
Inferring Restricted Regular Expressions
with Interleaving from Positive

and Negative Samples

Yeting Li1,2, Haiming Chen1(B), Lingqi Zhang3, Bo Huang4,
and Jianzhao Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{liyt,chm,zhagjz}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Beijing University of Technology, Beijing, China
zhanglingqisteve@gmail.com

4 Northwestern Polytechnical University, Xi’an, China
HBruomeng@outlook.com

Abstract. The presence of a schema for XML documents has numer-
ous advantages. Unfortunately, many XML documents in practice are
not accompanied by a schema or a valid schema. Therefore, it is essen-
tial to devise algorithms to infer schemas. The fundamental task in XML
schema inference is to learn regular expressions. In this paper, we focus
on learning the subclass of RE(&) called SIREs (the subclass of regu-
lar expressions with interleaving). Previous work in this direction lacks
inference algorithms that support inference from positive and negative
examples. We provide an algorithm to learn SIREs from positive and neg-
ative examples based on genetic algorithms and parallel techniques. Our
algorithm also has better expansibility, which means that our algorithm
not only supports learning with positive and negative examples, but also
supports learning with positive or negative examples only. Experimental
results demonstrate the effectiveness of our algorithm.

Keywords: XML · Schema inference · Learning expressions ·
Interleaving · Positive and negative examples

1 Introduction

A classical problem in grammatical inference is to identify a language from
positive examples and negative examples. We study learning regular expres-
sions (REs) with interleaving (shuffle), denoted by RE(&). Since RE(&) are
widely used in various areas of computer science [1], including XML database
systems [5,12,26], complex event processing [24], system verification [4,13,15],
plan recognition [18] and natural language processing [21,28].

H. Chen—Work supported by the National Natural Science Foundation of China under
Grant Nos. 61872339 and 61472405.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12085, pp. 769–781, 2020.
https://doi.org/10.1007/978-3-030-47436-2_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47436-2_58&domain=pdf
https://doi.org/10.1007/978-3-030-47436-2_58

770 Y. Li et al.

Studying the inference of RE(&) has several practical motivations, such as
schema inference. The presence of a schema for XML documents has many
advantages, such as for query processing and optimization, data integration and
exchange [11,30]. However, many XML documents in practice are not accom-
panied by a valid schema [16], making schema inference an attractive research
topic [2,3,10,14,31]. Learning Relax NG schemas is an important research prob-
lem for schema inference, since it is more powerful than other XML schema
languages, such as DTD or XSD [5] and has unrestricted supports for the inter-
leaving operator. It is known that the essential task in Relax NG schema infer-
ence is learning RE(&) from a set of given sample [23,31].

Previously, RE(&) learning has been studied from positive examples only
[23,29,31]. However, negative examples might be useful in some applications.
For instance, the schema evolution [8,9] can be done incrementally, with little
feedback needed from the user, when we also allow negative examples. Learning
RE(&) from positive and negative examples may have other crucial applications,
such as mining scientific workflows. REs have already been used in the literature
as a well-suited mechanism for inter-workflow coordination [17]. The user labeled
some sequences of modules from a set of available workflows as positive or neg-
ative examples. So such algorithms can be thus applied to infer the workflow
pattern that the user has in mind.

Such kinds of applications motivate us to investigate the problem of learn-
ing RE(&) from positive and negative examples. Most researchers have studied
subclasses of REs, which are expressive enough to cover the vast majority of
real-world applications [6,7,22] and perform better on several decision problems
than general ones [6,7,19,20,25,27]. Bex et al. [3] proposed learning algorithms
for two subclasses of REs: SOREs and CHAREs, which capture many practical
DTDs/XSDs and are both single occurrence REs. Bex et al. [2] also studied
learning algorithms, based on the Hidden Markov Model, for the subclass of
REs in which each alphabet symbol occurs at most k times (k-OREs). More
recently, Freydenberger and Kötzing [10] proposed more efficient algorithms for
the above-mentioned SOREs and CHAREs. Existing work on RE(&) learning
mentioned above [23,29,31] are all working on specific subclasses of REs. The
aim of these approaches is to infer restricted subclasses of single occurrence
REs with interleaving starting from a positive set of words representing XML
documents based on maximum clique or maximum independent set.

In this paper, we focus on learning the subclass of RE(&), called SIREs
(see Definition 1) [29]. It has been proved that the problem of learning SIREs
is NP-hard [29]. Here, we solve this problem by using genetic algorithms and
parallel techniques. Genetic algorithms have been used to solve NP problems,
and parallel techniques can make programs more efficient. As a result, when
given both positive and negative examples, we can effectively learn a SIRE.

