
Tree-Miner: Mining Sequential Patterns
from SP-Tree

Redwan Ahmed Rizvee(B), Mohammad Fahim Arefin,
and Chowdhury Farhan Ahmed

Department of Computer Science and Engineering,
University of Dhaka, Dhaka, Bangladesh

rizveeredwan.csedu@gmail.com, f.arefin8@gmail.com, farhan@du.ac.bd

Abstract. Data mining is used to extract actionable knowledge from
huge amount of raw data. In numerous real life applications, data are
stored in sequential form, hence mining sequential patterns has been one
of the most popular fields in data mining. Due to its various applications,
across the past decades, a significant number of literature have addressed
this problem and provided elegant solutions. In this paper we propose a
novel tree data structure, SP-Tree, to store the sequence database in a
new and efficient manner. Additionally, we propose a new mining algo-
rithm Tree-miner to mine sequential patterns from SP-Tree. To further
enhance the performance of our algorithm, we incorporate multiple prun-
ing techniques and optimizations. As our SP-Tree stores the complete
database, it can also be used for incremental and dynamic databases,
tree-structure is particularly advantageous for interactive mining. We
demonstrate how our SP-Tree based Tree-miner algorithm significantly
outperforms all of the existing state-of-the-art algorithms, across 6 real
life datasets. We conclude by discussing the possible extensions of our
approach to other related fields of sequential data.

Keywords: Pattern mining · Sequential pattern mining · Tree based
mining approach

1 Introduction

Pattern mining is a branch of data mining which encloses the tasks of discover-
ing inherent, useful and interesting patterns in databases. Sequential pattern
mining was proposed [1] to apply the pattern mining techniques on sequential
or ordered data, where the interestingness of a pattern can be measured in terms
of various criteria such as its occurrence frequency, length, profit etc. An exam-
ple of a sequential pattern is “Customers who buy a digital camera are likely
to buy a color printer within a month.” If a data-sequence is comprised of a
set of events, the problem is to find all sequential patterns with a user-specified
minimum support, where the support of a sequential pattern is the percentage
of data-sequences that contain the pattern [9]. For example, in the database
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 44–56, 2020.
https://doi.org/10.1007/978-3-030-47436-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_4

Tree-Miner: Mining Sequential Patterns from SP-Tree 45

of a retail superstore, each data sequence may correspond to the purchase his-
tory of a customer and each event represents the items bought in one purchase.
A sequential pattern may be 10% customers bought ‘Smartphone’, followed by
‘Screen Protector’ and ‘Powerbank’. Hence, sequential pattern mining methods
are popularly used to identify patterns which are generally used in making rec-
ommendation systems, text predictions, improving system usability or making
informative product choice decisions.

Due to its wide range of applications, numerous algorithms have been pro-
posed to mine sequential patterns efficiently; most notably of two major classes-
apriori based and pattern growth based. A typical apriori-like sequential pattern
mining method, such as GSP [9], adopts a multiple-pass, candidate generation-
and-test approach. But it is computationally expensive due to generation of huge
set of candidates and multiple scan of the database which significantly reduces
the performance in large and dense databases, specially in lower minimum sup-
port thresholds. On the other hand, pattern-growth based algorithms, which
follow a divide and conquer approach are several times faster than the apriori
algorithms. But there is still room for major improvement as these algorithms
work by generating projected databases. Moreover, an efficient tree-based struc-
ture to store complete sequential databases is yet to be proposed, which could
be useful in numerous cases like interactive pattern mining, sequential pattern
mining in dynamic databases and applications with sliding window. Due to its
numerous applications, mining sequential patterns in a parallel or distributed
computing environment has also emerged as an important issue with many appli-
cations where tree alike structure could be useful.

