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Abstract. We introduce GAIM, a deep-learning analytical framework
that enables benchmarking and profiling of players, from the perspec-
tive of how the players react to the game state and evolution of games.
In particular, we focus on multi-player, skill-based card games, and use
Rummy as a case study. GAIM framework provides a novel and extensi-
ble encapsulation of the game state as an image, and uses Convolutional
Neural Networks (CNN) to learn these images to calibrate the goodness
of the state, in such a way that the challenges arising from multiple play-
ers, chance factors and large state space, are all abstracted. We show that
our model out-performs well-known image classification models, and also
learns the nuances of the game without explicitly training with game-
specific features, resulting in a true state model, wherein most of the
misclassifications can be attributed to user mistakes or genuinely con-
fusing hands. We show that GAIM helps gather fine-grained insights
about player behavior, skill, tendencies, and business implications, that
were otherwise not possible, thereby enabling targeted services and per-
sonalized player journeys.

Keywords: Game intelligence · Game action mining · Convolutional
Neural Network · Player behavior model

1 Introduction

With the proliferation of digital platforms, and low-cost availability of mobile
devices and data, online multi-player card games, are becoming increasingly pop-
ular among adults and teenagers, with a market value of $4 billion in 2019 [1,2].
Much of this popularity can be attributed to the unique blend of recreational and
intellectual entertainment offered by such chanced-based and strategy-oriented
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card games as Rummy, Poker, etc. Such games greatly test a player’s ability to
navigate through the enormous state space, recall the moves of other players,
and probabilistically estimate the missing information arising from imperfect and
asymmetric knowledge (since a player’s cards are usually hidden from others).
Artificial intelligence and machine learning research in gaming have typically
focused on bots exceeding human expertise in several games, e.g., Go, chess,
backgammon, checkers, Jeopardy! and Atari games [4,6,14,20,22,25]. However,
in real cash card games, it is required to consciously ensure that there is no
interference during the game play via any kind of automated decision making
(beyond the random dealing of cards), to ensure fairness. Therefore, this work
primarily focuses on leveraging machine learning to understand, benchmark, and
profile the individual players with respect to their playing behavior, strategies and
longitudinal evolution of game play.

Mining the game states in multi-player, skill-based card games yields valu-
able information about the game and players, their intentions and root causes,
for example, whether a player is conservative, skilled, or a risk-taker, or has
become aggressive or disengaged. Another important use case for this analysis
is to evaluate game prudence, i.e., detect and preempt addictive and gambling
tendencies, which is especially important in cash games. However, player behav-
ioral profiling via game state mining is challenging because of factors such as
large state space and subjective reactions conditional to chance factors. This
makes this effort fundamentally different from various player rating systems in
other games (e.g., ELO rating in chess [5]), which are objective. For example, in
Rummy (Sect. 3), one important decision for a player is whether to play or drop
the game based on the cards he was dealt. For a clearly very good or bad set
of cards the decision is straight forward to play or drop, respectively. However,
most of the hands typically fall in intermediate category (over 55%). While a
conservative player may drop such hands, a more aggressive player may play
and possibly end up winning depending on the cards of his opponents, and how
the game evolves by chance. Both kinds of players may end up with very similar
ratings, based on any established schemes which look at their overall standing
in the scoreboard across all players and games in the system. However, we strive
for more fine-grained observation of player behaviors.

In this work, we present Game Action Information M iner (GAIM), a Convo-
lutional Neural Network based framework for card game analytics. The contri-
butions of this work are: (i) A novel representation of the card game state as an
image, which encapsulates all pertinent information in a generic and extensible
manner. (ii) An efficient CNN model that out-performs other well-known meth-
ods to predict critical game decision, (iii) Calibrate the goodness of the state
in a chance-independent, continuous and deterministic manner using the model.
This is then leveraged to benchmark players, with respect to their response to a
game state. (iv) Our model and derived metrics are remarkably valuable for end-
to-end player behavioral analyses and gethering insights across game dynamics,
that were not possible before due to the close coupling of chance and strategy.

