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Abstract. Unsupervised outlier detection is commonly performed using
reconstruction-based methods such as Principal Component Analysis. A
recent problem in this field is the learning of low-dimensional nonlinear
manifolds under L0-norm constraints for error terms. Despite signifi-
cant efforts, no method that consistently treats such features exists. We
propose a novel unsupervised outlier detection method, L0-norm Con-
strained Autoencoders (L0-AE), based on an autoencoder-based detector
with L0-norm constraints for error terms. Unlike existing methods, the
proposed optimization procedure of L0-AE provably guarantees the con-
vergence of the objective function under a mild condition, while neither
the relaxation of the L0-norm constraint nor the linearity of the latent
manifold is enforced. Experimental results show that the proposed L0-AE
is more robust and accurate than other reconstruction-based methods,
as well as conventional methods such as Isolation Forest.

1 Introduction

Unsupervised outlier detection has attracted much attention because it does
not require time-consuming manual annotation. Reconstruction-based methods,
such as Robust Principal Component Analysis (RPCA), are popular approaches
for unsupervised outlier detection [5,12]. A recent trend is the use of non-
linear models, particularly neural network models [1,20,24]. For example, the
Robust Deep Autoencoder (RDA) [24] learns a low-dimensional nonlinear man-
ifold where normal samples are located using an autoencoder (AE) [10]. These
reconstruction-based methods assume that the feature vector of each sample
may include outlier elements; therefore, it is necessary to learn low-dimensional
nonlinear manifolds to avoid the impact of outliers.

For robustness to outliers, the l0-norm is often used for optimization; how-
ever, due to its combinatorial property, the optimization is difficult [4]. To avoid
such difficulty, relaxation methods, i.e., the use of the l1-norm or other convex
regularization terms, are used. This is, however, problematic because the learned
low-dimensional nonlinear manifold is affected by the values of outlier elements,
especially in corrupted data. We describe these methods in detail in Sect. 2.

In this paper, we propose L0-norm Constrained Autoencoders (L0-AE), a novel
reconstruction-based unsupervised outlier detection method that can learn low-
dimensional manifolds under an l0-norm constraint for the error term using AE.
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Table 1. Comparison of features of reconstruction-based methods
PCA RPCA AE RDA L0-AE

Decomposition X = L + E X = L + S X = L̄ + E X = LD + S X = L̄ + S + E

Minimization ||X − L||22 ||L||∗ +λ||S||1 ||X −
fAE(X; θ)||22

||LD −
fAE(LD ; θ)||2 +

λ||S||1

||X −fAE(X; θ)−S||22

Constraints rank(L) ≤ k ||X − L −
S||22 = 0

- X − LD − S = 0 ||S||0 ≤ k

Convexity Yes Yes No No No

Nonlinear Model? No No Yes Yes Yes

Considering

l0-norm

No Yes No No Yes

Convergence of

Alternating

Optim.

- - - Not proved Guaranteed if AE is

trained appropriately

Table 1 compares the features of different reconstruction-based methods. Com-
pared with the other reconstruction-based methods, L0-AE can provably guaran-
tee the convergence of optimization under the l0-norm constraint and treat non-
linear features. The key contributions of this work are as follows:

1. We propose a new alternating optimization algorithm that can decompose
data nonlinearly under an l0-norm constraint for the error term (Sect. 3.1).

2. We prove that our alternating optimization algorithm converges under a mild
condition, which demonstrates the stability of our algorithm (Sect. 3.2).

3. Through extensive experiments, we show that L0-AE achieves not only high
detection accuracy but also stable convergence properties (Sect. 5).

2 Preliminaries

In this section, we describe related reconstruction-based methods. Throughout
the paper, we denote a given data matrix by X ∈ R

N×D, where N and D denote
the number of samples and feature dimensions of X, respectively.

