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Abstract. Magnetic Resonance Imaging (MRI) of the brain can come
in the form of different modalities such as T1-weighted and Fluid Atten-
uated Inversion Recovery (FLAIR) which has been used to investigate
a wide range of neurological disorders. Current state-of-the-art models
for brain tissue segmentation and disease classification require multiple
modalities for training and inference. However, the acquisition of all of
these modalities are expensive, time-consuming, inconvenient and the
required modalities are often not available. As a result, these datasets
contain large amounts of unpaired data, where examples in the dataset do
not contain all modalities. On the other hand, there is smaller fraction of
examples that contain all modalities (paired data) and furthermore each
modality is high dimensional when compared to number of datapoints.
In this work, we develop a method to address these issues with semi-
supervised learning in translating between two neuroimaging modali-
ties. Our proposed model, Semi-Supervised Adversarial CycleGAN (SSA-
CGAN), uses an adversarial loss to learn from unpaired data points, cycle
loss to enforce consistent reconstructions of the mappings and another
adversarial loss to take advantage of paired data points. Our experiments
demonstrate that our proposed framework produces an improvement in
reconstruction error and reduced variance for the pairwise translation of
multiple modalities and is more robust to thermal noise when compared
to existing methods.
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1 Introduction

Magnetic Resonance Imaging (MRI) of the brain has been used to investigate
a wide range of neurological disorders and depending on the imaging sequence
used, can produce different modalities such as T1-weighted images, T2-weighted
images, Fluid Attenuated Inversion Recovery (FLAIR), and diffusion weighted
imaging (DWI). Each of these modalities produce different contrast and bright-
ness of brain tissue that could reveal pathological abnormalities. Many of the
advances in the use of data-driven models in Alzheimer’s disease classification
[17], brain tumour segmentation [9] and skull stripping methods [18], rely on deep
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Fig. 1. Top: A coronal slice of a low grade glioma (brain tumour) in the BraTs dataset
in different modalities. From left to right: T2, Fluid-attenuated inversion recovery
(FLAIR), T1 and T1c. Bottom: Axial slices of modalities of a CT perfusion scan
of an ischemic stroke lesion patient in the ISLES dataset. From left to right: Mean
Transit Time (MTT), cerebral blood flow (CBF), time to peak of the residue function
(Tmax), cerebral blood volume (CBV), Apparent diffusion coefficient (ADC).

convolutional neural networks (DCNN). In particular, datasets such as BraTs
[23] and ISLES [19] have been focusing on the evaluation of state-of-the-art
methods for the segmentation of brain tumours and stroke lesions respectively.
These methods do not require the use of hand designed features and instead are
able to learn a hierarchy of increasingly complex features. However, they require
multiple neuroimaging modalities for high performance and improved sensitivity
[4] (See Fig. 1). Collecting multiple modalities for each patient can be difficult,
expensive and not all of these modalities are available in clinical settings. In
particular, paired data, where an example has all modalities present, is difficult
to access, making these data dependent models more difficult to train or reduce
their applicability during inference.

To ensure each modality is present, the missing modality could be imputed
through a domain adaptation model where characteristics of one image set is trans-
ferred into another image set (e.g. T1-weighted to T2-weighted) that has been
learned from existing paired examples. However, since this paired data is limited in
the neuroimaging context, learning from examples that do not have all modalities
(unpaired data) is valuable as this form of data is more readily available.

There has been significant interest in unsupervised image-to-image trans-
lation where paired training data is not available but two distinct image sets.
Methods proposed by Zhu et al. [37] and Hoffman et al. [11] assume the two
image collections are representations of some shared, underlying state. They use
adversarial training which discriminates at the image level to guide the transfor-
mation between the domains. Furthermore, the translations between these two
sets should have approximately invertible solutions and should be cycle consis-
tent- where the mapping of a particular source domain to the target domain
and back should yield the original source at the pixel level. Alternative meth-
ods extract domain invariant features with DCNNs and discriminate the feature
distributions of source/target domains [32].
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One work in recent literature that exploits the two distinct image sets of
unpaired data, in order to improve the performance on tasks with a scarcity of
paired data is the Cycle Wasserstein Regression GAN [22] (CWRG). The CWRG
uses the l2-norm as a penalty term for the reconstruction of paired data along
with the adversarial signal and cycle-loss of the CycleGAN. However, the CWRG
demonstrated its performance on ICU timeseries data and transcriptomics data
and not on image data.