Although the GAIM framework is applicable to any skill-based card game,
we describe its utility within the context of one particular game, Rummy.
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2 Related Work

Deep Learning in Multi-player Games: Most of the literature in the space
of deterministic games focuses on building agents that can learn and predict next
moves and effectively play the game as skillfully as or better than a human, using
techniques such as Monte Carlo Tree Search and deep reinforcement learning
[10,21,22]. Unlike Chess or Go, multi player cards games are mostly partially
observable markov decision processes or stochastic games (POMDP or POSG),
where the game tree is not known fully. [8] uses neural fictitious self-play agent
to approximate Nash equilibrium in poker. [17] generates probable subsets of
true states prior to performing a tree search for decision making in games like
Rack-O and Game of Pure Strategy. Other works include [27] which employs
computer vision techniques to recognize Poker players’ intentions and predict
their actions based on their face expressions. [15] estimates the value of holding
any possible private cards in any poker situation, using recursive reasoning,
decomposition and a form of intuition that is learned from self-play using deep
learning. [9] builds a convolution neural network model to predict the discarded
tile in Mahjong using a data structure, which is a function of only a single game
state, namely, the tile type, and is not generic or extensible like ours. The scope
and objective of this work is not to develop a game playing agent, but rather to
mine game intelligence of players that enables end-to-end behavioral analytics.

Player Behavior Analysis: In [16], Clustering is used on game-specific features
for online tennis to segment different types of players, which is used to introduce
realistic diversity in the bots to play against humans. [19] uses non-negative ten-
sor factorization to identify players who are similar not only by playing patterns
and strategies but also by temporal trajectories. Our method precludes the need
for game-specific features, and we use model-based profiling instead of cluster-
ing for identifying player patterns. In [28], for a game where the actions and
their rewards are known, the player’s motivation and reasoning behind actions
are learned using inverse reinforcement learning. Our work is orthogonal to [28]
because we focus on defining and determining the optimal policy.

3 The Game of Rummy

Rummy is a game of skill played with 2 to 6 players with the objective of forming
valid melds, i.e., groups of sets and sequences with all the cards at hand. A set
is a group of cards with the same rank but different suits (e.g., );
a sequence is a group of cards in sequential order of ranks all with the same suit
(e.g., . Each meld must be at least 3 cards long. A randomly
selected card is designated as joker which the players can use to complete a
set or sequence. For example, if is drawn as the wild card joker, then 2
of any suit can be used to form melds (a printed joker also plays the same
role). A sequence/set that contains a joker is called an impure sequence/set, and
otherwise it is a pure sequence/set.
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Declaration: The player who declares first with all valid sequences and sets wins
the game. It is mandatory to have at least two sequences, one of which must
be pure, and the other can be pure or impure. Figure 1 shows an example of a
winning declaration. Winner gets 0 points, other players get points equal to sum
value of cards (face cards carry 10 points, jokers and pure sequences fetch 0
points). All players aim to minimize their points.

Drop: At any time during the game, the player has the option of dropping from
the game. First drop is one of the most important decisions to be made in the
game, because it helps conserve points. If the hand that was dealt was poor,
then it is better to drop (and get away with 20 points) rather than end up with
a higher score. Learning which hand to drop is an important skill that a good
rummy player must acquire.

Fig. 1. Example of a winning dec-
laration

Table 1. Rummy features for #cards = 13,
#decks = 2, #suits = 4. i is the meld length

Odds # possibilities

i = 3 i = 4 i = 5 i = 3 i = 4 i = 5

Pure seq(i) 2.1e−03 1.5e−04 1.4e−05 384 704 1280

Impure seq(i) 1.04e−02 1.5e−03 2.4e−04 6112 30656 127k

Pure set(i) 2.31e−03 4.5e−05 416 208

Impure set(i) 8.47e−03 7.2e−04 5144 17152

Win hand(13) 0.00271 3.32e+13

The quest for a player is to strategize and progressively move towards creating
a winning hand before his opponents. For the curious readers, we have summa-
rized the odds and state space involved in a game of rummy in Table 1. It may
be noted that, like most of the multi-player card games, Rummy is character-
ized as an imperfect information, non zero-sum game, where an optimal strategy
equilibrium is a hard problem ranging from NP-hard to PPAD-complete [7,8,18].