Robust PCA: RPCA [5], a robustified version of PCA [12], decomposes X into a
low-rank matrix L and a sparse error matrix S such that X = L + S by solving
the optimization problem

min
L,S

rank(L) + λ||S||0 s.t. ||X − L − S||22 = 0, (1)

where || · ||0 is the l0-norm that represents the number of non-zero elements, λ
is a parameter that controls the sparsity of S, and || · ||2 is the l2-norm. The
use of the l0-norm cancels out the outliers in X, making the estimation more
robust against outliers. However, this optimization (1) is NP-hard. To mitigate
this issue, a convex relaxation has been proposed as follows:

min
L,S

||L||∗ + λ||S||1 s.t. ||X − L − S||22 = 0, (2)

where ||·||∗ is the nuclear norm and ||·||1 is the l1-norm. In general, the outlierness
of each sample is obtained by adding S ◦ S along the feature dimension, where
◦ is the element-wise product.
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Robust Deep Autoencoder: RDA [24] is a method that relaxes the linearity
assumption of RPCA. RDA uses an AE instead of linear mapping. We denote
the model parameters of an AE as θ and an output of the AE with a certain
input and parameters θ as fAE( · ; θ). Concretely, RDA aims to decompose X as
X = LD + S, where S is a sparse error matrix, the non-zero elements of which
indicate reconstruction difficulty, and LD is easily reconstructable data for AE.
This is defined as the following l1-relaxed optimization problem:

min
θ,S

||LD − fAE(LD; θ)||2 + λ||S||1 s.t. X − LD − S = 0. (3)

An alternating optimization method for θ and S was proposed (see [24] for
details) for optimization. Note that RDA is equivalent to AE when λ = inf. In
real applications, outliers are often structured [24], i.e., outliers are concentrated
on a specific sample. For such cases, the use of grouped norm regularization
instead of the l1-norm in Eq. (3) has been proposed:

||S||2,1 =
D∑

j=1

||sj ||2 =
D∑

j=1

(
N∑

i=1

|sij |2)1/2. (4)

3 L0-norm Constrained Autoencoders

Although RDA can detect outliers even for nonlinear data, there are several con-
cerns with RDA. First, owing to the NP-hardness, RDA uses the l1-norm instead of
the l0-norm, which causes sensitivity to outliers. Second, the alternating optimiza-
tion method of RDA does not include a theoretical analysis of convergence. In prac-
tice, it has been experimentally confirmed that the progress of training the RDA
modelmaybeunstable.To address these issues,wepropose anunsupervised outlier
detection method that can decompose data nonlinearly using AE under an l0-norm
constraint for the sparse matrix S. We prove that our algorithm always converges
under a certain condition. For clarity, we first describe L0-AE for unstructured
outliers and then extend it for structured outliers.

3.1 Formulation and Alternating Optimization Algorithm

Considering that all elements may contain some errors in real datasets, we
decompose X into L̄ = fAE(X; θ), a sparse error matrix S, and a small error
matrix E as in Stable Principal Component Pursuit [25]:

X = fAE(X; θ) + S + E. (5)

To train an AE that captures the features of X successfully, ||E||22 = ||X −
fAE(X; θ) − S||22 must be as small as possible. For optimization, we minimize E
while adjusting the sparsity of S using the parameter k ≥ 0 as follows:

min
θ,S

||X − fAE(X; θ) − S||22 s.t. ||S||0 ≤ k. (6)
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By solving (6), we can obtain a low-dimensional manifold that captures the
nonlinear features of X and can completely avoid the influence of outliers.