Our proposed method, the Semi-Supervised Adversarial CycleGAN (SSA-
CGAN ) further extends the application of leveraging unpaired data and paired
data to MRI image translation, where the dimensionality of the examples is
orders of magnitude larger. Our method uses multiple adversarial signals for semi-
supervised bi-directional image translation. Our experimental results have demon-
strated that our proposed approach has superior performance compared to the
CycleGAN and CWRG in terms of average reconstruction error and variance and
as well as robustness to noise when evaluated using the BraTs and ISLES dataset.

2 Related Work

General adversarial networks (GAN) have received significant attention since
the work by [8] and various GAN-based models have achieved impressive results
in image generation [5] and representation learning [28]. These models learn a
generator to capture the distribution of real data by introducing a competing
model, the discriminator, that evolves to distinguish between the real data and
the fake data produced by the generator. This forces the generated image to be
in distinguishable from real images.

Various conditional GANs (cGAN) have been adapted to condition the image
generator on images instead of a noise vector to be used in applications such as
style transfer from normal maps to images [33]. Isola et al.’s [12] work in partic-
ular, uses labeled image pairs to train a cGAN to learn a mapping between the
two image domains. On the other hand, there have been significant works that
have tackled image-to-image translation in the unpaired setting. The CycleGAN
[37] uses a cycle consistency loss to ensure the forward mapping and back results
in the original image. It has demonstrated success in tasks where paired training
data is limited e.g. in painting style and season transfer. The Dual GAN, being
inspired by dual learning in machine translation used a similar loss objective,
where the reconstruction error is used to measure the disparity between the
reconstructed object and the original [36]. Unlike the previous two frameworks,
the CoGAN [16] and cross-modal scene networks [1] does not use a cycle consis-
tency loss but instead, uses weight sharing between the two GANs, corresponding
to high level semantics to learn a common representation across domains.

GANs have been used in the semi-supervised learning (SSL) context as the
visually realistic images generated can be used as additional training data. Sal-
imans et al. [29] proposed techniques to improve training GANs which included
learning a discriminator on additional class labels which can be used for SSL.
Mayato et al. [24] modified the adversarial objective to a regularization method



412 H. Nguyen et al.

based on virtual adversarial loss. The method probabilistically produces labels
that are unknown to the user and computes the adversarial direction based on
the virtual labels. Park et al. [26] improves upon the performance of virtual
adversarial training by using adversarial dropout which maximizes the diver-
gence between the training supervision and the outputs from the network with
the dropout.

GANs have been used in a range of applications in biomedical imaging such
as the generation of multi modal MRI images and retinal fundus images [2], to
detect anomalies in retinal OCT images [30] and image synthesis of MR and CT
images [35]. Adversarial methods have also been extended to domain adaptation
for medical imaging. Chen et al. [3] recently developed the Synergistic Image
and Feature Adaptation framework that enhances domain-invariance through
feature encoder layers that are shared by the target and source domain and uses
additional discriminator to differentiate the feature distributions. Perone et al.
forgoes the use of adversarial training and instead demonstrates application of
self ensembling and mean teacher framework [27].

The CycleGAN has been recently applied to the biomedicial field for translat-
ing between sets of data. Welander et al. [34] investigated the difference between
the CycleGan and UNIT [15] for the translation between T1 and T2 MRI modal-
ities and found the CycleGAN was the better alternative if the aim was to gener-
ate visually realistic images as possible. McDermott et al. [22] on the other hand,
tackled domain adaptation in the semi-supervised setting by proposing Wasser-
stein CycleGANs coupled with a l2 regression loss function on paired data. The
semi-supervised setting for this paper is similar to McDermott et al., however we
propose an adversarial training signal for paired data instead of the l2 loss. We
demonstrate our method produces better reconstructions with lower variance
and is more robust to noise in the context of translating between neuroimaging
modalities compared to existing methods.

3 Methods

Fig. 2. Our model is composed of the CycleGAN architecture and an axuillary dis-
criminator which takes as input concatenated paired examples and the concatenation
of generators’ various transformations.
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3.1 CycleGAN

The CycleGAN [37] learns to translate points between two domains X and Y .
Given two sets of unlabeled and unpaired images, {xi}Ni=1 where xi ∈ X and
{yj}Mj=1, yj ∈ Y , two generators, F and G, are trained to learn mapping functions
G : X → Y and F : Y → X, where F and G are usually represented by
DCNNs. Furthermore, two discriminators DX and DY are trained where DX

learns to distinguish between images {x} and {F (y)} and DY discriminates
between {y} and {G(x)}. Instead of the original GAN loss, the CycleGAN trains
discriminators using the least squares loss function proposed by Mao et al. [20].
For example, DX minimises the following objective function:

