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Abstract. Granger causality for time series states that a cause improves
the predictability of its effect. That is, given two time series x and y, we
are interested in detecting the causal relations among them considering
the previous observations of both time series. Although, most of the algo-
rithms are designed for causal inference among homogeneous processes
where only time series from a specific distribution (mostly Gaussian) are
given, many applications generate a mixture of various time series from
different distributions. We utilize Generalized Linear Models (GLM) to
propose a general information-theoretic framework for causal inference
on heterogeneous data sets. We regard the challenge of causality detec-
tion as a data compression problem employing the Minimum Description
Length (MDL) principle. By balancing the goodness-of-fit and the model
complexity we automatically find the causal relations. Extensive exper-
iments on synthetic and real-world data sets confirm the advantages of
our algorithm ITGH (for Information-Theoretic Granger causal infer-
ence on Heterogeneous data) compared to other algorithms.

1 Introduction

Discovery of causal networks from observational data, where no certain informa-
tion about their distribution is provided, is a fundamental problem with many
applications in science. Among several notions of causality, Granger causality [7]
is a popular method for causal inference in time series due to its computational
simplicity. It states that a cause improves the predictability of its effect in the
future. That is, given two time series x and y, considering the previous observa-
tions of y together with x improves the predictability of x if y causes x. There are
various algorithms in this area depending on how we measure the predictability.
Usually, any improvement in the predictability is measured in terms of variance
of the prediction errors (known as Granger test, shortly GT).

In this paper we establish our method based on an information-theoretic mea-
surement of the predictability. That is, we regard the challenge of causal infer-
ence as a data compression problem. In other words, employing the Minimum
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Description Length (MDL) principle, y causes x if considering the past of y
together with x decreases the number of bits required to encode x. Unlike other
information-theoretic approaches (e.g. entropy-based algorithms [16]), we incor-
porate complexity of the models in the MDL-principle. Thus, it leads to a natural
trade-off among model complexity and goodness-of-fit while avoiding over–fitting.
Although Granger causality is well-studied, most of the algorithms are designed
for homogeneous data sets where time series from a specific distribution are pro-
vided. Recently, Budhathoki et al. proposed a MDL-based algorithm designed for
causal inference on binary time series [6]. Additive Noise Models (ANMs) have
been proposed for either continuous [13] or discrete [12] time series. Graphical
Granger approaches, which are popular due to their efficiency, mostly consider
additive causal relations with a certain Gaussian assumption, e.g. TCML [1] or
[2]. Despite the efficiency of homogeneous algorithms, many applications generate
heterogeneous data, i.e. a mixture of various time series from different distribu-
tions. Moreover, transforming a time series to another time series with a specific
distribution leads to inaccuracy. Therefore, applying an algorithm designed for
homogeneous data sets on heterogeneous data does not guarantee a high perfor-
mance.

Thus, integrating processes of various distributions without any transforma-
tion or certain assumptions sounds crucial. In this paper, we utilize Generalized
Linear Models (GLMs) to extend the notion of Granger causality and introduce
an integrative information-theoretic framework for causal inference on heteroge-
neous data regardless of time series distributions. Moreover, unlike many other
algorithms, we aim at detecting causal networks. To the best of our knowledge,
almost all of the existing algorithms are designed based on a pairwise testing app-
roach which is inefficient in causal network discovery for large causal networks.
To avoid this issue, we propose our MDL-based greedy algorithm (ITGH) to
detect heterogeneous Granger causal relations in a GLM framework. Our app-
roach consists of the following contributions:

Effectiveness: We introduce a MDL-based indicator for detecting Granger
causal relations when ensuring the effectiveness by balancing goodness-of-fit and
model complexity;

Heterogeneity: Applying the GLM methodology, we propose our heteroge-
neous MDL-based algorithm to discover the causal interactions among a wide
variety of time series from the exponential family;

Scalability: Due to the proposed greedy approach, we might not find the overall
optimal solution, but it makes ITGH scalable and convenient to be used in
practice. Moreover, our extensive experiments confirm its efficiency;

Comprehensiveness: Our approach is comprehensive in the sense that we
avoid any assumption about the distribution of data by applying an information-
theoretic approach.
In the following, first, we present the related work in Sect. 2. In Sect. 3, we
elaborate the theoretical aspects of ITGH providing the required background.
In Sect. 4, we introduce our greedy algorithm ITGH. Extensive experiments on
synthetic and real-world data sets are demonstrated in Sect. 5.
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2 Related Work