In the following, we propose an alternating optimization algorithm for θ and S
for the l0-norm constrained optimization problem (6). We denote X −fAE(X; θ)
as Z(θ); then the objective function can be expressed as ||Z(θ) − S||22. In the
optimization phase of θ with S fixed, we employ a gradient-based method. With
θ fixed, the optimal S is obtained in a closed form; it is the matrix that zeroes
out the elements with the top-k largest absolute values in Z(θ), which can be
written as follows:

sij =
{

zij (|zij | ≥ c)
0 (otherwise), (7)

where c is the k-th largest value in {|zij | | 1 ≤ i ≤ N, 1 ≤ j ≤ D}.
We rewrite our proposed formulation (6) and alternating optimization

method to be algorithmically concise as follows:

min
A,θ

||A ◦ Z(θ)||22 s.t. ||A||0 ≥ ND − k, (8)

where A ∈ {0, 1}N×D is a binary-valued matrix. In the alternating optimization
of Eq. (8), θ is optimized by gradient-based optimization and A is optimized by

aij =
{

1 (|zij | < c)
0 (otherwise). (9)

The procedure of our proposed optimization algorithm is as follows:

Input: X ∈ R
N×D, k ∈ [0, N × D] and Epochmax ∈ N

Initialize A ∈ R
N×D as a zero matrix, epoch counter Epoch = 0, and an

autoencoder fAE( · ; θ) with randomly initialized parameters.

Repeat the following Epoch times:
1. Obtain reconstruction error matrix Z: Z = X − fAE(X; θ)
2. Optimize A with θ fixed:
Get threshold c = k-th largest absolute value in Z and update A using Eq. (9)
3. Update θ with A fixed:
Minimize ||A ◦ Z(θ)||22 using gradient-based optimization

Return the elementwise outlierness R ∈ R
N×D computed as follows:

R = (X −fAE(X; θ))◦(X −fAE(X; θ)). (10)

In step 3, the number of iterations in each gradient-based optimization pro-
cess affects the performance of L0-AE. In practice, L0-AE shows sufficient detec-
tion accuracy and convergence without iteration (see Sect. 5). In this case, the
total computational cost of L0-AE is the sum of that the cost of normal AE and
sorting to obtain the top-k error value.
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3.2 Convergence Property

In this section, we prove that our alternating optimization algorithm always con-
verges under the assumption that AE is trained appropriately by gradient-based
optimization. Here, we denote the objective function ||A◦Z(θ)||22 as K(A, θ) and
the variables A and θ at the t-th step of each alternating optimization phase as
At and θt, respectively. Under this assumption, the convergence of the proposed
alternating optimization method can be shown as follows:

Theorem 1. Suppose K(At, θt) is updated to K(At+1, θt) using Eq. (9), and
assume that K(At+1, θt) ≥ K(At+1, θt+1) with gradient-based optimization.
Then there exists a value a∞ ≥ 0 such that limt→∞ K(At, θt) = a∞.

Proof. By updating with Eq. (9), the obtained A∗ minimizes Eq. (8) for any Z(θ).
Hence, for any θt, we have K(At, θt) ≥ K(At+1, θt). Furthermore, K(At+1, θt) ≥
K(At+1, θt+1) holds by assumption, which indicates K(At, θt) ≥ K(At+1, θt+1).
This implies that a sequence {K(At, θt)} is a monotonically non-increasing
and non-negative sequence. Therefore, by applying the monotone convergence
Theorem [2], there exists a value a∞ = inft{K(At, θt)} ≥ 0.

Remark. The assumption K(At+1, θt) ≥ K(At+1, θt+1) holds when the learning
rate of the AE model is sufficiently small. Although this assumption might not
hold for a fixed learning rate in practice, L0-AE shows better convergence than
RDA (see Sect. 5.5).

3.3 Algorithm for Structured Outliers

In what follows, we describe an alternating optimization algorithm for data with
structured outliers. In order to detect structured outliers, Eq. (8) and (9) are,
respectively, reformulated as follows:

min
θ,a

||(aN1T
D) ◦ (X − fAE(X; θ))||22 s.t. ||a||0 ≥ N − k, (11)

ai =
{

1 (
∑D

j=1(zij)2 < c′)
0 (otherwise),

(12)

where the subscripts N and D represent the number of elements in the column
vector and c′ is the k-th largest value of the vector

∑D
j=1(z·j)2. The sample-wise

outlierness r′ is calculated using the R defined by Eq. (10) as follows:

r′
i =

∑D
j=1 Ri,j . (13)

L0-AE uses this version of the formulation and the alternating optimization
method for outlier detection.

