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Abstract. Pooling layers are crucial components for efficient deep rep-
resentation learning. As to graph data, however, it’s not trivial to decide
which nodes to retain in order to represent the high-level structure of a
graph. Recently many different graph pooling methods have been pro-
posed. However, they all rely on local features to conduct global pool-
ing over all nodes, which contradicts poolings in CNNs that only use
local features to conduct local pooling. We analyze why this may hinder
the performance of graph pooling, then propose a novel graph pooling
method called Bottom-Up and Top-Down graph POOLing (BUTDPool).
BUTDPool aims to learn a more fine-grained pooling criterion based
on coarse global structure information produced by a bottom-up pooling
layer, and can enhance local features with global features. Specifically, we
propose to use one or multiple pooling layers with a relatively high retain
ratio to produce a coarse high-level graph. Injecting the high-level infor-
mation back into low-level representation, BUTDPool enhances learning
a better pooling criterion. Experiments demonstrate the superior perfor-
mance of the proposed method over compared methods.

Keywords: Graph convolution · Graph pooling · Bottom-up and
top-down · Graph classification

1 Introduction

The revolution of deep learning [8] has profoundly affected the development of
many application fields, such as computer vision [10], natural language process-
ing [12], and audio signal processing [11]. The architecture of neural networks has
evolved a lot in recent years, convolutional neural network (CNN) [10] remains the
most successful model in applications that can exploit grid-like data structure.

Some structured data, e.g., images, can be represented as grid-like graph
structure, yet CNNs are not directly applicable to general graph data. The
traditional approach for dealing with graph data is utilizing graph kernel [5].
These methods suffered from drawbacks of kernel methods such as high compu-
tational complexity and very shallow model, thus didn’t perform well on rela-
tively large datasets. Graph neural networks (GNN) [21] aims at building deep
learning methods for graph data such as social networks, citation networks, and
the world wide web, and its effectiveness has been shown in many real-world
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applications. The basic idea of most GNN models is to migrate successful deep
learning building-blocks to graph models. Graph convolutional neural networks
(GCN) [13] is a prominent GNN variant, which is an analogy of CNN.

Pooling layer is a critical component of most deep neural networks [8]. State-
of-the-art CNNs usually use successive convolutional layers with small kernel
sizes followed by one or more pooling layers, which can increase the effective
receptive field while keeping the efficiency and representation learning power of
convolutional layers. Graph poolings play a similar role in GCNs, and pooling
layers are also necessary for tasks such as graph classification, graph encoding,
or sub-graph sampling. However, the most popular pooling methods such as
spacial max pooling and average pooling can’t be incorporated into GCNs easily.
Some recent researches focus on providing pooling methods that applicable in
GCNs, such as DiffPool [23] and SAGPool [14], and they have shown significant
improvement on many graph classification tasks.

Existing graph pooling methods [7,24] rely on features extracted by graph
convolution layers to calculate a score for each node. Graph convolution works by
aggregating information from neighbor nodes defined by the adjacency matrix,
so the feature produced by graph convolution is local feature like in common
CNNs, where a convolution kernel considers only a small area. The local feature
can only reflect local structure around a node itself, but can hardly reflect the
importance of a node within a larger area since macroscopic information is never
available in local features.

In CNNs the local features are exploited in an intuitive way: 1) Only spacial
nearby areas are compared during pooling, which is well-defined when consider-
ing local features 2) Pooling layers guarantee a fixed fraction of local features are
retained (e.g. 1

4 ). So even if the most important part is dropped, any one of its
neighbor features will hopefully be fine enough because of the local similarity.
On the other hand, existing graph pooling methods work in a very different way:
1) All nodes are compared based on their local features, including those nodes
that are far apart from each other. 2) A fixed fraction of all nodes are retrained,
so the global structure of the graph may change a lot if some critical parts are
dropped completely.