Granger causality states that a cause (y) efficiently improves the predictability
of its effect (x). There are various approaches to infer the causality depending on
how to measure the predictability. Typically, any improvement in the predictabil-
ity is measured in terms of variance of the error by a hypothesis testing approach
[10,14]. Moreover, graphical Granger methods are designed based on a penalized
estimation of vector autoregressive (VAR) models [1,18]. The intention in this
approach is that, if y causes x it has non-zero coefficients in the VAR model
corresponding to x. First, Arnold et al. [1] proposed a Lasso penalized estima-
tion for VAR models (TCML). As an extension, Bahadori and Liu [3] proposed
a semi-parametric algorithm for non-Gaussian time series. Recently, authors in
[5] employed adaptive Lasso to generalize this approach to the heterogeneous
cases (HGGM). As another category, probabilistic approaches interpret the pre-
dictability as the improvement in the likelihood. Among them, Kim and Brown
[8] introduced a probabilistic framework (SFGC) for Granger causal inference on
mixed data sets by a pairwise testing of the maximum likelihood ratio. The app-
roach is FDR-based where the statistical power of this methods rapidly decreases
with increasing the number of hypotheses. As another approach, information-
theoretic methods detect the causal direction by introducing a causal indicator.
Among them, transfer entropy, shortly TEN, is designed based on Shannon’s
entropy [16] to infer linear and non-linear causal relations. In this approach, it
is more likely that the causal direction with the lower entropy corresponds to
the true causal relation. However, due to pairwise testing and its dependency
on the lag variable, the computational complexity of TEN is exponential in the
lag parameter. On the other hand, compression-based algorithms apply the Kol-
mogorov complexity and define a causal indicator based on the MDL-principle.
Unlike the entropy-based approach, we incorporate the complexity of the models
in the MDL-principle leading to more efficiency. Recently, Budhathoki et al. [6]
proposed a MDL-based algorithm (CUTE) to infer the Granger causality among
event sequences in a pairwise testing manner. This algorithm is designed only for
binary time series. To the best of our knowledge, ITGH is the only algorithm in
this approach which deals with discrete and continuous time series and supports
the heterogeneity of data sets.

3 Theory

How to detect the Granger causal direction among any two time series? How
to extend this concept to a general heterogeneous case? Could an information-
theoretic approach lead to causal inference? These are fundamental questions we
address in this section while providing the required background, simultaneously.

3.1 Granger Causality

Granger causality, introduced in the area of economics [7], is a well-known notion
for causal inference among time series. Granger causality captures the tempo-
ral causal relations among time series although it is not meant to be always
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equivalent to the true causality since the question of “true causality” is deeply
philosophical. Let x = {xt|t = 1, . . . , n} and y = {yt|t = 1, . . . , n} denote two
stationary time series x and y up to time n, respectively. Moreover, let I(t) be all
the information accumulated since time t and I¬y(t) denote all the information
apart from the specified time series y up to time t.

Definition 1. Granger Causality: Given two time series x and y, y Granger-
causes x if including previous values of y along with x improves the predictability
of x, i.e. P(xt|I¬y(t − 1)) < P(xt|I(t − 1)) where P denotes the predictability.

More precisely, let Model 1 denote the autoregressive (AR) model of order d (the
lag) corresponding to time series x and Model 2 denote the vector autoregressive
(VAR) model w.r.t. x including the lagged observations of x and y.

xt = γt−d · xt−d + ... + γt−1 · xt−1 + εt (Model 1)

xt = αt−d · xt−d + ... + αt−1 · xt−1 + βt−d · yt−d + ... + βt−1 · yt−1 + εt

(Model 2)

Thus, y causes x if the second model improves the predictability of x.
Here, the processes are assumed to be Gaussian in Model 1 and 2 and hence

a linear model is considered overall. Moreover, in a linear model the error term
(εt) is an additive Gaussian white noise with mean 0 and variance 1. However,
these assumptions are not necessarily true in most of the applications. Thus, it
is crucial to generalize the linear models to the non-linear cases in the sense that
we include time series from various distributions and avoid any information loss
resulted by a simple conversion.