LDX
= Ex∼P (x)

[
(DX(x) − 1)2

]
+ Ey∼P (y)

[
(DX(F (y)))2

]
. (1)

Conversely the generator, F , for example is trained according to the following
adversarial loss,

LFadv
= Ey∼P (y)

[
(DX(F (y)) − 1)2

]
, (2)

as well as a cycle-consistency loss where reconstruction error between the inverse
mapping and the original point is minimised [37],

Lcyc = Ex∼P (x)

[||F (G(x)) − x||1] + Ey∼P (y)

[||G(F (y)) − y||1]. (3)

The overall loss function for the generator is therefore given as

LF = LFadv
+ λLcyc, (4)

where λ controls the relative strength between the adversarial signal and the
cycle-consistency loss.

3.2 Semi-Supervised Adversarial CycleGAN

We extend the CycleGAN through the Semi-Supervised Adversarial CycleGAN
(SSA-CGAN) to take advantage of paired training data. In our scenario we have
additional information in the form of T paired examples {xp,yp}Tp=1, a subset
P ⊆ X × Y . We seek to take advantage of this paired information through an
auxiliary adversarial network, Dpair (See Fig. 2). Dpair takes as input, only the
paired examples from P and the concatenations of the following transforma-
tions: a) xp and yp, b) xp and G(xp), c) F (yp) and yp, d) F (yp) and G(xp).
Dpair attempts to discriminate between the ground-truth pairs, {xp,yp} ∈ P ,
as real and the transformation of the image and its respective real image as fake.
Therefore, the paired discriminator minimises

LDpair
= Ex,y∼Ppair(x,y)

[
(Dpair(x,y) − 1)2

]
+

1
3

[
Ex,y∼Ppair

[
DP (x, G(x))2

]

+ Ex,y∼Ppair

[
Dpair(F (y),y)2

]
+ Ex,y∼Ppair

[
Dpair(F (y), G(x))2

]]

(5)
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and F ’s loss is
LFSemi

= LFadv
+ λLcyc + αLpair, (6)

where Lpair is given as

Lpair = Ex,y∼Ppair

[
(Dpair(x, G(x)) − 1)2

]
+ Ex,y∼Ppair

[
(Dpair(F (y),y) − 1)2

]

+ Ex,y∼Ppair

[
(Dpair(F (y), G(x)) − 1)2

]
.

(7)
and α and λ control the relative weight of the losses. The third loss term can

be seen as further regularisation of the generators where its forward and backward
transformations are pushed towards the joint distribution of X and Y .

4 Experiments

4.1 Dataset

We evaluate our method using BraTS and ISLES datasets which have been used
to evaluate state-of-the-art methods for the segmentation of brain tumours and
lesions respectively. BraTS utilizes multi-institutional pre-operative MRI scans
and focuses on the segmentation of intrinsically heterogeneous (in appearance,
shape, and histology) brain tumors, namely gliomas. This proposed method is
trained and tested on the BraTs 2018 dataset. The training dataset contains 285
examples including 210 High GradeGlioma (HGG) cases and 75 cases with Low
Grade Glioma (LGG). For each case, there are four MRI sequences, including the
T1-weighted (T1), T1 with gadolinium enhancing contrast (T1c), T2-weighted
(T2) and FLAIR. The dataset includes pre-processing methods such as skullstrip,
co-register to a common space and resample to isotropic 1mm × 1mm × 1mm
resolution. Bias field correction is done on the MR data to correct the intensity
in-homogeneity in each channel using N4ITK tool [31].

The dataset was divided as the following: 30% of examples was designated as
unpaired examples of domain X (e.g. T2-weighted volumes) and 30% as unpaired
examples of domain Y (e.g. T1-weighted), 10% was designated as paired train-
ing examples where each example, for example, had both T2-weighted and T1-
weighted modalities. 10% was reserved as a held-out validation set for hyperpa-
rameter tuning and 20% was reserved to be a test set used for evaluation.

ISLES contains patients who have received the diagnosis of ischemic stroke
by MRI. Ischemic stroke is the most common cerebrovascular disease and one of
the most common causes of death and disability worldwide [25]. The stroke MRI
was performed on either a 1.5T (Siemens Magnetom Avanto) or 3T MRI system
(Siemens Magnetom Trio). Sequences and derived maps were cerebral blood flow
(CBF), cerebral blood volume (CBV), time-to-peak (TTP), and time-to-max
(Tmax) and mean transit time (MTT). The dataset included images that were
rigidly registered to the T1c with constant resolution of 2mm × 2mm × 2mm
and automatically skull-stripped [19]. The dataset includes 38 patients in total
and was divided in similar proportions as the BraTS experiment regime.
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Further pre-processing for each dataset included each image modality was
normalized by subtracting the mean and dividing by the standard deviation of
the intensities within the volume and rescaled to values between 1 and −1. The
volumes were reshaped to 240 × 240 coronal and 128 × 128 axial slices for the
BraTS and ISLES dataset respectively. This resulted in an average of 170 slices
per patient for the BraTS dataset and 18 slices per patient in ISLES.