To solve this problem, we propose a new graph pooling method called Bottom-
Up and Top-Down Graph Pooling (BUTDPool). The core idea is to gather high-
level information with one or more coarse pooling layers, then feed this infor-
mation back to the low-level representation to help to learn a more fine-grained
pooling function. Specifically, we propose to apply a bottom-up pooling layer to
enlarge the receptive field of each node, then use a top-down unpooling layer
to map the pooled graph back and add to the original graph. Finally, a fine-
grained pooling layer is applied to the graph with global information. Experi-
ments showed the advantage of our method compared to state-of-the-art graph
pooling methods, especially on large graphs.
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Generally, we make several noteworthy contributions as follows:

– We analyzed a drawback of existing graph pooling methods that have not
been noticed before: they are all pooling over graph globally but only based
on local features.

– We proposed a new graph pooling structure called Bottom-Up and Top-Down
Graph Pooling to tackle that drawback, which is generally applicable and can
be complementary with existing methods.

– Experiments on real-world network datasets are conducted. The experimen-
tal results demonstrate that the Bottom-Up and Top-Down Graph Pooling
achieves better results than many existing methods.

2 Related Work

We give a brief overview of some related works in this section.

Graph Convolution. (GC) is a graph representation learning method with
a sound theoretical foundation and has been the backbone of many successful
graph learning methods, which is also the workhorse of most graph pooling
methods. The most widely used graph convolution [13] is an approximation
of localized spectral convolution. There are variants of graph convolution, e.g.
Graph-SAGE [9] use LSTM instead of mean as aggregation function in graph
convolution, however, they preserves the localized property so the drawback
discussed in Sect. 3.2 remains.

Hierarchical and Global Graph Pooling. Global pooling aims at obtaining
a global summary of a whole graph, which gives GCNs the ability to process
graphs with different node numbers and graph structure. Typical global pool-
ing methods including SortPool [24] and Set2Set [18]. However, global pool-
ing methods lack the ability to learn hierarchical or high-level representations.
Hierarchical pooling methods aim to provide a texture-level to object-level rep-
resentations at different layers and wipe off useless information progressively by
multiple pooling layers, which is very important in deep models. SAGPool [14]
is a recently proposed hierarchical pooling method that has state-of-the-art per-
formance on many benchmark datasets. Since it’s unlikely to learn the global
structure of a large graph using a single global pooling layer, hierarchical pool-
ing is more important in deep learning. So we only consider hierarchical pooling
methods in the rest of our paper.

Score-Based Graph Max-Pooling. A nature idea considering graph pooling
is to learn the importance of each node, then only keep the most important nodes
and simply drop other unimportant nodes. This is the basic idea of a bunch of
graph pooling methods we call as score-based methods, since they calculate a
score as a metric of relative importance of each node. SAGPool [14] and gPool [7]
are typical score-based pooling methods.
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Differentiable Graph Pooling. Score-based methods have a drawback that
the top-k operation used in score-based methods is not differentiable. Fully
differentiable models are usually easier to optimize than models with non-
differentiable components, differentiable graph pooling methods are proposed to
tackle this issue. DiffPool [23] is a representative differentiable pooling method
where a large graph is downsampled to a small graph with pre-fixed size in a
fully differentiable approach. Since the time and space complexity of DiffPool is
O(|V|2) rather than O(|E|) of sparse methods such as SAGPool, DiffPool can be
very slow or even not applicable on large graphs.

Bottom-Up and Top-Down Visual Attention. Visual attention mecha-
nisms have been widely used in image captioning and visual question answering
(VQA) [1,16], and similar attention mechanism has been proved to exist in
human visual system [3].

The combination of bottom-up and top-down attention was suggested by [1]
in VQA task, where the bottom-up attention uses an object detection model
to focus on concerned regions, then the top-down attention utilizes language
feature to take attention on the image regions most related to the question.
Although our method shares a similar name with the bottom-up and top-down
attention in VQA, they are completely different in motivation, application, and
implementation.

3 Proposed Method

Fig. 1. A bottom-up and top-down graph pooling layer. We use different background
color to denote effective receptive field, the darker the background the larger the effec-
tive receptive field. Nodes with same color denote the same nodes at different level. This
figure depicted a possible pooling procedure on a simple graph. (Color figure online)

In order to learn a more fine-grained graph pooling criterion with larger effective
receptive field, we adopt a bottom-up and top-down fashion architecture, which
will be defined in detail in the following sections (Fig. 1).
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3.1 Notations

We define a graph as G = (V, A), where V is the vertex set that consisting of
nodes {v1, . . . , vn}, and A ∈ R

n×n is the adjacency matrix (typically symmetric
and sparse) where aij denotes the edge weight between nodes vi and vj . aij = 0
denotes the edge does not exist. The degree matrix is defined as a diagonal
matrix D = diag (d1, . . . , dn) where di =

∑
j aij . In graph convolution, the

adjacency matrix with self-connections Ã ∈ R
n×n is usually used instead of A,

where Ã = A + In, and D̃ ∈ R
n×n is the degree matrix of Ã. In a deep neural

network, X� denotes the input of the �th layer, X0 denote the original feature
matrix of the input graph.