The main contributions of this paper are listed as follows.

– We design algorithm iSIRE based on genetic algorithm, which can learn SIREs
from both positive and negative examples. To the best of our knowledge, our
work is the first one to infer the subclass of RE(&) from positive and negative
examples. We hope our work may shed some light on further research.

Inferring Restricted RE(&) from Positive and Negative Samples 771

– Our algorithm has better expansibility. Algorithm iSIRE not only supports
learning with positive and negative examples, but also supports learning with
positive or negative examples only.

– We conduct a series of experiments with alphabets of different sizes. The
results reveal the effectiveness of iSIRE, show the high accuracy and precise-
ness of our work.

2 Preliminaries

Regular Expression with Interleaving. Let Σ be a finite alphabet of sym-
bols. The set of all words over Σ is denoted by Σ∗. The empty word is denoted by
ε. A RE with interleaving over Σ is defined inductively as follows: ε or a ∈ Σ is a
RE, for REs r1 and r2, the disjunction r1|r2, the concatenation r1·r2, the inter-
leaving r1&r2, or the Kleene-Star r∗

1 is also a RE. r? and r+ are abbreviations
of r|ε and r·r∗, respectively. They are denoted as RE(&).

The size of a RE r, denoted by |r|, is the total number of symbols and
operators occurred in r. The language L(r) of a RE r is defined as follows:
L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r∗

1) = L(r1)∗; L(r1 · r2) = L(r1)L(r2);
L(r1|r2) = L(r1) ∪ L(r2); L(r1&r2) = L(r1)&L(r2). Let u = au′ and v = bv′

where a, b ∈ Σ and u′, v′ ∈ Σ∗, then u&ε = ε&u = u and u&v = a(u′&v)∪
b(u&v′). For example, L(ab cd) = {cdab, cadb, cabd, acdb, acbd, abcd}.

A RE with interleaving r is SOIRE, if every alphabet symbol occurs at most
once in r. We consider the subclass of REs with interleaving (SIREs) defined by
the following grammar.

Definition 1. The subclass of REs with interleaving (SIREs) are SOIREs over
Σ defined by the following grammar:

S :: = T&S|T
T :: = ε|a|a∗|TT, where a ∈ Σ

For instance, a∗b?&cd+ is a SIRE, but a+b&c+a is not because a appears twice.

Definition 2 Candidate Region (CR). We use candidate region to define the
skeleton structure of a SIRE. Let N ={0,1,2,. . . }, N0 = N\{0} (0 is excluded).
For a SIRE r := D1& · · · &Dn where Di ∈ Σ∗, 1 ≤ i ≤ n, 1 ≤ n ≤ N0, it belongs
to the candidate region |D1|& · · · &|Dn|. The size of Di, denoted by |Di|, is the
total number of alphabet symbols occurred in Di.

For a given alphabet |Σ| = n, it is easy to see there are 2n−1 CRs. For example,
consider Σ={a, b, c, d, e} and |Σ|=5. As is shown in Fig. 1, we can get 16 CRs.
The number of squares with the same color represents the |Di|, e.g., the 6th
CR denotes 1&1&3 and the 12th CR denotes 1&1&1&2. So, the SIRE r1 =
a+&b&c∗d+e? belongs to the 6th CR 1&1&3 and the SIRE r2 = a+&b&c∗&d+e?

belongs to the 12th CR 1&1&1&2.

772 Y. Li et al.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Fig. 1. All the candidate regions of |Σ| = 5

3 Learning Algorithm

Our algorithm aims to obtain an accurate and precise SIRE, which should accept
as many positive samples as possible and reject as many negative samples as pos-
sible. We show the major technical details of our algorithm in this section. The
main algorithm is presented in Sect. 3.1. Initializing all the simplified candidate
regions (SCRs) is introduced in Sect. 3.2. Selecting the best candidate SIRE from
each SCR is given in Sect. 3.3.

3.1 The Main Algorithm

The algorithm iSIRE first figures out the SCRs of the expression to be learned,
then for each SCR, employs genetic algorithms to learn character sequence and
multiplicity sequence in parallel, and decodes each learned sequence to a SIRE
according to its SCR. After multi-generation evolution and iteration, the best
SIRE is selected by function bestRE(). The main procedures of the algorithm
are presented in Algorithm 1, and are illustrated as follows.

– Scan positive examples S+ and negative examples S to get the alphabet Σ,
then call function getSCRs() to initialize all the SCRs based on |Σ|.

– In parallel, call algorithm candSIRE to select the best SIRE from each SCR,
and put them in the candidate set C.