3.2 General Causal Framework

We extend the Granger causality to a general GLM framework where a wide
variety of distributions are included and no transformation is required. GLM,
introduced by Nelder and Baker in [11], is a natural extension of the linear
regression to the case where time series can have any distribution from the
exponential family. Therefore, the response variable is not a simple linear com-
bination of covariates but its mean value is related to the covariates by a link
function. Corresponding to every distribution, there is an appropriate canoni-
cal link function [11]. Thus, we generalize the models introduced in Sect. 3.1 as
follows (Model 1 → Model 3 and Model 2 → Model 4):

E(xt|x) = g(γt−d · xt−d + ... + γt−1 · xt−1) + εt (Model 3)

E(xt|x, y) = g(αt−d · xt−d + ... + αt−1 · xt−1 + βt−d · yt−d + ... + βt−1 · yt−1) + εt

(Model 4)

where g is the appropriate link function w.r.t. the distribution of time series x.
GLM relaxes the Gaussianity assumptions about the involved time series and
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the error term. Therefore, εt does not necessarily follow a standard Gaussian
distribution and it can have any distribution from the exponential family leading
to more accurate models. In the following we denote Model 3 and Model 4 as Mx

and Mxy, respectively. Thus, y causes x if Mxy results in an improvement in the
predictability of x compared to Mx. Next, we propose an information-theoretic
approach to measure the improvement in the predictability.

3.3 Information-Theoretic Measuring of Causal Dependencies

How to measure the predictability? In this paper, we regard measuring the pre-
dictability to a compression problem. That is, we employ the description length
[4] of time series in the sense that the more predictable a time series is the less
number of bits is required to compress and describe it.

MDL-Principle. Essentially, MDL [4] is a well-known model selection app-
roach to evaluate various models and find the most accurate one considering the
minimum description length criteria. MDL-principle regards the model selection
challenge to a data compression problem in the sense that more accurate models
lead to less compression cost. Let M denote a set of various candidate models
representing your data. Following the two-part MDL [4], the best fitting model
M ∈ M is the one which minimizes DL(D,M) = DL(D|M) + DL(M) where
DL(D|M) concerns the description length of the data set D encoded by means of
the model M and DL(M) represents the model complexity, i.e. cost of encoding
the model itself.

We consider DL(D,M) as a model selection indicator. That is, employing
a coding scheme, the number of bits required to encode the data indicates the
accuracy of the model used in the coding process. According to the Shannon
coding theorem [17], the ideal code length is related to the likelihood and is
bounded by the entropy. More precisely, for an outcome a the number of bits
required for coding is defined by log2

1
PDF (a) , where PDF (.) shows the prob-

ability density function (a relative likelihood of a) with the assumption that
limPDF (a)→0+ PDF (a) log2(PDF (a)) = 0. This coding scheme is also known as
log loss. As a consequence, we assign shorter bit strings to the outcomes with
higher probability and longer bit strings to outcomes with lower probability.
Thus, the better the model fits the data, the more likely the observations are
and hence the less the compression cost is.

Causal Inference by MDL. Back to Sect. 3.2, let P (xt|xt−d, ..., xt−1) denote
the predictive model w.r.t. Model 3 showing the probability of an outcome xt, t =
1, ..., n w.r.t. the lagged observations of x up to time t − 1. We assume that P
belongs to a class of prediction strategies, i.e. P ∈ P. Thus, following MDL-
principle, the coding cost of time series x assuming Model 3 is defined as:

DL(x|Mx) =
n∑

t=d

− log P (xt|xt−d, ..., xt−1) (5)
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Moreover, let P (xt|xt−d, ..., xt−1, yt−d, ..., yt−1) denote the predictive model
w.r.t. Model 4 assuming the past observations of x and y. Analogously, the
coding cost of time series x assuming Model 4 is defined as:

DL(x|Mxy) =
n∑

t=d

− log P (xt|xt−d, ..., xt−1, yt−d, ..., yt−1) (6)

Referring to the generalized definition of Granger causality (Sect. 3.2), time series
y causes x when using Mxy instead of Mx improves the predictability of x. That
is, if y causes x, including y leads to higher probability for the observations
in x, i.e. P (xt|xt−d, ..., xt−1) < P (xt|xt−d, ..., xt−1, yt−d, ..., yt−1). Since higher
probabilities (more accurate models) result the smaller number of required bits
for encoding the data (Sect. 3.3), therefore DL(x|Mxy) < DL(x|Mx).