Each node vi in a graph has a feature vector denoted by xi ∈ R
d. For a

graph with n nodes, the feature matrix is denoted by X ∈ R
n×d, where row i

correspond to xi. In graph classification task, each graph belongs to one out of
C classes, given a graph we want to predict it’s class.

3.2 Local Features and Pooling Criterion

We analyze a drawback of existing pooling methods in this section, which we
attribute to the contradiction of local features and global pooling criterion.

We define local features as the features that only contain information gathered
from the very nearby area. For example, in CNNs, the features are typically
calculated by a small kernel (e.g., 3×3). The kernel size determines the receptive
field of a convolutional layer, which is the largest area a feature can see, and that
feature is innocent to the outside of this receptive field.

The features produced by graph convolutions are also local: typical graph
convolutions only consider neighbor nodes, i.e., one-hop connection [13]. This is
the expected behavior of GCNs by design to inherit merits of CNNs: parameter
sharing at different local area, which can be regarded as a strong prior that local
patterns are applicable everywhere [8].

Typical pooling layers in CNNs, say max-pooling without loss of generality,
select one feature out of a small feature set (e.g., 1 out of 4 in a max-pooling
with size 2×2), then all selected features form a smaller feature map. These local
features are comparable since they have information about each other, and even
if the feature of most importance is dropped, the selected feature may still be
representative of this small area because of local similarity in most nature data
like image. The overall structure won’t get disturbed after pooling even if the
pooling is totally random, which makes poolings in CNNs robust and relatively
easier to train.

However, existing graph poolings utilize these local features in a very different
and counterintuitive way compared to common poolings in CNNs. They use local
features to calculate a score [7,14] to define the importance of each node, then
they simply select the nodes with the largest scores. The scores are also local
features as we defined before, since they only rely on local features produced
by GCNs. The scores of two far apart nodes can’t reflect any information of
their relationship or their relative importance in the whole graph, which harms
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the ability of poolings to retain global structure thus will harm performance in
downstream tasks.

The analysis of the drawback of existing methods also sheds light on the
idea to resolve it: we need to make local features non-local, i.e., have a larger
receptive field, in order to apply score-based pooling in a more fine-grained way.

3.3 Bottom-Up Pooling

Stacking GC layers can increase receptive field, however not efficient since a GC
layer can only increase receptive field by 2 hops. And it’s indeed hard to train a
deep GCN [15,20].

To gather a macroscopic view of the whole graph, we use a stack of base
pooling layers to do a coarse pooling. A base pooling layer can be any pooling
layer that can reduce node number by a fixed ratio r such as most score-based
pooling methods. We define a base pooling layer (BPL) as

X̃, Ã = BPLΘ(X,A, r) (1)

where X̃ and Ã is the feature matrix and adjacency matrix of the graph after
pooling, Θ is the parameter of this base pooling layer.

Without loss of generality, we use SAGPool [14] as our base pooling layer.
Given input X, A and r, the SAGPool calculates a score vector y = GC(X).
Based on this score, the k nodes with largest scores are selected and their indexes
are denoted as idx. The output features is calculated by X̃ = tanh(y[idx]) �
X[idx], the output adjacent matrix Ã = A[idx, idx], where the [] operator selects
elements based on row and column indexes. The GC is a graph convolution layer
with output feature size 1 so that the output of this layer can be used as the
score. When a retain-ratio r is given instead of k, we define k = |V| ∗ r.