– Call function bestRE() to select the best SIRE from C and output it.

Function bestRE() is designed to select the best SIRE. It measures two metrics of
SIREs: K(r) for accuracy and CC(r) [23] for preciseness. For a SIRE r, K(r) =
|TP |+|TN |−|FP |−|FN |

|S+|+|S | , TP = {w ∈ S+|w ∈ L(r)}, TN = {w ∈ S |w /∈ L(r)}, FP =
{w ∈ S+|w /∈ L(r)}, FN = {w ∈ S |w ∈ L(r)}, S+ is the set of positive examples
and S is the set of negative examples. The Combinatorial Cardinality (CC(r),

introduced in [23]) of r can be computed as follows: CC(r) =
n−1∏

i=1

(∑i+1
j=1 |Dj |
|Di+1|

)
.

Note that K(r) has a higher priority than CC(r) when selecting the best SIRE.
If the value of K(r) is larger, then it means r can accept more positive examples
and reject more negative examples. Smaller the CC(r) is, the more precise the
SIRE will be. In the rest of this section, we will discuss the implementations of
lines 3, 4 and 5 in detail.

3.2 Initializing All the Simplified Candidate Regions (SCRs)

Next, we will give a detailed explanation of Line 3 of Algorithm 1 (initializing
all the SCRs) in this section.

Inferring Restricted RE(&) from Positive and Negative Samples 773

Algorithm 1: iSIRE
Input: positive examples S+, negative examples S
Output: a SIRE r

1 initialize candidate set C ← ∅

2 Σ ← getAlphabet(S+, S)
3 SCRs ← getSCRs(|Σ|)
4 foreach scr ∈ SCRs in parallel do
5 add candSIRE(S+, S , scr) to C

6 return r ← bestRE(C)

From Definition 2, when |Σ| = n, there are 2n−1 CRs. Because of the unorder
features of SIREs, we can easily find that for a SIRE r = D1& · · · &Dn, the order
of Di can be arbitrary, where 1 ≤ i ≤ n. Hence, we can merge some equivalent
CRs and get the SCRs. For instance, in Fig. 1, we can merge the 6th CR 1&1&3,
the 8th CR 1&3&1 and the 11th CR 3&1&1 together. After the merger of some
equivalent CRs, we get the SCRs shown in Fig. 2.

When the |Σ| = n, how many SCRs are there? This problem is equivalent
to Integer Partition, e.g., when |Σ| = 5, there are 7 SCRs, including 5, 4&1,
3&2, 3&1&1, 2&2&1, 2&1&1&1 and 1&1&1&1&1. Meanwhile, the 7 partitions
of 5 are: 5 = 5, 5 = 4 + 1, 5 = 3 + 2, 5 = 3 + 1 + 1, 5 = 2 + 2 + 1, 5 = 2 + 1 + 1 + 1 and
5 = 1 + 1 + 1 + 1 + 1. In general, approximation formulas exist that can calculate
the number of partitions. For n ∈ N, the number of partitions of n p(n) ≈

1
4n

√
3
eπ

√
2n
3 as n → ∞. As n increases, 1

4n
√
3
eπ

√
2n
3 is far less than 2n−1. It can

be seen from Table 1 intuitively that the number of SCRs is far less than CRs. So
we use function getSCRs() to get SCRs instead of CRs in our algorithm iSIRE.

1 2 3 4 5 6 7

Fig. 2. All the simplified candidate regions of |Σ| = 5

Table 1. The number of CRs and SCRs of varying alphabet size.

|Σ| 5 10 15 20 25 30 35 40

CRs 16 512 16384 524288 16777216 536870912 17179869184 549755813888

SCRs 7 42 176 627 1958 5604 14883 37338

3.3 Selecting the Best Candidate SIRE from Each SCR

For each SCR obtained in first step, we employ the algorithm candSIRE (shown
in Algorithm 2) to find the best candidate SIRE. Because each SCR is indepen-
dent of each other and does not interfere with each other, we use multi-thread
on our multi-core processor to run the candSIRE algorithm in parallel. By using

774 Y. Li et al.

parallel processing, we can infer the best candidate SIRE for each SCR with
numerous SIREs simultaneously, which makes a huge difference when there are
often hundreds of SIREs to evaluate per SCR.