The next part of MDL incorporates the model complexity. Thus, we say, Mxy

fits the characteristics of the data more appropriately only if it is beneficial in
terms of the model cost too, i.e. DL(x|Mxy)+DL(Mxy) < DL(x|Mx)+DL(Mx).
In the next section we introduce the model complexity in more detail.

3.4 Heterogeneous MDL-Based Granger Causal Framework

Given p time series x1, ..., xp, the generalized VAR model of order d w.r.t. xi is
xi

t = gi(X t · βi) where X t denotes a concatenated vector of lagged observations
Xt−d, ...,Xt−1 corresponding to all p time series and d is the lag. βi is the
regression coefficient vector consisting of p × d coefficients. Now we extend the
MDL-based definition of Granger causality to a general form.

Definition 2. Multivariate MDL-based Granger Causality: Let Ci denote
the set of all causal time series corresponding to xi together with xi itself where
|Ci| ≤ p for i = 1, ..., n. Then, MCi

is a generalized VAR model w.r.t. xi including
the lagged observations of time series in Ci. Moreover, Let MCi∪xj

represent the
generalized VAR model w.r.t. xi including all causal time series together with
xj. Then, xj Granger-causes xi if DL(xi,MCi∪xj

) < DL(xi,MCi
).

In the following we clarify how to encode a time series and compute the corre-
sponding description length (DL(.)).

Predictive Coding Scheme: One of the well-known approaches to encode
time series is the predictive coding scheme where the prediction error w.r.t. a
time series together with the parameters of the corresponding predictive model
are encoded and transmitted. This scheme comprise three major components,
i.e. a prediction model, the error term and an encoder. As a prediction model for
a time series xi, i = 1, ..., p we consider the generalized VAR model as introduced
in Definition 2. Let x̂i

t be the predicted value of xi at time t. Then, the prediction
error ei

t is the difference between the observed value xi
t and the estimated value

x̂i
t, i.e. ei

t = xi
t − x̂i

t. Finally the prediction error needs to be encoded by a an
encoder and transmitted to the receiver along with parameters of the prediction
model.
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Fit the Distribution: Most of the time only observational data is provided in
practice where the true distributions for the time series are not known. In this
paper, we follow the MDL-principle discussed in Sect. 3.3 to find the most fitting
predictive model for the data. That is, we assume a set of candidate prediction
strategies from the exponential family. Considering every candidate, we estimate
the parameters for the generalized AR model (Mx) employing an estimator (e.g.
maximum likelihood). As discussed in Sect. 3.3, the more a model fits the data,
the smaller the description length is. More precisely, let P = {P1, ..., Pm} denote
the set of the candidate prediction strategies (probability distributions) from
the exponential family e.g. Gaussian, Poisson or Gamma. Thus, the optimal
predictive model P ∈ P w.r.t. x is defined as P = min∀Pi∈P DLi(x,Mx)

Objective Function: Considering the predictive coding scheme, the prediction
error needs to be encoded. In order to correctly decode the data, the model as
well is required to be coded and transferred. We first focus on the error coding
costs then on the model complexity and finally we introduce our integrative
objective function for heterogeneous time series.

Following the properties of a GLM framework, the prediction errors can have
any distribution from the exponential family [11]. Since the true distribution
for the error term is also unknown, we employ our proposed fitting procedure,
discussed in the previous section, to find the most accurate distribution w.r.t.
the error term. Thus, the coding cost of the error ei w.r.t. xi is defined as:

DL(xi|MCi
) = DL(ei) =

n∑

t=1

− log PDFe(eit|eit−1, ..., ei
t−d) (7)

where PDFe(.) is the most accurate model w.r.t. ei and n is the length of time
series xi. Moreover, assuming the prediction model MCi

w.r.t. xi, the parameters
in this model are the regression coefficients or βi (a vector of length p × d) plus
gi, the appropriate link function. Following a central result from the theory of
MDL [15], the parameter costs to model n observations of xi w.r.t. the predic-
tion model MCi

is approximated by DL(MCi
) = mi

2 log n where mi denote the
number of parameters in MCi

, i.e. mi = p× d+1. The model cost depends loga-
rithmically on the length of time series xi. The intention behind this formulation
is that for shorter time series the parameters do not need to be coded with very
high precision. However, we consider time series with the same length in this
paper. Altogether, for a data set D consisting of time series x1, ..., xp our MDL-
based objective function is defined as DL(D,M) =