A bottom-up pooling layer (BUPL) can be defined as a stack of base pooling
layers, for example, a bottom-up pooling layer with 2 base pooling layers can be
defined by

X̃�
1, Ã

�
1 = BPLΘbu1(X

�, A�, rbu) (2)

X̃�, Ã� = BPLΘbu2(X̃
�
1, Ã

�
1, rbu) (3)

The corresponding bottom-up pooling layer is denoted by

X̃�, Ã�, idxbu = BUPLΘbu1;Θbu2(X
�, A�, rbu) (4)

Where X̃�, Ã� is the output of a bottom-up pooling layer. Different from
SAGPool layer, we return an index idxbu in BUPL to memorize the map between
input nodes and output nodes.

The bottom-up pooling layer can produce a much smaller graph, since the
retain ratio is relatively small. This graph can be viewed as a rough summary
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of the original graph and the receptive field of each node is larger. Roughly,
the receptive field of remaining nodes can still cover most nodes, thus this is a
high-level graph.

Notice that DiffPool is not applicable as a bottom-up pooling layer since we
prefer a sparse pooling method.

3.4 Top-Down Unpooling and Fine-Grained Pooling Layer

Now we have a high-level pooling result produced by the bottom-up pooling
layer denoted by X̃�, Ã�.

In order to feed high-level information back to the low-level graph, we should
define a mapping from the downsampled small graph to the original large graph
with more nodes, which is unpooling. A nature idea is to apply attention to
the small graph and large graph. However, this attention operation will take
O(|Vsmall| × |Vlarge|) time complexity, which loses the merit of the sparse prop-
erty of GCN.

To keep efficiency and simplicity, we save the index of selected nodes at every
bottom-up pooling step so that we can recover the mapping of nodes easily. This
is similar to the gUnpool layer proposed by [7]. However, they use zero value in
the dropped nodes, which does not feed any information back to those nodes. To
fix this, we take the mean of all retained nodes as their corresponding high-level
features.

The top-down unpooling can be denoted as follows:

X̂�, Â� = TDUPL(X̃�, Ã�, idxbu) (5)

Where TDUPL is the top-down unpooling layer.
The retained nodes in unpooling result have information of their own recep-

tive field, and other averaged nodes have information of the whole graph. When
this graph is injected to low-level graph, each nodes will have both local and
global information (an averaged node will have a retained neighbour with large
probability, viceversa. Then one hop relation is considered in following graph
convolution).

Then the high-level features are summed with low-level features as input of
the fine-grained pooling layer. Which can be defined as

Z� = X� + X̂� (6)

X�+1, A�+1 = FGPLΘfg
(Z�, A�, r) (7)

Where FGPLΘfg
is the fine-grained pooling layer, which can be any score-

based pooling layer. The r is the retain ratio, which is larger than the retain
ratio rbu used in bottom-up pooling layers. Z� is the feature combined with
local information X� and higher level information X̂�, which gives FGPL the
power to learn a more fine-grained pooling.
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The proposed bottom-up and top-down pooling layer combines bottom-up
layer and top-down layer defined before and can be denoted by

X�+1, A�+1 = BUTDΘfg;Θbu1;Θbu2(X
�, A�, rbu, r) (8)

The procedure of a bottom-up and top-down pooling layer is summarized in
Algorithm 1.

Algorithm 1: A Bottom-Up and Top-Down Pooling Layer
Input : Adjacent matrix A�; Input feature matrix X�; Bottom-up pooling

layer parameters Θ�
bu and fine-grained pooling layer parameters Θ�

fg;
Bottom-up pooling ratio rbu and pooling ratio r

Output: A smaller graph with adjacent matrix A�+1; Output feature matrix
X�+1

1 X̃�, Ã�, idxbu = BUPLΘ�
bu

(X�, A�, rbu)

2 X̂�, Â� = TDUPL(X̃�, Ã�, idxbu)

3 X�+1, A�+1 = FGPLΘ�
fg

(X̂� + X�, Â�, r)

4 Experiments

We give a brief introduction of compared methods and experiment protocol in
the following sections.

4.1 Compared Methods

We give a brief introduction of compared methods in the following sections.

gPool is a score-based method used in the Graph U-Nets [7]. gPool suppose
that there is a direction defined by vector p� at the �th layer that the nodes vi

with feature xi align with p� best is the most relative nodes. So the score of node
vi is defined as xT

i p�/
∥
∥p�

∥
∥. The score (after a sigmoid function) is multiplied

to the input of next layer to make p� optimizable.

