., O’Connell, I., Lin, J.: Summingbird: a framework for inte-
grating batch and online MapReduce computations. In: VLDB (2014)

10. Cafaro, M., Pulimeno, M., Epicoco, I., Aloisio, G.: Mining frequent items in the
time fading model. Inf. Sci. 370, 221–238 (2016)

11. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques and applications. TKDE 30, 1616–1637 (2018)

12. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55, 58–75 (2005)

13. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: KDD (2014)

14. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. SIGCOMM
Comput. Commun. Rev. (2015)

15. Google: Google inside search (2019). https://www.google.com/intl/en us/
insidesearch/features/search/knowledge.html

16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI (2015)

17. Liu, X., Ge, T.: Mining dynamic graph streams for predictive queries
under resource constraints (2020). http://www.cs.uml.edu/∼ge/paper/gstream
predictive queries tech report.pdf

18. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1),
9–20 (2014)

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS (2013)

20. Pearson, K.: Note on regression and inheritance in the case of two parents. Proc.
R. Soc. Lond. Series I(58), 240–242 (1895)

21. Tai, K.S., Sharan, V., Bailis, P., Valiant, G.: Sketching linear classifiers over data
streams. In: SIGMOD (2018)

22. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. TKDE 29(12), 2724–2743 (2017)

23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, vol. 14, pp. 1112–1119 (2014)

24. Zhang, B., Srihari, S.N.: Properties of binary vector dissimilarity measures. In:
CVPR (2003)

25. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17, 73
(1996)

https://doi.org/10.1007/978-3-540-28650-9_7
https://www.google.com/intl/en_us/insidesearch/features/search/knowledge.html
https://www.google.com/intl/en_us/insidesearch/features/search/knowledge.html
http://www.cs.uml.edu/~ge/paper/gstream_predictive_queries_tech_report.pdf
http://www.cs.uml.edu/~ge/paper/gstream_predictive_queries_tech_report.pdf

	Mining Dynamic Graph Streams for Predictive Queries Under Resource Constraints
	1 Introduction
	2 Problem Formulation
	3 A Count-Fading Sketch
	4 Graph Stream Embedding and Query Answering
	5 Experiments
	5.1 Datasets and Setup
	5.2 Experimental Results

	6 Conclusions
	References