Being motivated by this, we propose a tree based data structure SP-Tree and
an algorithm, Tree-Miner to mine sequential patterns from it. Consequently,
we demonstrate our algorithm’s superiority compared to existing algorithms and
highlight its versatility. Our main contributions in this paper are:

1. A tree-structure, SP-Tree to store the database in an efficient manner
with build once, mine many property.

2. An efficient mining algorithm Tree-Miner to mine sequential patterns
from SP-Tree.

3. Multiple Pruning techniques and optimizations to reduce runtime along
with the scope of extensibility and scalability.

In this paper, we provide a brief discussion regarding the existing literature
in Sect. 2. In Sect. 3, we propose our SP-Tree data structure and our mining
algorithm, Tree-Miner along with pruning mechanisms and optimization tech-
niques. In Sect. 4 we demonstrate our algorithm’s performance across various
real life datasets and we draw conclusions in Sect. 5.

2 Terminologies and Background Study

In this section, we explore the preliminary terminologies and concepts related to
our problem domain and a brief discussion regarding the existing literature.

46 R. A. Rizvee et al.

Let there be a set of items I = i1, i2, ...im. An itemset or event X is a
set of items such that X ⊆ I. A sequence S is a collection or list of itemsets
with a certain order [1] and can be written as <e1 e2 e3 ... el>, where each
event ei happens before event ej if i < j and each event ei is a set of items. A
sequence database SDB is a list of sequences. The support of a sequence sa
in SDB is defined as the number of sequences that contain sa and is denoted
by sup(sa). A sequence s is said to be a frequent sequence or a sequential
pattern if sup(s) ≥ minsup, for a threshold minsup set by the user. So, given
a SDB and a minsup, the problem of mining sequential patterns is, to
generate all subsequences where each subsequence sa has sup(sa) ≥ minsup. If
α = <(ab)b> and β = <(abc)(be)(de)c>, where a, b, c, d and e are items, then
α is a subsequence of β.

As mining sequential patterns is a very popular problem, numerous
research works have addressed this. Different algorithms follow different strate-
gies and data structures to search for sequential patterns efficiently. As a result,
some algorithms are more efficient than others. GSP [9] and SPADE [11] are
two prominent works which have addressed this problem. Both solutions are
based on candidate generation and testing paradigm. Their main bottleneck is
that they generate a huge amount of redundant candidates while performing
multiple database scans.

PrefixSpan [7] is one of the benchmark algorithms for frequent sequence
mining which adopts a divide and conquer technique. It expands a pattern by
recursively creating smaller projected databases on each iteration. Main com-
putation cost of prefixspan is basically the generation of projected databases.
Another renowned algorithm to solve the problem of frequent sequential pat-
tern mining is SPAM [2] which introduced the idea of depth first search based
technique to generate patterns in the search space along with efficient pruning
mechanisms. These four literature were the benchmark works which provided
completely new techniques to address the problem. After these, several novel
techniques were introduced which provided some tweaking over them to improve
the basic algorithm’s performance. FAST [8] improved the support count tech-
nique of SPAM [2] using sparse id list which was a modification of SPADE’s
[11] idea. Lapin [10] was another improvement over SPAM [2] which showed
the importance of last event’s items that how it can reduce the search space and
improve performance. A very efficient structure co-occurrence map was proposed
in [5] which provided new technique to prune search space in both SPADE [11]
and SPAM [2]. In this paper, we propose a complete tree-based structure to
represent the sequential database and a mining algorithm along with efficient
pruning mechanisms and improvisations to efficiently mine sequential patterns.
Main motivation behind this work is, a complete and compact structure pro-
vides huge assistance to handle both dynamic and stream database along with
interactive mining. Our technique also provides a new dimension to approach
the problem.

Tree-Miner: Mining Sequential Patterns from SP-Tree 47

3 Proposed Approach

In this section, we will discuss our proposed tree structure, SP-Tree and the
mining algorithm Tree-Miner along with the pruning mechanisms and impro-
visations.