4 GAIM Framework

Fig. 2. Block diagram of GAIM

The objective of the GAIM framework
is to analyze player actions during the
course of a game, which in turn can be
used to enable or enrich other analytical
models used for various business objec-
tives. This is illustrated in Fig. 2 where we
see that the GAIM layer sits in between
the raw databases and the analytical mod-
els that consume this data, augment-
ing the raw data with additional derived
information.1

1 Please note: All figures in this paper are best viewed in color.



GAIM: Game Action Information M ining Framework 439

4.1 Hand Image Representation

We represent a player’s hand as a kx(n + 1)x3 array, for k suits and n ranks.
This paper uses 4 × 14 × 3 array where, each of the 4 rows represents a suit;
each of 14 columns represents a rank, in the order {A, 2, 3 . . . Q,K,A}. Ace is
repeated because it can be both the lowest or the highest card in a sequence.
The first 4 × 14 plane represents the count of cards in hand. For example, if the
player has one 4♠, then the value in the corresponding cell is 1. The second plane
is used to represent special properties of individual cards. We use it to denote
if the card is a wild card joker. The third plane represents properties that are
common to the entire hand. We use it to denote the total number of jokers in
hand. This also allows for the printed joker card (which does not have a place
in the 4 × 14 array) to be counted. As an example, the array representation
for the following hand, and the corresponding image format are shown in Fig. 3:

, and the wild
card joker is 9. We can now visualize the hand as an RGB image, wherein pure
sequences are seen as horizontal consecutive blocks and sets are seen as vertical
blocks; multiple cards of the same rank and suit result in a brighter red block;
jokers emerge as a greenish block; the number of jokers reflect as a blue-tinge in
the background.

A 2 3 4 5 6 7 8 9 10 J Q K A
1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 2 0 0 0 1 0 0 0 0 0

(a) First Plane (card count)
A 2 3 4 5 6 7 8 9 10 J Q K A
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0

(b) Second Plane (isJoker)
A 2 3 4 5 6 7 8 9 10 J Q K A
3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3

(c) Third Plane (count of jokers)

(d) Image format

Fig. 3. Array representation

When mapped to an RGB image, each
plane can hold 8 bits of information (val-
ues 0 to 255), this image representation is
sufficient for games played with up to 256
decks, with 8 card-level states (e.g., isJoker,
isOpenCard, isDiscardedByPlayerA, from-
ClosedStack, etc.) and 8 hand-level states
(e.g., total jokers (3 bits), game variant,
turn number, time of play etc.). With-
out loss of generality, more planes can be
included (and the depth of the convolu-
tion filters changed accordingly), as long as
the separation between card-level and hand-
level information is preserved. It may also
be noted that this representation can be
used for any card game, not just Rummy.
For instance, in Bridge [7], we can use the
first layer to denote the location of the card
(with the declarer, the dummy or played in
a trick), the second layer to denote all cards
in the trump suit, and the third layer to
indicate the trick number.
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4.2 Hand Quality Estimation Model

When the cards are dealt to a player, he needs to respond to the hand depending
on whether it is a good, bad or mediocre hand. In case of a clearly strong hand
(e.g., with a pure sequence already) or a clearly bad hand (e.g., with no jokers,
and cards that are far apart), it is an easy decision to play or drop, respectively.
But, with mediocre hands the decision is much more difficult and would depend
on the skill, experience and behavioral tendencies of a player. We utilize the
significance of the first drop decision to build a supervised convolutional neural
network model for HQE (HandNet).

Fig. 4. Architecture of HandNet

We train Hand-
Net to learn the
first-drop decision
of highly skilled
players from the
image representa-
tion of hands. The
highly skilled are
most likely to take

the correct first drop decision. Hence, the output of this model, i.e., the prob-
ability of first drop given a hand, serves as an effective proxy for hand quality,
thereby calibrating a given hand of cards on a continuous scale, in a deterministic
manner (a hand always gets the same quality measure) abstracting extraneous
factors such as luck, opponent skills and game state.

The architecture of HandNet is shown in Fig. 4, consisting of three convolu-
tion layers (with ReLU activation), followed by one average pooling layer (2 ×
2), one drop out layer (20%), one fully connected dense layer (512 nodes, hyper-
bolic tangent activation), and finally a softmax layer for binary classification.
The kernel size is taken as 4 × 4 (with stride 1) because we are interested in
an average meld size of 4. We use average pooling because, unlike conventional
“image recognition” applications of CNN (where max pooling is preferred to
capture the most invariant features), we are more interested in understanding
the what blocks are present, and more importantly, not present in a region and
its neighborhood. Hence we use average pooling to reduce the loss of information
while summarizing the region.