Algorithm 2: candSIRE
Input: positive examples S+, negative examples S , an SCR scr
Output: a SIRE r

1 initialize character population C POP
2 for g = 1 to C Gmax do
3 initialize candidate list SIREs ← ∅

4 foreach cs ∈ C POP in parallel do
5 add decode(cs,selectMuls(cs, scr),scr) to SIREs

6 C POP ← select(C POP ,calcValues(SIREs, S+, S))
7 charCrossover()
8 charMutate()

9 return r ← bestRE(SIREs)

The algorithm candSIRE uses a number of genetic operators. Using the alpha-
bet Σ = {a, b, c, d, e} as an example, we introduce some of them as follows.

– character crossover: in the character population, we randomly select two char-
acter sequences p1 = ebdac and p2 = eabdc as parents (in Fig. 3). First, we
select the genetic information (bd) and (ab) of the parent p1 and p2 at the
same position, and put them into the children c1 and c2 at the corresponding
position respectively. Then we explain how to add the genetic information of
the parent p2 into the child c1. Our method starts from the ending position
of genetic information of p2, and then passes each gene of parent p2, which
has not appeared in c1, to c1. In this example, we start with the gene d of p2,
because d is already in c1, we skip it and move to c. Since c is not in c1, we
can put c to the first available location of c1. As we arrived at the end of p2,
we moved to the first gene e. This time, e is not in c1, so we can add e to the
next available location of c1. Continue the process we get c1 = cbdea. In the
same way, we generate c2 = cabed, and they are shown in Fig. 3.

– character mutation: the principle of character mutation is to traverse each
gene and determine the mutation according to the mutation rate. If the
selected gene mutates, the method randomly selects another gene and
exchange their positions. For example, for a character sequence p1 = abcde,
we assume the selected gene a mutates, then we select gene c and exchange
the position of a and c, thus finally get p

′
1 = ebcda shown in Fig. 4.

– chromosome encoding: as is shown in Fig. 5, when we encode SIRE r =
d?b+c∗&e+&a, we can extract a SCR 3&1&1, a multiplicity sequence “?+∗+1”
and a character sequence dbcea.

– chromosome decoding: we decode a SCR 2&2&1, a multiplicity sequence
“∗?? + ∗” and a character sequence abcde to get a SIRE r = a∗b?&c?d+&e∗.
The example is shown in Fig. 6.

Inferring Restricted RE(&) from Positive and Negative Samples 775

p1 e b d a c

1

1

2

2

1

1

2

2

p2 e a b d c

c1 c b d e a

c2 c a b e d

Fig. 3. Character crossover

p1 a b c d e

mutatemutate

p
′
1 e b c d a

Fig. 4. Character mutation

d?b+c∗&e+&a

? + ∗ + 1

d b c e a

Fig. 5. Chromosome encoding

∗ ? ? + ∗
a∗b?&c?d+&e∗

a b c d e

Fig. 6. Chromosome decoding

In the algorithm candSIRE, for a given SCR, positive examples S+ and neg-
ative examples S , we select the best candidate SIRE that accepts as many
positive samples as possible, rejects as many negative samples as possible, and
as precise as possible. The main procedures are as follows.

1. Initialize the population of candidate character sequences. Here we set the
population size to 500.

2. Select the best multiplicity sequence for each character sequence using algo-
rithm selectMuls in parallel. The pseudocode of selectMuls is presented in
Algorithm 3, we will explain its details later.

3. Decode each pair of character sequences, corresponding best multiplicity
sequences and the given SCR to get the population of candidate SIREs by
calling function decode().

4. Call function calcValues(), calculate fitness value f(r) for each SIRE r. The
fitness value f(r) of r is defined as follows.

f(r) = (K(r), CC(r)),

For the detailed definitions of K(r) and CC(r), see Sect. 3.1. Our fitness
function gives priority to K(r), and then compare the CC(r), that is, on the
basis of selecting the SIRE that can accept more positive examples and reject
more negative examples, then consider the more precise ones.

5. Call function select() to generate the next generation SIREs. The method first
retains the best 20% of SIREs by the fitness f(r) in the current population
unchanged, and then applies roulette-wheel selection to the remaining 80% to
get the next generation SIREs. Meanwhile, it is also important to note that
K(r) is the top priority when choosing SIREs. When the values of K(r) are
the same, we choose the SIRE which CC(r) is minimum.

6. Call function charCrossover(), select some pairs of character sequences
according to the crossover rate (0.8), and construct new pairs of character
sequences by applying the character crossover.

776 Y. Li et al.

7. Call function charMutate(), select some character sequences according to the
mutation rate (0.03), and modify the selected sequences by applying the char-
acter mutation.

8. Iterate 2−8 steps until the number of generations reaches the given threshold
C Gmax. Here we set C Gmax=300. Finally, we call function bestRE() (see
Sect. 3.1) to select the best SIRE from the last generation of SIREs.