Table 1. Sequential database

ID Sequence

1 〈{a}{abc}{ac}{d}{cf}〉
2 〈{ad}{c}{bc}{ae}〉
3 〈{ef}{ab}{df}{c}{b}〉
4 〈{e}{g}{af}{c}{b}{c}〉

Fig. 1. Recursive next link move

3.1 SP-Tree

Our proposed Sequential Pattern Tree or SP-Tree is a tree which will represent
the sequential database(SDB) in an efficient manner. We will consider the SDB
of Table 1 in this section for discussion. In each row of the Table 1 we have
sequences with their IDs. Here, item set domain I = {a,b, c,d, e, f, g} and for
each sequence, items within curly braces form events. Now, we will explain the
node structure of SP-Tree and the representative SP-tree of Table 1.

Node Structure of SP-Tree: Before diving into discussion we want to point
out some important points. Each sequence’s each event(set of items) should be
lexicographically sorted and each item of each sequence have an event number
which denotes the number of event in which this item appeared in the sequence.
For example, in the first sequence of Table 1, first a’s event number is 1, because it
belongs to event number 1 of that sequence. Similarly, second a’s event number is
2 because it appeared in event 2. So, embedded with event number first sequence
can be seen as 〈{a : 1}{a : 2, b : 2, c : 2}{a : 3, c : 3}{d : 4}{c : 5, f : 5}〉.

1. Label: Each node will represent an item and that item is the node’s label.
2. Event Number: Each node will also have an event number which represents

the node’s label/item’s event number.
3. Count: This number denotes how many times this node had been traversed

during construction of the tree from sequences. This also denotes how many
times this path(root up to this node) or prefix has been shared among the
sequences. This attribute’s value is important to calculate generated pattern’s
support.

48 R. A. Rizvee et al.

Fig. 2. SP-Tree of Table 1

Fig. 3. Intermediate processes of constructing SP-Tree

We have shown the complete SP-Tree of sample database of Table 1 in Fig. 2.
In each node we have provided its label, count and event number. Red color
values in each node is node number which we have used here for discus-
sion purpose. At first we will have only root node. Then we will insert each
sequence into the tree. For each sequence we put each item of the sequence
of each event in the tree sequentially with their event number and label. We
always start from the root and recursively put the items in the tree and tra-
verse the tree. For each node, we check if we have child node from the current
node for the item (with corresponding event number) we want to put. if we do
not have that, then we create a node with item’s label and event with count
1 and if we already have a child node then we just increase that node’s count
attribute’s value. After creating or increasing the count value of the child
node we go there and perform recursive process to put the next item of the
transaction/sequence into the tree. The intermediate processes of inserting
first three sequences/transactions are shown in Fig. 3 and the complete tree
after inserting last sequence is shown in Fig. 2.
Besides these three attributes we have two additional attributes.

4. Next Link: Next links are essential to traverse in the tree faster and effi-
ciently. For a node v, next links for an item it denotes the first node occurrences
(n1, n2, ...nk) in v’s subtree in different branches for it. By moving throughnext
links we can reach different nodes faster (Fig. 1) and generate patterns by con-

Tree-Miner: Mining Sequential Patterns from SP-Tree 49

Fig. 4. Next links for node 1

necting the node’s labels. An example of next links for different items of node
1 is given in Fig. 4. Here to show next links for item a, b, c, d we used different
colors for better visualization.

5. Parent Info: Each node will store its parent nodes labels which are in the
same event as it in the path from root to this node. This information is useful
during mining to efficiently reduce search space. Now the best and compact
way to store this information is using bitset. If we have domain knowledge,
then we can number the items as 0,1,2,.. etc and make a bitset to store parent
items. Like, in the SP-Tree of Fig. 4, node 4 needs to store label ‘a’(node 2’s
label) and ‘b’ (node 3’s label), because they are in the same event as it(event
2), so if we number ‘a’ as 0, ‘b’ as 1, ‘c’ as 2 and ‘d’,‘e’,‘f’,‘g’ respectively
then node 4 will store “11” as its parent information (setting the bits of
position 0 and 1 only). This bit based representation will give ease to perform
bitwise operations which will improve runtime. The respective parent info for
each node is shown in Fig. 2. “null” means it does not have any parent item
in same event. But our mining algorithm is also capable of handling other
representations as well.