∑p
i=1 DL(xi|MCi

)+DL(MCi
)

where M = {MCi
|i = 1, ..., p}.
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Algorithm 1. Granger Causal Network Detection by ITGH
1: ITGH (X = [x1, ..., xp])
2: adj = [0] // Output, a p × p adjacency matrix
3: fitDistribution(X);
4: for all xi in X do
5: Si:= Sorted time series according to their dependencies w.r.t. xi

6: Ci = {xi} // The set of all causal time series w.r.t. xi

7: DLI = 0 // The cost including the candidate time series
8: DLE = 0 // The cost excluding the candidate
9: while DLI ≤ DLE do

10: xj := The candidate, the first time series in Si

11: DLI = DL(xi, MCi∪xj )
12: DLE = DL(xi, MCi)
13: if DLI ≤ DLE then
14: adj(i, j) = 1 // xj causes xi

15: remove xj from Si

16: Ci = Ci ∪ xj

17: end if
18: end while
19: end for
20: return (adj)

4 ITGH Algorithm

To cope with the inefficiency resulted by a pairwise testing, we propose our
greedy-based ITGH algorithm consisting of two main building blocks: (1) fitting
a distribution to the time series and (2) detecting the Granger causal network in a
greedy way. Considering fitDistribution(.) in Algorithm 1, once we find the most
accurate fitted distribution w.r.t. every time series as explained already. Then,
we use this information as an assumption in our greedy algorithm. To be fair,
we also input the fitted distributions to other comparison methods. Moreover,
for every xi, we sort x1, ..., xp based on their dependencies in the corresponding
regression model. In fact (also inspired by [1]), the time series with the higher
dependency w.r.t. xi has the higher coefficients in the regression model. Thus,
we iteratively include the time series with the higher dependency w.r.t. xi in
the regression model as far as this procedure improves the compression cost
of xi. Essentially, for a candidate xj we compute the description length of xi

(see Definition 2) considering two models MCi
and MCi∪xj

. If including xj pays
off in terms of the compression cost, we keep including the next time series.
Otherwise, the procedure terminates when no further causes exist for xi. The
output of this algorithm is an adjacency matrix for the Granger causal network.
ITGH is deterministic in the sense that investigating the causal relations for p
time series in any random order leads to the same causal graph. The runtime
complexity of ITGH in the best case is O(p2 log(p)) + O(pc2n) and in the worst
case is O(p2 log(p)) + O(p2c2n) where c is d × |Ci ∪ xj |. However, mostly in
reality p � n which means the runtime complexity of ITGH is highly depending
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Fig. 1. Investigating the accuracy. P: Poisson, Ga: Gamma, G: Gaussian, B: Bernoulli

on n leading to a complexity of order O(c2n). For a detailed analysis of the
computational complexity please check the appendix.

5 Experiments

To assess the performance of ITGH we conduct several experiments on synthetic
and real-world data sets in terms of F-measure. We compare ITGH to SFGC
[8], TEN [16] and HGGM [5] which are designed to deal with heterogeneous
data sets. Moreover, we compare our algorithm to TCML [1], CUTE [6] and
the basic Granger test (GT) [7] to investigate the effect of assuming a specific
(mostly Gaussian) distribution for non-Gaussian processes or transforming time
series. ITGH is implemented in MATLAB and for the other comparison methods
we used their publicly available implementations and recommended parameter
settings. The source code and data sets are publicly available at: https://tinyurl.
com/yar5yuoq.

5.1 Synthetic Experiments

In any synthetic experiment, we report the average performance of 50 iterations
performed on different data sets with the given characteristics. The length of
generated time series is always 1,000 except it is explicitly mentioned. Unless
otherwise stated, we assume a random dependency level (strength of causal
relations) among time series. In all the synthetic experiments we input the lag
parameter as well as the true distributions to all the algorithms.