Dataset and Training: To curate the training dataset, we define skilled player
as one who has played at least 500 cash games and has an average differential
end score of ≥ 5 (which is 3 standard deviations away from mean), defined as

(
∑

∀wongames

∑

∀opponents

points

#opponents − ∑

∀lostgames

points)/#games. Differential end score is a better

measure than the end score because it takes into account the margin of victory.
The lower bound on the number of games played ensures that there is no luck
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involved. These filters resulted in a skilled-player base of 3956 users out of the
total player base of 282,102 users. The initial hands of all the games played by
these users in two months is taken as input, and the player’s decision of drop
(1) or play (0) is taken as the ground truth label. The model was trained for
100 epochs, with a stochastic gradient descent optimizer, 10-fold cross validation
and categorical cross entropy as the loss function. The first-drop decision of a
player will depend on the number of players in a game - the tendency to drop is
higher in a 6-player game than a 2-player game, since there is higher chance of
not getting the cards needed. Hence, we trained separate models for 2-, 3-, 4-,
5- and 6-player games, each with about 2.9 million records. The proportion of
drops ranged from 12% in 2-player to 35% in 6-player games (Table 6).

5 Evaluation of HQE Model

In this section, we evaluate how well the HQE model learns the ground truth
(drop decision), the quality of a given hand, and other game nuances.

Goodness of Architecture: The performance metrics (Area under ROC curve,
Area under Precision Recall curve, Accuracy, Precision and Recall at break even
point) of the 2-player model on the validation set are shown in Fig. 5. The HQE
model is shown to out-perform (i) a Feed Forward neural network (multi-layer
perceptron), where the image array is flattened and fed to 3 fully-connected
hidden layers with 1024 nodes each, with a softmax layer at the end (FFNN-
1) (ii) VGG16 [23], (iii) DenseNet [12] and (iv) ResNet [11]. The reason for
our model’s superior performance over other well-known CNN architectures is
that our architecture and convolution filter sizes enable the model to detect
the features of interest better.2 Figure 7 shows the evolution of training and
validation accuracy and loss with each epoch. It may be noted that we use the
break even point where precision = recall to optimize the threshold, rather than
other metrics such as F1 score because, our objective is to effectively identify the
good, bad and intermediate hands, rather than focusing on correctly predicting
the drop class alone. The performance metrics of n-player models against the
validation set are shown in Fig. 6. For the rest of the evaluation, we use the 2-
player model because that is the most frequent scenario, but the conclusions can
be extended without loss of generality to n-player games (also verified empirically
but omitted due to space constraints).

2
VGG16, ResNet and DenseNet were trained with our dataset from scratch, which performed
better than transfer learning of weights. We also tried Inceptionv3 [24] and AlexNet [13] but have
only included the best performing networks. .
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AUC AUC Accu- P,R
ROC PRC racy

HandNet 0.92 0.70 0.90 0.68
FFNN1 0.89 0.61 0.86 0.60
VGG16 0.85 0.60 0.84 0.6
DenseNet 0.77 0.41 0.75 0.4
ResNet 0.77 0.4 0.74 0.41
RF 0.76 0.42 0.74 0.42
XGBoost 0.78 0.44 0.76 0.44
FFNN-2 0.79 0.46 0.78 0.45

Fig. 5. Performance of Hand-
Net

AUC AUC Accu- P,R
ROC PRC racy

2p 0.92 0.7 0.89 0.68
3p 0.88 0.67 0.78 0.66
4p 0.93 0.90 0.86 0.82
5p 0.91 0.86 0.82 0.79
6p 0.93 0.88 0.84 0.80

Fig. 6. Performance of
n-player models. The
thresholds are 0.35, 0.3,
0.52, 0.61, 0.65 and
ground truth drop ratios
are 0.12, 0.17, 0.23,
0.30, 0.35, for 2,3,4,5,6p
respectively

Fig. 7. Convergence of
accuracy and loss

Goodness of Game State Representation: Next, we use rummy-specific
features that can be potentially indicative of the goodness of a hand, and use
these features instead of our game state input to train models using (i) Random
Forest, (ii) XGBoost and (iii) Feed forward network (FFNN-2). The features
used are number of jokers, number of pure sequence of length three and four,
number of bits (e.g., 6♠, 7♠), number of connected cards (e.g., 6♠ and 8♠),
number of sets of length three and four, number of cards away from a winning
hand and hand score (i.e, points). The poor performance of these models (Fig. 5)
show that these features are not sufficient to calibrate the hand quality.