SAGPool is a score-based method proposed by [14]. The authors of SAGPool
argue that gPool does not consider topology relationship in graphs since all
nodes are projected to the same p�. SAGPool uses graph convolution blocks to
calculate score instead.

DiffPool is a fully differentiable graph pooling method introduced in [23]. Diff-
Pool uses GNN layers to learn a soft assignment of each node to a cluster, then
pool a cluster into a node.
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4.2 Experiment Protocol

As mentioned in [17], the data split is a crucial factor that affects evaluation a
lot. So we generate 20 different random splits (80%train, 10%validate, 10%test)
of every dataset at first, then evaluate each model on these 20 splits and take
the average accuracy as our measurement. All methods are implemented using
pytorch-geometric [6].

Model Architecture. We follow the model architecture proposed in [14] to
make a fair comparison, with the graph pooling layers replaced by compared
methods, Figure 2 depicts the model architecture.

Graph 
Convolution

Graph 
Pooling

Average 
Pooling

Graph 
Convolution

Graph 
Pooling

Graph 
Convolution

Graph 
Pooling

Average 
Pooling

Average 
Pooling

MLP

logits

Fig. 2. Model architecture

Datasets. We selected several graph classification benchmark datasets from
real biological and chemical applications. The D&D dataset [4] and PROTEINS
dataset [2,4] are protein classification datasets. The NCI1 dataset and NCI109
dataset [19] represent two balanced subsets of datasets of chemical compounds
classification. REDDIT-MULTI-5K [22] is a social network dataset with large
graphs.

The datasets are summarized in Table 1.
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Table 1. Summary of datasets

Dataset Num. Graphs Num. Classes Avg. Num. of Nodes Avg. Num. of Edges

DD 1178 2 284.32 715.66

PROTEINS 1113 2 39.06 72.82

NCI1 4110 2 29.87 32.30

NCI109 4127 2 29.68 32.13

REDDIT 4999 5 508.52 594.87

4.3 Summary of Results

Table 2. Average accuracy and standard deviation of 20 random runs. *: About 2%
largest of graphs in D&D dataset are dropped because of being too large for efficiency
when training and evaluating DiffPool. NA: We found DiffPool on REDDIT dataset
is very slow or cause out-of-memory, since we focus on efficient pooling method we
excluded this experiment.

Models D&D PROTEINS NCI1 NCI109 REDDIT

DiffPool 77.24* 74.55 70.87 72.73 NA

gPool 75.12 73.61 71.71 69.14 48.02

SAGPool 75.50 75.22 73.09 72.01 49.70

BUTDPool(ours) 77.43 75.44 73.00 72.28 52.14

From Table 2, we can see that, BUTDPool achieves clear performance gain over
the compared methods, especially on D&D and REDDIT dataset with large
graphs.

4.4 Complexity Analysis

BUTDPool is a stack of existing graph pooling methods, the overhead of time
complexity is determined by the number of base pooling layers. For a BUTDPool
layer with 2 bottom-up layers, the running time will be roughly 3 times of a single
base pooling layer (2 bottom up layer, 1 fine-grained layer). The space complexity
is similar. In a typical deep neural network, the number of pooling layers is small
compare to other convolutional layers, so this overhead is affordable.

On the other hand, the overhead of DiffPool is |V| times complexity of time
and space compared to sparse methods, which limits its usability on even medium
size graphs.

5 Conclusion

We analyzed the contradiction of local feature and global pooling in existing
graph pooling methods, then introduced a novel and easy-to-implement improve-
ment BUTDPool over existing graph pooling methods to mitigate this problem.
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The large graph is pooled by a bottom-up pooling layer to produce a high-
level overview, and then the high-level information is feedback to the low-level
graph by a top-down unpooling layer. Finally, a fine-grained pooling criterion is
learned. The proposed bottom-up and top-down architecture is generally appli-
cable when we need to select a sub-graph from a large graph and the quality of
the sub-graph matters. Experiments demonstrated the effectiveness of our app-
roach on several graph classification tasks. The proposed BUTDPool can be an
alternative building block in GNNs with the potential to make improvements in
many existing models.
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