Accuracy: In this experiment we generated various data sets from different dis-
tributions. Two discrete (Poisson and Bernoulli) and two continuous (Gamma
and Gaussian) distributions were selected to cover some of possible combina-
tions of distributions. Every data set consists of four time series with three
causal relations where in mixed data sets the heterogeneity factor is 70%–30%
(e.g. 3 Poisson and 1 Gaussian). As it is observable in Fig. 1, regardless of the
homogeneity or heterogeneity of the data or even the distribution of the time
series, ITGH outperforms other algorithms by a wide margin. Interestingly, con-
firming the advantages of an MDL approach applied in a GLM framework we
outperform TCML on Gaussian data set although it is designed specifically for
Gaussian time series and performs better than other algorithms on such data

https://tinyurl.com/yar5yuoq
https://tinyurl.com/yar5yuoq
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Fig. 2. Various experiments on synthetic data sets concerning the effectiveness.

sets. On the other side, we outperform CUTE on the Bernoulli data set due to
the inefficiency of pairwise testing compared to our proposed greedy approach.
In the following we focus on a mixture of time series having Poisson and Gamma
distribution as a representative for heterogeneous data sets.

Effectiveness: This experiment specifically investigates the effectiveness of the
greedy approach in ITGH in terms of F-measure when the number of time series
is increasing. Here we generate heterogeneous data sets where in any case 70%
of the time series are Poisson and 30% are Gamma distributed and the number
of causal relations is equal to 0.67% of the number of time series. It is already
expected that the performance of an exhaustive pairwise testing approach is
decreasing when dealing with larger graphs. Figure 2a confirms our expecta-
tion and illustrates the constantly descending performance of HGGM, TEN and
CUTE. As excepted, GT and SFGC are quite stable. However, GT is the worst
algorithm in this experiment resulting in a maximum F-measure of 0.14. More-
over, this experiment shows the advantages of ITGH and SFGC compared to
other algorithms regardless of the number of time series, although in the begin-
ning their performance is affected by growing the causal graph.

Dependency: We refer to the coefficients of VAR models as the dependency
which essentially show the strength of causal relations. In this experiment we
investigate the performance of the algorithms concerning various dependencies
ranging from 0.1 to 1. Analogously, we focus on data sets where a mixture of
3 Poisson and 1 Gamma time series are generated. In Fig. 2b any ascending
or descending trend shows the inefficiency while a constant trend confirms the
ability of an algorithm to deal with strong and weak causal relations. ITGH
generally outperforms other competitors in terms of F-measure and unlike other
algorithms, varying the dependency does not influence the performance of our
algorithm significantly. Ignoring the starting point, the stable trend of ITGH
confirms the effciency of our algorithm even for lower dependency levels. Unex-
pectedly, the performance of TCML, SFGC and TEN is slightly descending in
this experiment.



752 S. Behzadi et al.

(b)(a) (c)

0
10
20
30
40
50
60
70
80
90

3 5 7 9 11 13 15 17 19 21

R
un

tim
e 

in
 se

co
nd

s

# Time Series

ITGH HGGM TEN SFGC TCML CUTE GT

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

2 4 6 8 10 12 14 16 18 20

R
un

tim
e 

in
 se

co
nd

s

Lag

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10

R
un

tim
e 

in
 se

co
nd

s

Length/1000

Fig. 3. Investigating the scalability in various experiments.

Scalability: While investigating the Scalability we generate data sets with the
same setting as previous experiment concerning the effectiveness. During the first
experiment we vary the length of time series ranging from 1,000 to 10,000 when
the number of time series is set to five. As Fig. 3a depicts, ITGH is the second
fastest algorithm in this experiment and outperforms HGGM, TEN and SFGC.
Together with TCML, our algorithm shows a perfect stable trend when increas-
ing the length of time series. In the other experiment we iteratively increase
the number of time series. As expected, all the algorithms have an increasing
trend (Fig. 3b). However, we outperform other heterogeneous algorithms in this
experiment as well. Finally, algorithms are investigated when the lag is increas-
ing. Except HGGM, all other algorithms are almost stable in this experiment
(Fig. 3c). Although ITGH seems to be relatively time-consuming compared to
others in this experiment, its runtime is less than 1.5 s and still reasonable.

5.2 Real Applications with Ground Truth

We conduct various experiments on publicly available real-world data sets where
a valid ground truth is provided. Table 1 summarizes the characteristics of the
data sets while we input the same fitted distribution to every algorithm resulted
by fitDistribution(.) procedure. To be fair, we report the best result for any
algorithm in Table 1 in terms of F-measure when considering various lags ranging
from 1 to 20. Moreover, we conducted various experiments on the lag variable in
appendix which is specially interesting in real-world experiments. For the data
sets marked with *, the ground truth is given partially and the information about
some interactions is missing. Therefore, corresponding to any data we report the
average F-measure w.r.t. the causal pairs where the true information is given.
As it is clear from Table 1, ITGH outperforms other algorithms on almost all
the data sets (except Spike Train). However, because of the space limitation a
detailed analysis of the results as well as data sets is not possible here, please
check the appendix.