4.2 Implementation

NetworkArchitecture:The generator network was adapted from Johnson et al.
[13] and Zhu et al. [37]. The network contains two stride-2 convolutions, 6 residual
blocks [10] and two fractionally strided convolutions with stride 1

2 . The single input
discriminator networks is a PatchGAN. The paired input discriminator was a two
stride-2 convolution layers. It used the concatenation of feature maps from the
second last layer of DX and DY as inputs as a form of weight sharing with the
single image discriminators.

Training Details: For all the experiments, we set λ = 10 and α = 2 in Eq. 6
chosen by the performance on the held out validation set averaged across the
pairs of MR modalities mentioned in Sect. 4.3. All networks were trained from
scratch using NVIDIA V100 GPU with an initial learning rate of 2×10−4, weights
were initialised using Glorot initialization [6] and optimised using Adam [14] with
a batch size of 1. The learning rate was kept constant for the first 100 epochs
and was linearly decreased thereafter to a learning rate of 2 × 10−7. Training
was finished after 200 epochs. While standard data augmentation procedures
randomly shift, rotate and scale images, the images were only augmented by
random shifting during training as the volumes were normalised to the same
orientation and shape due to co-registration.

4.3 Evaluation Metrics

We evaluated the SSA-CGAN by learning a separate model for the follow-
ing pairs of MR modalities: T2→T1, T2→T1c, T2→FLAIR, CBF→MTT,
CBF→CBV, CBF→TTP, CBF→Tmax. For example, T2→T1 indicates the
models were evaluated on the reconstruction of a T1 volume when transformed
from a T2 volume. This was evaluated against the CycleGAN and the Cycle
Wasserstein Regression GAN [22] (CWRG) which is currently the only other
method in recent literature that combines unpaired and paired training data for
translation between different modalities. We also included in our experiments
using the SSA-CGAN framework using only paired data, labelled SSA-CGAN-
p. On the other hand, our proposed method, SSA-CGAN uses paired data and
leverages unpaired data to improve learning. The hyperparameter settings for
each method is similar to the training details mentioned in Sect. 4.2. For each
transformation (e.g. T2→T1c) and for each method, five networks were learned,
each with different initialization of weights. These models were compared based
on two quantitative metrics, the mean squared error (MSE) and mean absolute
error (MAE) averaged across the five runs and its standard deviation.



416 H. Nguyen et al.

4.4 Results

Results for the performance of SSA-CGAN are shown in Table 1. We observe
that the SSA-CGAN yields from a 8.32% reduction from the CycleGAN (T2
to T1) up to a 89.6% decrease in MSE in the case of CBF to CBV with an
average reduction of 33.8% and 46.0% in MAE and MSE respectively across all
transformations. The consistent out-performance of our method over the Cycle-
GAN demonstrate there is potential gains when the information from paired
data points can be leveraged. This is further emphasised by the improvement
over SSA-CGAN-p which has been trained using only paired data. By leveraging
unpaired data during training, the SSA-CGAN produces a reduction of 18.02%
and 28.16% in MAE and MSE on average when compared to SSA-CGAN-p.
SSA-CGAN produces a lower MSE in most cases despite CWRG includes a
loss component that minimises the l2 norm. Furthermore, SSA-CGAN produces
lower variance compared to other methods demonstrating that our method is less
sensitive to different weight intializations and improves the stability of training
and convergence.

Table 1. MSE and MAE for various paired transformations averaged across five runs
with one standard deviation.