As with the update of A using Eq. (9), the update of a using Eq. (12)
always minimizes the objective function (11) with θ fixed. The convergence of
this algorithm using Eq. (12) is easily proved in a similar manner with Theorem 1.



L0-norm Constrained Autoencoders for Unsupervised Outlier Detection 679

Remark. The concept of our optimization methodology for structured outliers
can be regarded as Least Trimmed Squares (LTS) [17], in which the sum of all
squared residuals except the largest k squared residuals is minimized.

4 Related Work

Recently, highly accurate neural network-based anomaly detection methods, such
as AE, Variational Autoencoder (VAE), or Generative Adversarial Network-
based methods [1,18,26], have been proposed; however, they assume a different
problem setting from ours, i.e., training data does not include anomalous data,
and finding anomalies in test datasets is the target task. Therefore, these meth-
ods do not have a mechanism that excludes outliers during training. In [8], the
equivalence of the global optimum of the VAE and RPCA is shown under the
condition that a decoder has some kind of affinity; however, connections between
VAE and RPCA are not shown for general nonlinear activation functions.

−1.0 −0.5 0.0 0.5 1.0
x1

−1.0

−0.5

0.0

0.5

1.0

x 2

Fig. 1. Artificial dataset:
black/red points are inliers/
outliers. (Color figure online)

Table 2. Summary of the datasets

Dataset Dims. Samples Outlier rate [%]

cardio 21 1, 831 9.61

cover 10 286, 048 0.96

kdd99 rev 118 121, 597 20.00

mnist 100 7, 603 9.21

musk 166 3, 062 3.17

satellite 36 6, 435 31.64

satimage-2 36 5, 803 1.22

seismic 28 2, 584 6.58

shuttle 9 49, 097 7.15

smtp 3 95, 156 0.03

thyroid 6 3, 772 2.47

vowels 12 1, 456 3.43

The Discriminative Reconstruction Autoencoder (DRAE) [20] has been pro-
posed for unsupervised outlier removal. DRAE labels samples for which recon-
struction errors exceed a threshold as “outliers” and omits such samples for
learning. To appropriately determine the threshold, the loss function of DRAE
has an additional term to separate the reconstruction errors of inliers and out-
liers. Because of this additional term, DRAE does not solve an l0-norm con-
strained optimization problem, i.e., the learned manifold is affected by outlier
values, which degrades the detection performance (see Sect. 5).

RandNet [7] has been proposed as a method to increase the robustness
through an ensemble scheme. Although this ensemble may improve the robust-
ness, it does not completely avoid the adverse effects of outliers, because each
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AE uses an non-regularized objective function. Deep Structured Energy-Based
Models [21], a robust AE-based method that combines energy-based models
and non-regularized AE, has the same drawback. In [11], a method that simply
combines AE and LTS was proposed; however, no theoretical analysis for the
combined effects of AE and LTS was presented.

5 Experimental Results

5.1 Experimental Settings

Datasets. We employed both artificial and real datasets. Figure 1 illustrates
the artificial data. We sampled 9,000 inlier samples (x, 2x2 − 1) ∈ R

2 where x ∈
[−1, 1] was sampled uniformly. Further, we sampled 1,000 outliers uniformly from
[−1, 1] × [−1, 1]. As real datasets, we used 11 datasets from Outlier Detection
DataSets (ODDS) [16], which are commonly used as benchmarks for outlier
detection methods. In addition, we also used the “kdd99 rev” dataset introduced
in [26]. Table 2 summarizes the 12 datasets. Before the experiments, we normalize
the values of the datasets by dimension into the range of −1 to 1.

Evaluation Method. Following the evaluation methods in [7,14,15], we com-
pared AUCs of the outlier detection accuracy. Evaluation was performed as fol-
lows: (1) all samples (whether inlier or outlier) were used for the training; (2)
the outlierness of each sample was calculated after training; and (3) AUCs were
calculated by using outlierness and inlier/outlier labels. Note that we need not
specify the detection threshold in this evaluation scheme.