Learning the Hand Quality: We now evaluate if the model provides
continuous-scale quality estimation of hands as envisioned. Figure 8 shows the
hands with highest and lowest drop prob (0.97, 2.76e−07, respectively) in a vali-
dation set. We see that the least probability hand is already a winning hand; the
maximum probability hand has no jokers, and is at least 2 cards away from a
pure sequence and hence is clearly a bad hand. We also compare the end scores
of the true negatives TN (i.e., player played when drop prob is high) with the
false positives FP, to study how the players fared when they differed from the
model. The two groups were significantly different (average p-value of 0.0003),
implying that playing a bad hand, as per the model, yields bad score. Next we
consider a set of thumb rules for obviously good (Play hands with pure sequence
and ≥1 joker), obviously bad (Drop hands with 0 joker and 0 pure seq) and
other (Not Sure) hands.

The objective of this exercise was three fold: (i) to verify the deterministic
continuous calibration of our model, (ii) to show why such thumb rules are not
sufficient to estimate hand quality and (iii) to understand if and when our model
mispredicts.
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(a) High probability hand:
{2 , 2 , 2 , 6 , 6 , 7 ,
9 , 10 , 10 , J , Q , Q ,
K }Joker:4

(b) Low probability hand:
{7 , 8 , 9 , 10 , 4 , 5 ,
joker , 7 , 9 , J , 9 , 9 ,
Q }Joker:9

Fig. 8. Drop probability reflects hand
quality

The average drop probabilities (out-
put by model) for the 3 categories are
0.0065, 0.332 and 0.687, respectively,
which are <, ≈, > threshold 0.35, verify-
ing objective i. Majority of hands (56%)
fall under Not Sure category, indicating
thumb rules are insufficient (objective ii).
Next, we bucket the samples misclassi-
fied during training (which is 10% since
model accuracy is 90%) into these 3 cat-
egories. We see in Fig. 9 that 99.1% of
Play mismatches (constitutes 3.8%) are
FN (i.e., model recommends play but
player dropped), implying player mis-
take; 82.3% of Drop mismatches (4.2%)
are FP (i.e., model recommends drop
but player plays), again implying player
mistake; there is an almost equal split
between FP and FN under Not Sure
(5.4%), with near-threshold drop prob,
implying intermediate hand, not nec-
essarily a player mistake nor model’s
incompetence.

Fig. 9. Bucketing of misclassified sam-
ples

Learning the Effect of Joker: Next,
we assess how well the model learns the
importance of the joker. We retrain our
model, with (i) second plane always 0, (ii)

third plane always 0 and (iii) both set to 0. The precision and recall of the model
reduced by 1.5%, 35% and 49%, respectively compared to Fig. 5, substantially val-
idating that the model learns value of joker from our input. Next, we took a ran-
domly selected hand
that does not contain any joker. Its drop probability is 0.549 (not playable). As
a rule of thumb, having a joker improves the quality of hand. To validate that,
we treated each of these cards as a joker card, and the drop probability reduces
in all cases and the hand becomes playable (Table 2).

Table 2. Drop prob when jokers are introducedLearning the Advantage of
Left-Heavy Hands: Since the
objective in a rummy game is
to minimize the points, a skilled
rummy player drops a hand with
too many high value cards. In order to verify that the model has learned this,
we selected 50 right-heavy images (i.e., most of the cards are on the right half
of the image, implying many high value cards) with no pure sequences or jokers
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and computed their drop probabilities from the model; next we compared these
with that of their left-heavy counterparts (by horizontally flipping each image).
A one-tailed, paired two sample t-test shows that the mean drop probability is
significantly lower after flipping (p = 0.004).