3.2 Co-existing Item Table

Suppose we have a pattern P = 〈{α}{β}〉 where α and β can be a single item or a
set of items. During mining we extend a pattern in two ways, Sequence Exten-
sion (SE) and Itemset Extension (IE). SE is if we add an item A at the end
of P as new event resulting in 〈{α}{β}{A}〉 and IE is if we add an item A in
the last event of P resulting in 〈{α}{βA}〉. Co-Existing Item Table is helpful
to understand which items co-exist in the database either in different event or in
same event. By definition of pattern extension items existing in different event
perform SE and items existing in same event perform IE. This table is helpful to
reduce search space by giving idea regarding the actual possible symbols to extend
a sequence. We provide the Co-Existing Item Table of our database in Table 2.

50 R. A. Rizvee et al.

In Table 2 we have shown the co-existing items for our database Table 1 along
with their frequency. Each transaction contributes only once for each combi-
nation (SE or IE). For SE part this table can be efficiently calculated using
next− links and for IE part this table can be calculated during insertion of the
sequences in the tree. This idea was adopted in our methodology from [3,5].

Table 2. Co-existing item table of sample database

Items Sequence extending items Itemset extending items

a a:2, b:4, c:4, d:2, e:1, f:2 b:2, c:1, d:1, e:1, f:1

b a:2, b:1, c:3, d:2, e:1, f:2 c:2

c a:2, b:3, c:3, d:1, e:1, f:1

d a:1, b:2, c:3, e:1, f:1 f:1

e a:2, b:2, c:2, d:1, f:2 f:1

f a:1, b:2, c:2, d:1

g a:1, b:1, c:1, f:1

3.3 Tree-Miner: Mining Sequential Patterns from SP-Tree

In this paper, we propose an efficient mining algorithm, Tree-Miner to generate
patterns from SP-Tree. Tree-Miner is a recursive algorithm which concatenates
the nodes of the SP-Tree and generates the sequential patterns by adding the
node’s labels using next links. This algorithm follows pattern expanding app-
roach which means it starts with an empty sequence and gradually by traversing
in the tree using next links it adds new symbols/items at the end of the sequence
as SE or IE. The node’s count attribute resolves the issue of pattern’s support
calculation. Now, we will talk about the important concepts of Tree-Miner about
how patterns are explored.

Patterns Formation Rules: Node combinations from SP-Tree makes a pattern
and from different subtrees the first node combinations are always chosen. For
example from our SP-Tree of Fig. 2 pattern 〈{a}〉 can be found in node 1, 18 and
25. These three nodes make pattern 〈{a}〉 in 3 different subtrees. Node combina-
tion {1, 3} forms pattern 〈{a}{b}〉 in leftmost subtree, similarly node combination
{1, 12}, {18, 23} and {25, 28} forms pattern 〈{a}{b}〉 in other three different sub-
trees and always the count attribute value of last node in each combination(here 3,
12, 23, 28) contributes to the pattern’s frequency and here is 4. As, the first combi-
nation in different subtrees are always chosen it can be said that pattern 〈{a}{b}〉
can be found by reaching node 3, 12, 23 and 28 and this will make the nodeList
of pattern 〈{a}{b}〉 from where next iteration of pattern expansion will begin for
〈{a}{b}〉.
Node Concatenation by Sequential Extension: Suppose, we have a pattern
P and the nodeList of P is N = {ni, nj , nk} which denotes where P ends in dif-
ferent subtrees(first occurrence). Suppose, we want to sequentially extend P as