Method T1 T1c FLAIR MTT rCBV TTP Tmax

M
SE

Cycle 0.0314± 0.0006 0.5301±0.4880 0.7072± 0.3956 0.1280±0.1603 0.2437 ±0.3111 0.0616± 0.0017 0.1887± 0.1565
CWRG 0.7503± 0.1687 0.4607±0.3602 0.6145± 0.4279 0.5803±0.2688 0.6826 ±0.2604 0.5785± 0.2945 0.4825± 0.1722

SSA-CGAN-p 0.0234± 0.0032 0.0160±0.0100 0.0147± 0.0018 0.0503±0.0051 0.0262 ±0.0017 0.0443± 0.0085 0.0348± 0.0021
SSA-CGAN 0.0169± 0.0011 0.0102±0.0024 0.0177± 0.0071 0.0271±0.0007 0.0202 ±0.0014 0.0210± 0.0011 0.0235± 0.0041

M
A
E Cycle 0.0608± 0.0041 0.4924±0.4146 0.6231± 0.3264 0.2162±0.1610 0.4236 ±0.2957 0.1409± 0.0022 0.3048± 0.1939

CWRG 0.6963± 0.3738 0.4564±0.3868 0.5603± 0.5564 0.6819±0.1240 0.7008 ±0.1478 0.5258± 0.2860 0.5189± 0.2800
SSA-CGAN-p 0.0508± 0.0037 0.0411±0.0118 0.0390± 0.0028 0.1322±0.0059 0.0834 ±0.0029 0.1155± 0.0118 0.0837± 0.0048
SSA-CGAN 0.0436± 0.0011 0.0338±0.0046 0.0426± 0.0089 0.0947±0.0018 0.0720 ±0.0043 0.0754± 0.0026 0.0613± 0.0069

Fig. 3. A comparison of the transformation from T2 to FLAIR.
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Figure 3 and 4 shows a comparison of the transformation from T2 to FLAIR
and MTT to CBF respectively, of a particular chosen MR scan produced by the
various models. The CycleGAN produces no noticeable change from the input
image and the CWRG creates a smoothed version of the ground truth. This can
be attributed to the MSE component of the objective function where the MSE
pushes the generator to produce blurry images [21]. The additional adversarial
component of our method forces the generator to synthesise a more visually
realistic image. However, in Fig. 3 the image produced does not match the pixel
intensity of the ground truth and in Fig. 4, fails to capture the high detail and
edges of the CBF modality and fails to distinguish between background and low
intensity areas.

4.5 Robustness to Noise

Fig. 4. A comparison of the transformation from MTT to CBF.

Fig. 5. Quantitative comparison of the
reconstruction error by varying the amount
of random noise injected to test data.

The methods were assessed by inject-
ing random Gaussian noise into the
test data to simulate thermal noise
conditions to evaluate the robust-
ness of the models, despite not being
trained on noisy examples. Various
levels of noise was injected to the
data, ranging from a standard devia-
tion of 0.025 to 0.4. The predictions
of the models was evaluated against
the ground truth. Figure 5 shows the
comparison between the models, with
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the MAE as the evaluation metric. At all noise levels, the SSA-CGAN outper-
forms other methods with lower variance further demonstrating the robustness
of our method.

Fig. 6. A T2 image was corrupted with Gaussian noise and was transformed to a T1c
image by the various models.

The methods were also visually evaluated under extreme simulated thermal
noise conditions by adding Gaussian noise with mean 0 standard deviation of 0.2
to the input. Figure 6 shows the transformation produced by a noisy input vol-
ume to the networks. The CWRG produces noise filtered version of the T2 scan
and fails to perform the transformation to T1c. Our method and the CycleGAN
shows robustness under the extreme scenario and fabricates successful slices.
However, it fails to hide the tumour in the T2 scan (the bright spot in bottom
right) in the T1c reconstruction and instead substitutes background for that
tumour.

4.6 Limitations

This approach has several limitations. Due to the additional discriminator that
distinguishes paired examples, additional computational time is required for
training. Second, adversarial networks remain a very active area of research,
and are known to be difficult to train and suffer issues such as mode collapse [7].
Further work would be to investigate the effect on performance when the fraction
of paired examples changes and the point where the paired-input discriminator
fails to be effective.
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5 Conclusion

Many state-of-the-art models in brain tissue segmentation and disease classifica-
tion require multiple modalities during training and inference. However, exam-
ples where all modalities are available is limited and therefore the ability to
incorporate unpaired data could be important for the adoption of these meth-
ods in clinical settings or improve existing models. Furthermore, the overall data
available in limited and MRI volumes are high dimensional. The Semi-Supervised
Adversarial CycleGAN (SSA-CGAN) learns translations between neuroimaging
modalities using unpaired data and paired examples through a cycle-consistency
loss, an adversarial signal for the discrimination between generated and real
images of each domain and an additional adversarial signal that discriminates
between the pairs of real data and pairs of generated images. Our experimental
results have demonstrated that SSA-CGAN has superior results in achieving
lower reconstruction error and is more robust compared to all of current state-
of-the-art approaches across a wide range of modality translations.
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