6 Player Behavioral Analyses

(a) Player A: Conservative (b) Player B: Aggressive

Fig. 10. Hand quality helps identify different playing
styles. The green dots are the correct plays, i.e., true
negatives; blue: correct drops (TP); orange: wrong
drops (FN); pink: wrong plays (FP).

How a player reacts to a
hand, given its quality, sheds
light on various player char-
acteristics and playing ten-
dencies. For instance, Fig. 10
shows the initial hand qual-
ity (drop probabilities) of
the last few hundred games
of two different players.
From this figure, we clearly
understand that Player A is
a very conservative player,
dropping most of the hands
he could have played, while Player B is a very aggressive player, playing most of
the hands he should have dropped. To further aid such analyses, we derive rele-
vant metrics (referred to as HQE Metrics), some of which are listed in Table 3. It
may also be noted that the HQE model has been deployed in real time and the data
used for the analyses in this section are from production pipeline (deployment
details in supplementary material Section S2).

Table 3. HQE metrics with definitions
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Fig. 11. HQE for churn prediction
(green:correct plays, blue: correct drops,
orange: wrong drops, pink: wrong plays)

Measuring Player Engagement:
The change in playing pattern over time
is a precursor to important events in
a player’s journey. We use such longi-
tudinal analysis of DA for churn pre-
diction. We have an existing XGBoost
model to predict churners (who become
disengaged and leave the platform). The
features used in this model include num-
ber of active days, win amount, deposit
amount, etc. We augment this model with DA and its time series features. We
observe that the AUC of the model improves by 11.3% from 0.634 to 0.706.
To understand why DA improved churn prediction, we look into a player who
churned and was correctly predicted by HQE-enhanced model, but not baseline
churn model. Figure 11 shows his drop action in the last 500 games. We see that
in the last 100 games, the player has not dropped a single game (sudden sharp
decrease in DA), indicating onset of aggressiveness or disengagement. Similarly,
we observed that DA was one of the most important features for predicting if a
player will convert from practice to paid player, improving the accuracy of the
conversion prediction model from 90% to 94%.

Table 4. Pearson correlation coefficient (r) between DA and KPIs, along with signifi-
cance value p

KPI Definition r p

Time to Conversion Number of days taken to convert from free to paid player −0.95 <.001

Conversion Rate Fraction of newly registered players who convert 0.98 <.001

First Deposit Deposit amount made by a player for the first time 0.70 0.024

D7 Repeat Deposit Deposit amount made by a player after 7 days of conversion 0.88 <.001

D7 ARPU Average Revenue Per User for all users who converted 7 days ago 0.90 <.001

Retention Fraction of days on which cash games were played 0.89 0.007

Enhancing Game Prudence: One of the biggest responsibilities in providing
a real-money gaming platform is ensuring responsible game play among all play-
ers. Typical addiction indicators include spending excessive amount of time and
money on the platform, and displaying desperate behavior (when they begin to
chase losses) [3]. Drop behavior is helpful in observing such desperation. We have
an anomaly detection model that identifies players who are on the trajectory of
becoming irresponsible or addicted. The flagged players are blocked after verifi-
cation by a counselor. The coefficient of variation (σ

μ ) in DA of blocked players is
significantly higher than non-blocked players, per one-tailed Kruskal-Wallis rank
hypothesis test (p = 0.017). This is an important revelation, because it implies
that the HQE model and DA not only reflect the skill of the player (because,
in most cases, the addicted players know the game well), but it also identifies
clean, responsible and prudent skill.
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Platform-Level KPIs: Within the gaming platform, there are several key per-
formance indicators of players that help in all business decisions. Table 4 shows
that there is very high correlation between DA and the KPIs listed. It is of
great importance to note that the KPIs consistently increase monotonically with
drop adherence. This implies that the playing mindset, propensity to spend, time
taken to get engaged with the platform are all correlated with DA. The remark-
able implication of this result is two fold. Firstly, we can use drop adherence as a
reliable metric for early prediction of these KPIs. Secondly, if the drop adherence
of the players can be improved then all these KPIs of interest would also improve
organically, along with players win ratio (Table 3). This finding has been folded
into several product campaigns, aiming to up-skill players to drop correctly.