Tree-Miner: Mining Sequential Patterns from SP-Tree 51

P{α} where α ∈ I, then for each node n ∈ N we need to search in its subtree, the
first nodes which have different event number with n(SE-Rule). That node will
sequentially extend node n and for each n, the resultant nodes will make nodelist
forP{α}. Using next links we can perform recursive moves to find the desired nodes
in the subtree. Like, in Fig. 2, for 〈{a}{b}〉 nodeList = (3, 12, 23, 28). We want to
make 〈{a}{b}{c}〉. Node 3 using next link for c will reach first node 4 but it has
same event number, so it will again move from node 4 using next link for c and will
eventually reach node 6. Node 6 is the valid extension for node 3. The resultant
nodeList for 〈{a}{b}{c}〉 is (6, 29) and support is 2.

Node Concatenation by Itemset Extension: Suppose we have a pattern
〈P{Q}〉 where P can be a set of events or empty and Q a lexicographically
sorted set of items and here the nodeList for 〈P{Q}〉 is N={ni, nj , nk}. Now if
we want to extend the pattern as IE to 〈P{Qβ}〉 where β is an item and for any
item q ∈ Q lexicographically < β then for each node n ∈ N we need to find the
nodes in the subtree of n which will extend n as IE and will comprise nodeList
of 〈{P}{Qβ}〉. A node vi is extended by node vj as IE if vj in subtree of vi and
both have same event number. There can be two cases for each n to find such
node.

1. Direct Node: Using next link of n for β we reach a node which have same
event number as n. This node will directly expand n as IE. For example in
Fig. 2, from node 18 (belonging to nodeList of 〈{a}〉) using next link for b we
can directly reach node 19 which have same event number as 18. So it will
extend node 18 as IE.

2. Indirect Node: Using next link of n for β if we reach a node which does not
have same event number as n. In this case, we have to find the node k in the
subtree of n which have all the items of Q as ancestor in the same event. For
example, in Fig. 2, from node 1 (which belongs to nodeList of 〈{a}〉) suppose
we want to extend it as IE with b making a pattern 〈{ab}〉. Then first using
next link b from 1, we will reach node 3, but node 3’s event number is different
from node 1. So, Direct Node connection is not possible meaning {1, 3} does
not make 〈{ab}〉. So, we search in the subtree of node 1 using recursive next
link for b so that we can find such a node with label b which have a in same
itemset. Interestingly in our case node 3 does the work having node 2 as same
itemset with label a. So, ultimately node 3 belongs to the nodeList of 〈{ab}〉.
In this purpose bitmask representation really becomes handy. By bitmasking
with parent attribute value we will be able to get if this node has desired
parent labels in same event.

For each pattern P we always have a nodeList which denotes where the pattern
ends and we always search for nodes in each subtree of each n in nodeList to
extend a pattern through recursive next link moves. Besides nodeList for each
pattern P there exists two lists sList and iList which says regarding the valid
symbols which can perform SE and IE on P respectively. Initially this will be
made from Co-Existing Item Table with symbols which will satisfy minsup. In
each iteration this two lists will get pruned. There can be three types of pruning
during pattern extension. They are -

52 R. A. Rizvee et al.

Table 3. Dataset description

Dataset Sequence Distinct item Avg. seq length (items) Type

Snake [6] 163 20 60 Protein sequences

FIFA [4] 20450 2990 34.74 Web click stream

Leviathan [4] 5834 9025 33.81 Book

BMS [4] 59601 497 2.51 Web click stream

Sign [4] 730 267 51.99 Language utterances

Bible [4] 36369 13905 17.84 Book

1. Co-existing Item Table Based Pruning: Suppose, we have a pattern P .
Then we can add a symbol α with P as SE iff α occurs with each and every
item of the last event of P ’s at least minsup times as sequence extending
item. Similarly to extend P by adding α as IE, it must occur with each
and every item of the last event of P as itemset extending symbols at least
minsup times. If this condition satisfies then and only then we will perform
node concatenation and measure actual candidacy by support counting.