5.3 Application to Climatology

What causes the climate changes? In this experiment, we investigate causal rela-
tions between the climate observations and various natural and artificial forcing
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Table 1. Comparison on real data sets including a ground truth in terms of F-measure.

Data set Distribution Length ITGH SFGC HGGM TEN TCML CUTE GT

Traffic 1 P, 1 B 254 1.00 0.67 1.00 0.00 0.00 1.00 0.00

Ozone 2 G 365 1.00 0.50 0.67 0.00 0.40 0.00 0.67

Speed 2 Ga 202 1.00 0.00 1.00 0.00 0.00 1.00 0.00

Temperature 2 G 168 1.00 0.00 0.00 1.00 0.40 1.00 0.67

Mooij 2 G 16382 1.00 0.67 0.67 0.00 0.00 1.00 0.67

* Moffat 2 Ga, 1 G 721 1.00 0.33 0.67 0.50 0.45 0.00 0.67

* Abalone 1 P, 3 G 4177 1.00 0.56 0.00 1.00 0.00 1.00 0.67

* Energy 1 P, 2 G 9504 0.89 0.00 0.55 0.30 0.56 0.67 0.67

Spike Train 4 B 1000 0.62 0.47 0.00 0.57 0.20 0.76 0.50

factors when no ground truth is provided. The data set, provided in [9], is pub-
licly available. We consider the monthly measurements of 11 factors over 13 years
(from 1990 to 2002) in two states in the US, i.e. Montana and Louisiana: tem-
perature (TMP), precipitation (PRE), vapor (VAP), cloud cover (CLD), wet
days (WET), frost days (FRS), green house gases including Methane (CH4),
Carbon Dioxide (CO2), Hydrogen (H2) and carbon monoxide (CO) and solar
radiation including global extraterrestrial (GLO). After fitting the distribution
for any time series, we apply ITGH and other heterogeneous methods inputting
the most appropriate distribution. The data providers suggested a maximum lag
of 4 [9]. However, no exact information about the lag is given. Therefore, the
lag is randomly set to 3 for Louisiana and 2 for Montana. Since the temperature
is the most concerning factor in global warming and also for a better visual-
ization, we focus on the factors which influence the temperature. Green house
gases, specially CO2, as well as solar radiation are the most important factors in
global warming. Moreover, depending on where a state is located, cold or warm
region, various climate measurements influence the temperature. According to
the annual average temperature of states in the US, Louisiana is located in the
warm region where the CO2 concentration is also high. As Fig. 4a shows, ITGH
correctly detects CO2 and the solar radiation as causal factors for temperature
(confirmed by [9]). Moreover, influencing the temperature by VAP is also plau-
sible since Louisiana is located in the warm subtropical region. On the other
side, the result of SFGC does not sound interpretable since it finds a causal rela-
tion among all the factors and the temperature, even the frost days per month.
HGGM seems more efficient compared to SFGC, However, it does not find any
effects caused by one of the most effective factors, i.e. CO2. Unlike Louisiana,
Montana is located in the cold region. Therefore, the detected causal direction
from the frost days and vapor to the temperature in Fig. 4b is reasonable (also
confirmed by [9]). However, HGGM is not able to find the relation among the
frost days and the temperature. Moreover, the CO2 concentration in this state
is not high. Therefore, CO2 does not influence the temperature in Montana dra-
matically. ITGH correctly does not consider a causal relation among CO2 and
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temperature while SFGC does. On the other side, HGGM is not able to find the
effect of frost days, although it correctly recognizes the relation between CO2
and the temperature.

Fig. 4. Application to Climatology. a) causal graphs w.r.t. Louisiana, b) causal
graphs w.r.t. Montana.

6 Conclusions and Future Work

In this paper we proposed ITGH, an information-theoretic algorithm for discov-
ery of causal relations in a mixed data set while profiting of a GLM framework.
Following the MDL-principle, we introduced an integrative objective function
applicable for time series having distributions from the exponential family. Our
greedy approach leads to an effective and efficient algorithm without any assump-
tion about the distribution of the data. One of the avenues for future work is to
employ our MDL-based approach to efficiently detect the anomalies in hetero-
geneous data sets.
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