5.2 Methods and Configurations

Robust PCA (RPCA). We utilize the RPCA implemented in [9] as a baseline
linear method. We set tol = 1E-05 that is used to determine the convergence.

Normal Autoencoders (N-AE). We implemented N-AE with a loss function
||X − fAE(X; θ)||22 as a baseline non-regularized detection method. For every
AE-based method below, we used common network settings. We used three
fully connected hidden layers (with a total of five layers), in which the number
of neurons was ceil([D,D

1
2 ,D

1
4 ,D

1
2 ,D]) from the input to the output unless

otherwise noted. These were connected as (input layer) - linear - relu - (hidden
layer1) - linear - (hidden layer2) - linear - relu - (hidden layer3) - linear - (output
layer). We set the mini-batch size to N/50 and applied Adam [13] (α = 0.001)
for optimization with Epochmax = 400. To prevent undue advantages to our
method (L0-AE) and the other AE-based methods, we searched this architecture
by maximizing the average AUC of N-AE.
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Robust Deep Autoencoders (RDA). We implemented the RDA [23] with
the grouped norm version of Eq. (3). We use Eq. (13) to calculate the sample-
wise outlierness of RDA. To make the number of loops equal to those of the
other AE-based methods, the parameter inner iteration, which is the number of
iterations required to optimize AE during one execution of l1-norm optimization,
is set to 1. We set λ as 0.00005.

RDA-Stbl. This baseline is used to confirm the effect of the l0-norm constraint
of L0-AE. RDA-Stbl minimizes the objective function ||LD − fAE(X; θ)||2 +
λ||ST ||2,1 such that X − LD − S = 0, with respect to S and θ. This model can
be regarded as a relaxed version of L0-AE. We set λ as 0.0005.

L0-norm Constrained Autoencoders (L0-AE). We use L0-AE for struc-
tured outliers (described in Sect. 3.3). The sample-wise outlierness of L0-AE
is calculated using Eq. (13). We do not iterate for updating the parame-
ters of an AE at each gradient-based optimization step. Instead of k, we use
Cp = k/N (0 ≤ Cp ≤ 1), which is normalized by the number of samples, and
set Cp as 0.3. This type of normalized parameter is often used in other methods
such as the One-Class Support Vector Machine (OC-SVM) [19] and Isolation
Forest (IForest) [15]. Note that L0-AE is equivalent to N-AE when Cp = 0.

Variational Autoencoder (VAE). We adopted VAE for our problem setting.
The outlierness is computed using reconstruction probability [1]. Note that the
number of output dimensions of hidden layer1 and layer3 is twice that of the
other AE-based methods.

Discriminative Reconstruction Autoencoder (DRAE). We set λ as 0.1,
which determines the weight of the term in the objective function for separating
the inlier and outlier reconstruction errors (see Sect. 4).

We used Chainer (ver. 1.21.0) [6] for implementation of the AE-based meth-
ods above. In addition, we apply the following three conventional methods for a
comparison of detection accuracy against real benchmark datasets.

One-Class Support Vector Machine. We use the OC-SVM implemented in
scikit-learn and set kernel = ‘rbf’.

Local Outlier Factor (LOF) [3].We use the LOF implemented in scikit-learn
and set “k” for the k-nearest neighbors to 100.

Isolation Forest. We used the IForest from a Python library pyod [22] with
“n-estimators” (the number of trees) set to 100.
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We tuned the above-mentioned parameters that control the robustness
against noise to achieve high AUC on average over all real datasets; for the
other parameters, we used the recommended (default) values unless otherwise
noted.