2. sList and iList Pruning: Suppose during pattern extension we have a pat-
tern P and the corresponding nodeList, sList and iList. Suppose after node
concatenation and measuring support we found that only sList′(⊆ sList) and
iList′(⊆ iList) can extend P as SE and IE respectively based on minsup.
Then during recursive pattern expansion for each item A in sList′ we can
extend P as P{A} with sList′ as new sList and new iList as sList′-the
items in the last event of p{A}. Now for each item A in iList′ we can extend
P as {PA} with sList′ as new sList and with iList′-A as new iList. This is
a very popular pruning mechanism which we have adopted in our system.

3. Heuristic iList Pruning: Suppose for a pattern P we have a nodeList,
sList and iList and an item A where A is in both sList and iList. After
node concatenation and support counting we found that A does not extend
P as SE. Now during node concatenation the nodes which were first visited
through next link for A from each node n in nodeList, if their count attribute’s
summation does not satisfy minsup then A can be pruned from iList. It works
because count attribute value of any parent node is always ≥ child node’s
count attribute. Due to having a tree like structure we could introduce this
heuristic pruning technique.

4 Experimental Results

To evaluate the performance of Tree-Miner based on SP-Tree, we conducted sev-
eral experiments on a 64 bit machine having intel Core i7-3770 CPU @ 3.40 GHz
× 8, 8 GB RAM and Linux 16.04 Operating System. We analyze the performance
with respect to runtime, memory consumption and structure construction time.
To compare in run time and memory we will evaluate our performance against
three state-of-the-art algorithms PrefixSpan, CM -SPADE and CM -SPAM .

Tree-Miner: Mining Sequential Patterns from SP-Tree 53

Fig. 5. Runtime comparison with various minsup

We have conducted our performance on various real life and synthetic datasets
and among them we will show the results in the datasets of Table 3. In other
datasets our performance were quite similar. We have conducted our approach’s
performance in both sparse and dense datasets and observed comparatively bet-
ter results. If for a dataset avg seq. length

number of unique items ≥ 19%, we considered it as dense.
From the runtime analysis of Fig. 5, we can see that, our approach performs

comparatively better than other state-of-the-art algorithms while it outperforms
Prefixspan to a huge extent while CM-SPADE and CM-SPAM with compara-
tively closer but significant amount. Main superiority of our approach is, through
next link it reduces the search space faster and efficiently and it does not need
to generate any projected database and it also does not need any other struc-
ture to calculate the support of a pattern rather than only SP-Tree nodes.

54 R. A. Rizvee et al.

Table 4. Construction time vs mining time

Dataset Threshold(%) Mining(S) Construction(S)

Snake 42.94 2456 0.29

Sign 5.62 15.12 0.25

FIFA 5.87 973.44 1.19

Leviathan 3.43 714.4 0.89

Bible 1.37 977 2.71

BMS 0.064 27.1 0.1

Fig. 6. Memory comparison

Our SP-Tree has two important characteristics, one is prefix sharing and another
one is next link which we have already mentioned. Through prefix sharing it
improves the performance in dense datasets specially while through next link
it can move in the tree efficiently specially improving performance in sparse
datasets. Besides bit based representation during itemset extension as parent
item info also improves performance. In lower thresholds, performance gap is
better compared to higher thresholds. Because in lower thresholds we have a
significant search space and our approach can traverse in them with better effi-
ciency while in higher thresholds search space gets reduced for each algorithm
and so, though ours better but no so differentiable due to time reduction.