Fig. 12. HQE metrics for different
player segments

Player Segmentation and Persona Clus-
tering: Next we observe the drop behavior
across different cohorts of players. Table 5 lists
the segments considered. The drop metrics for
2000 players in each segment were computed.
Figure 12 shows that the HQE metrics are dif-
ferent across different segments, implying that
the playing behavior is different across the seg-
ments. We see that skilled and PC players are
similar; PS and NUNew are similar, as expected intuitively (results from ANOVA
and Tukey HSD test [26] are omitted due to space constraints).

Table 5. Segments of players

Skilled Skilled players as defined from our training data set in Sect. 4

PC Platinum Club players who play cash games in the higher bracket, generate most revenue

NUCore New Users from Core Geos, regions were Rummy is well-known with a large player base

PS Poorly skilled players, in the bottom 5% in the average differential score Sect. 4

NUNew New Users from New Geos, i.e., regions where Rummy is typically not a popular game

Next we group players based on their game play to identify previously
unknown segments or player persona buckets. We randomly selected 10000 play-
ers, generated their HQE metrics for games played over 2 months, and then
performed k-means clustering (k = 5 as per scree plot). The cluster centroids
are shown in Fig. 13 (rows 1–5). For retrospective verification, we also present
some extraneous meta-data about the players in the clusters (rows 6–9). The
observations from these results are given in Fig. 14. We can now use such clus-
tering to predict the persona bucket of new players too.
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C0 C1 C2 C3 C4
BPR 0.30 0.27 0.20 0.27 0.26
BDR 0.30 0.29 0.32 0.24 0.31
DRIH 0.23 0.14 0.16 0.03 0.16
AI 0.87 5.57 0.49 59.09 4.62
ES 26.8 17.3 17.7 31.4 20.2

GC 149 1104 114 133 591
Rev x 1.3x 1.4x 1.2x 1.6x
ID 17.74 6.51 15.84 10.90 8.39
Days 1540 1733 1607 1468 1572

Fig. 13. Cluster centroids and
meta-data (GC: game count,
Rev:revenue generated, Days:
days on the system, ID: inactive
days.

C0: Unskilled players, not risk-taking, and seem discon-
nected (indicative of either a new or a disengaged player).
Highest ID. Most players predicted to churn (by baseline
model in Sec 6) belonged here
C1: Experienced and balanced players (lowest end score, not
too conservative nor aggressive)
C2: Highly skilled, successful players; Play wisely yet con-
servatively (low score, lowest mistake, high bad drop ratio)
C3: Reckless, aggressive and unskilled players (lowest DRIH,
highest AI, highest ES). Some predicted to churn. Must be
monitored for irresponsible playing (lack of game prudence)
C4: Aggressive but not as reckless and more skilled than as
cluster 3 (low ES, moderate AI). Some predicted to churn

Fig. 14. Observation of cluster characteristics

As a summary, we compare the features of HQE-based DA as a skill metric
with other metrics - end score (ES), average differential end score (Diff ES,
Sect. 4), win ratio (WR), ELO [5], and drop adherence derived from two other
indicators of hand quality that we have discussed already - thumbrule (DA Rule)
and number of cards away from declaration (DA Dist in Table 6. We see that
HQE-based DA is the most robust providing insights that others are unable to
in a timely and accurate manner.

7 Conclusions and Future Directions

Table 6. Skill metrics. Y: Yes, N: No, E: Even-
tually

Characteristics ↓ DA Diff W E DA DA E

Skill Metric → HQE ES R S Dist Rule LO

Decoupled from luck Y N N N Y Y N

Deterministic, Y N N E N N N

Continuous HQ

Measure engagement Y E N N N N Y

Correlate with KPIs Y E N E N N N

Reflect game prudence Y E N N N N N

Assess skill within Y N N N N N N

Few games

Catch change quickly Y N N N N N N

Improves win ratio Y E N N N N E

We presented GAIM, a deep-
learning framework that enables
benchmarking and profiling of
players. We develop an efficient
model for GAIM that uses first
drop action of skilled players
to calibrate the goodness of the
hand. The model is then used
to mine game play characteris-
tics of players, by monitoring drop
adherence. Future work includes
developing persuasion strategies
to up-skill the players to improve
first drop behavior and to look
into more game play actions beyond the first drop so that a more fine-grained
assessment of skill can be made.
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