5.3 Robustness for Corrupted Data

We evaluate the robustness against outliers of L0-AE and the baseline
reconstruction-based methods using the artificial data. We compare the average
AUC, as well as the average outlierness of inlier samples Oi

avg, average outlierness
of outlier samples Oo

avg, and the ratio Oo
avg/Oi

avg (a higher value implies that
less outliers are close to a low-dimensional manifold). In this experiment, because
D = 2, we could not set the number of neurons and parameters as mentioned
in Sect. 5.2; instead, for N-AE to achieve a high AUC, we used [2, 100, 1, 100, 2],
which are empirically obtained. For RDA and RDA-Stbl, we used λ = 0.00001;
for DRAE, λ = 0.1; and for L0-AE, Cp = 0.2. These are chosen based on the
AUC values.

Table 3. Average measurements from L0-AE and other reconstruction-based methods

Methods RPCA NAE RDA RDA-Stbl VAE DRAE L0-AE

AUC[%] 39.9 93.9 97.8 96.5 79.4 97.4 99.8

Oi
avg 1.30E−04 3.90E−03 7.12E−03 7.68E−03 – 6.57E−04 1.27E−05

Oo
avg 9.80E−05 1.60E−01 3.16E−01 1.70E−01 – 1.63E−01 4.56E−01

Oo
avg/O

i
avg 0.75 42.09 44.41 22.14 – 247.60 35965.54
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Fig. 2. Distributions of outlierness for each method in the first run: sample ID of inliers
and outliers are 1–9,000 and 9,001–10,000, respectively.

Table 3 reports the average of these measurements over 20 trials with different
initial network weights, and Fig. 2 shows the distributions of outlierness of each
method except RPCA in the first run. As VAE uses the probability as outlierness,
only the AUC is included in Table 3. These results show that L0-AE outperforms
the other methods in terms of AUC and the distribution of outlierness between
inliers and outliers (i.e., sparsity of the error matrix).

RPCA performs significantly poorer than the other methods because of its
linearity. Among the AE-based methods, L0-AE shows the best performance.
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In L0-AE, we can see that the learned manifold is almost entirely composed
of inliers. Therefore, it can be confirmed that the l0-norm constraint of L0-AE
functions as intended, and L0-AE can learn by almost completely eliminating
the influence of the corrupted samples while capturing nonlinear features. In
contrast, the performances of the other AE-based methods are inferior to that
of L0-AE because the other methods cannot completely exclude the influence of
outliers. VAE is less accurate than the other AE-based methods; it is considered
that VAE is unable to demonstrate robustness owing to the non-affinity of the
decoder. For DRAE, the reconstruction errors of inliers and outliers are relatively
well separated, but DRAE is more strongly affected by outliers than L0-AE
because the DRAE objective function depends on how large outliers are, while
the L0-AE objective function does not.

5.4 Evaluation of Accuracy and Parameter Sensitivity

We compare the detection accuracy for the real datasets. The AUC values are
averaged over 50 trials with different random seeds. Table 4 presents the average
AUCs for each dataset; Avg. AUC, Avg. rank, and Avg. time refer to the average
AUC, the average rank over the datasets, and the average run-time, respectively.

L0-AE demonstrates the highest average AUC and average rank. Among the
reconstruction-based methods, L0-AE showed the highest AUCs for 8 out of
12 datasets. Especially on kdd99 rev, the AUC of L0-AE is considerably higher
than those of the other AE-based methods. Because kdd99 rev has a high rate of
outliers and they are distributed close to each other, the methods with l1-norm
regularization and no regularization cannot avoid reconstructing the outliers,
whereas L0-AE can almost completely avoid reconstruction because of its l0-
norm constraint. Furthermore, we observed that the AUCs of RDA and RDA-
Stbl are nearly equal. This shows the importance of the l0-norm constraint.
L0-AE outperforms DRAE on average; it is considered that L0-AE selectively
reconstructs only the inliers, while DRAE reconstructs inliers and reduces the
variance of each label, allowing outliers to affect manifolds. In addition, the com-
putational cost of DRAE is higher than that of L0-AE, owing to the calculation
of the threshold. For VAE, the training was unstable for some datasets. One
possible reason is that VAE involves random sampling in the reparametrization
trick which increases the randomness of the results under these experimental set-
tings. In contrast, among the AE-based methods, L0-AE showed stable results.
RPCA results are relatively good in some datasets, suggesting that these datasets
have linear features and l0-norm regularization works; L0-AE shows good perfor-
mance by capturing nonlinear features even for the other datasets. The reason
why RPCA outperforms some AE-based methods on average is that RPCA can
automatically detect the rank of the inlier, while the AE-based methods have a
fixed latent dimension (there is no known method for obtaining an appropriate
latent dimension in an unsupervised setting).