As, we provide a structure SP-Tree to represent the sequential database, defi-
nitely it will need a memory for that. Besides we use a Co-Existing Item Table to
prune search space. These two are the most vital factors which consume the mem-
ory usage in our approach. From experiments, we found that our approach takes
slightly more memory compared to CM-SPADE and CM-SPAM but less memory
compared to Prefixspan, mainly because we do not need to generate any projected
databases and pattern’s support count measure also does not need any other struc-
ture except SP-Tree nodes. But considering runtime improvement this should be
considerable. We have shown the comparison of memory usage in FIFA dataset in
Fig. 6, in other datasets performance were quite similar. Another important point
to note that these structures can be built only once on the complete database and
can be used for mining at various minsup. So, our solution can be very useful for
interactive mining. For the sake of comparison, in Fig. 5 we constructed the tree
and table each time from scratch considering the minsup and then compared with
other algorithms (because they were not interactive algorithms) and found com-
paratively better results. So, if we had saved the complete structure and mined
then definitely performance improvements would have been even more significant.
Besides from Table 4 we can see that construction time(tree and table) is insignifi-
cant compared to mining time. So, if we need to mine the same database in various
thresholds or in lower thresholds our solution is quite impressive. Main challenges
behind a tree based structure was how to represent the items within same event in
an efficient manner and distinguish during mining. Our SP-Tree and Tree-Miner
algorithm provides a novel solution in this regard.

Tree-Miner: Mining Sequential Patterns from SP-Tree 55

5 Conclusion

In this paper, we presented a tree based data structure, SP-Tree to store sequen-
tial databases and a new mining algorithm Tree-Miner to mine sequential pat-
terns efficiently from the tree. We have also utilized the idea of Co-Existing
Item Table to reduce search space and various pruning mechanisms for pat-
tern expansion phase to improve runtime along with improvisations. We have
also demonstrated our mining algorithm’s superior performance against vari-
ous state-of-the-art approaches along with other important metrics performance
in experimental analysis section. As our solution is a tree based approach and
maintains the build once mine many property, it has significant advantage to
approach problems regarding interactive mining along with dynamic databases
and sliding window based problems. In this paper, we proposed the tree structure
and basic mining technique to discover sequential patterns and we plan to extend
this solution to solve challenges of dynamic sequential databases and problems
regarding sliding window. Besides, another advantage of tree based solution is
having a structured way to handle all the data by its branches, subtrees etc.
which can be used in numerous branches of pattern mining including multilevel,
multidimensional and parallel or distributed sequential pattern mining.

Acknowledgement. This work is partially funded by ICT Division, Government of
People’s Republic of Bangladesh.

References

1. Agrawal, R., Srikant, R., et al.: Mining sequential patterns. In: ICDE vol. 95, pp.
3–14 (1995)

2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 429–435. ACM (2002)

3. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical min-
ing of sequential patterns using co-occurrence information. In: Tseng, V.S., Ho,
T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI),
vol. 8443, pp. 40–52. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06608-0 4

4. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2.
In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp.
36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1 8

5. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of
sequential pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)

6. Jonassen, I., Collins, J.F., Higgins, D.G.: Finding flexible patterns in unaligned
protein sequences. Protein Sci. 4(8), 1587–1595 (1995)

7. Pei, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth. In: ICDE, pp. 215–224. IEEE (2001)

8. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on
sparse id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.)
ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 316–325. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21916-0 35

https://doi.org/10.1007/978-3-319-06608-0_4
https://doi.org/10.1007/978-3-319-06608-0_4
https://doi.org/10.1007/978-3-319-46131-1_8
https://doi.org/10.1007/978-3-642-21916-0_35

56 R. A. Rizvee et al.

9. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0014140

10. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining
algorithms by last position induction for dense databases. In: Kotagiri, R., Krishna,
P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443,
pp. 1020–1023. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71703-4 95

11. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1–2), 31–60 (2001)

https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/978-3-540-71703-4_95
https://doi.org/10.1007/978-3-540-71703-4_95

	Tree-Miner: Mining Sequential Patterns from SP-Tree
	1 Introduction
	2 Terminologies and Background Study
	3 Proposed Approach
	3.1 SP-Tree
	3.2 Co-existing Item Table
	3.3 Tree-Miner: Mining Sequential Patterns from SP-Tree

	4 Experimental Results
	5 Conclusion
	References