Next, we evaluate the parameter sensitivity of L0-AE using real datasets.
Fig. 3 shows the AUCs with different Cp values for L0-AE (averaged over 50
trials). Overall, the maximum AUC values occur at Cp values moderately greater
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than the true outlier rates. If Cp is greater than the true outlier rate, outliers are
safely detected as outliers; in contrast, there are inliers that are not trained to
be reconstructed at an epoch. However, such inliers are also trained to be well
reconstructed because inliers are likely to be distributed close to each other. If Cp

is less than the true outlier rate, the detection accuracy is basically better than
in the case of N-AE (Cp = 0) because some outliers are not reconstructed. For
kdd99 rev, owing to the distribution of outliers as mentioned above, the outliers
are unexpectedly detected as inliers when Cp is small; for large Cp values, such
outliers are safely detected as outliers. Therefore, the change in AUC against Cp

is large. The development of an automatic optimal Cp search method under the
l0-norm constraint without the ground truth labels is an important future work.
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Fig. 3. Parameter sensitivity of L0-AE for real datasets; each error bar represents
a 95% confidence interval, gray vertical lines indicate the true outlier rates of each
dataset, and gray horizontal lines indicate the AUCs of normal AE (Cp = 0) for each
dataset.

5.5 Evaluation of Convergence

We compare the convergence of L0-AE with that of RDA. Here, we do not
use mini-batch training to remove the effect of randomness. Table 5 presents
the sum of the number of epochs in which the value of the objective function
has increased over the previous epoch during 20 trials (96,000 epochs in total).
The results of N-AE are also included for reference. In addition, Fig. 4 shows
two transition examples of the values of the objective functions of RDA and
L0-AE. Among them, Fig. 4(d) shows the result of the only trial in which the
objective function increased in L0-AE; the epochs in which the objective function
increased were 294 to 302 when Cp = 0.3, with an average increase of 0.23, which
is considerably less than the value of the objective function. In Table 5 and Fig. 4,
we observe that L0-AE shows good convergence regardless of the parameter Cp,
unlike RDA. This empirically demonstrates the validity of Theorem 1, which
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states that our alternating optimization algorithm converges when the gradient-
based optimization behaves ideally. For RDA, when λ is small, the value of the
objective function is unstable, but when λ is large, the characteristic of RDA
approaches N-AE; therefore, the stability improves. We observe that, with N-
AE, the values of objective function do not increase, which implies that our
gradient-based optimization basically satisfies the assumption in Theorem 1.

Table 5. Number of epochs in which the objective function value has increased over
the previous epoch (summed over all datasets)

N-AE L0-AE Cp = RDA λ =

0.1 0.2 0.3 0.4 0.5 0.000025 0.0001 0.0005 0.0025 0.01

0 0 0 9 0 0 3152 2031 1323 777 15
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Fig. 4. Examples of the transition of the values of the objective functions from RDA
and L0-AE

6 Conclusion

In this paper, we proposed L0-norm Constrained Autoencoders (L0-AE) for
unsupervised outlier detection. L0-AE decomposes data nonlinearly into a low-
rank matrix and a sparse error matrix under the l0-norm constraint. We proposed
an efficient alternating optimization algorithm for training L0-AE and proved
that this algorithm converges under a mild condition. We conducted extensive
experiments with real and artificial data and confirmed that L0-AE is highly
robust to outliers. We also confirmed that this high robustness leads to higher
outlier detection accuracy than those of existing outlier detection methods.
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