In order to improve the efficiency of evolution, we adopt two tricks to optimize
algorithm candSIRE. In the second step of candSIRE, it needs to select the best
multiplicity sequence for each character sequence. Obviously, this process can be
executed in parallel because these character sequences are independent of each
other when finding the best multiplicity sequence. Besides, as is well known, the
fitness function is usually the most computationally expensive component of the
genetic algorithm. Thus, we use value hashing to reduce the amount of time
spent on calculating fitness values by storing previously computed fitness values
in a hash table. During execution, solutions found previously will be revisited
due to the random mutations and recombinations of SIREs, then we just revisit
its fitness value directly from the hash table instead of recalculation. Inevitably,
the storage of the hash table consumes memory usage.

Now we introduce the algorithm selectMuls used in the second step of algo-
rithm candSIRE (shown in Algorithm 3), it aims to select best multiplicity
sequence for each character sequence. Before introducing the details of select-
Muls, we illustrate its genetic operators as follows.

– multiplicity crossover: randomly select crossover points of two parents, and
then exchange the selected genes to get children. In the multiplicity popula-
tion, e.g., we randomly select two multiplicity sequences p1 = “ ∗ +1?+” and
p2 = “∗?? + +” as parents. Then we exchange “+1” of p1 and “??” of p2 to
get children c1 = “∗???+” and c2 = “ ∗ +1 + +” in Fig. 7.

– multiplicity mutation: replacing the mutated gene with an element of the set
{∗,+, ?, 1}. The principle of character mutation is to traverse each gene of
the chromosome and determine the mutation according to the mutation rate.
The example is shown in Fig. 8.

p1 ∗ + 1 ? +

1

1

2

2

1

1

2

2

p2 ∗ ? ? + +

c1 ∗ ? ? ? +

c2 ∗ + 1 + +

Fig. 7. Multiplicity crossover

p1 ∗ ? ? + +

mutate

p
′
1 ∗ ? ? + ∗

Fig. 8. Multiplicity mutation

The main procedures of selectMuls are illustrated as follows.

1. Initialize the population of candidate multiplicity sequences. Here we set the
population size to 200.

Inferring Restricted RE(&) from Positive and Negative Samples 777

2. Call function decode(), decode each group of multiplicity sequences, the char-
acter sequences and the SCR to get the population of candidate SIREs.

3. Call function calcValues(), calculate fitness value f(r) for each SIRE r.
4. Call function select(), use roulette-wheel selection to generate a next genera-

tion from the current population according to fitness values.
5. Call function mulCrossover(), select some pairs of multiplicity sequences

according to the crossover rate (0.8), and construct new pairs of multiplicity
sequences by multiplicity crossover.

6. Call function mulMutate(), select some multiplicity sequences according to the
mutation rate (0.03), and modify the sequences by applying the multiplicity
mutation.

7. Iterate 2–8 steps until the number of generations reaches the given threshold
M Gmax. Here we set M Gmax=100. Then, we call function bestRE() to select
the best SIRE r from the last generation of SIREs in the given SCR. Finally,
we call function encode(r).muls to get a multiplicity sequence.

Algorithm 3: selectMuls
Input: positive examples S+, negative examples S , character sequence cs, an

SCR scr
Output: a multiplicity sequence ms

1 initialize multiplicity population M POP
2 for g = 1 to M Gmax do
3 initialize candidate list SIREs ← ∅

4 foreach ms ∈ M POP in parallel do
5 add decode(cs, ms, scr) to SIREs

6 M POP ← select(M POP ,calcValues(SIREs, S+, S))
7 mulCrossover()
8 mulMutate()

9 SIREs ← ModifyMuls(SIREs)
10 r = bestRE(SIREs)
11 return ms ← encode(r).ms

4 Experiments

In this section, we validate our algorithm by means of experimental analysis.
All experiments were performed using a prototype implementation of iSIRE
written in Python 3.6 executed on a machine with sixteen-core Intel Xeon CPU
E5620@2.4 GHz, 24 GB memory.

778 Y. Li et al.

4.1 Learning SIREs from Positive Examples

To compare the algorithms Exact Minimal [29], conMiner [29], conDAG [29] and
iSIRE, we generate 9 datasets of positive examples with alphabet size |Σ| =
{5, 10, 15} and example size |S| = {100, 500, 1000}. Table 2 presents the K(r)
values and CC(r) values of the learned SIREs. From Table 2 we can see that
for all the 9 datasets, the K(r) values of learned SIREs with both algorithms
are all 100%, which means both algorithms can guarantee the learned SIREs to
cover all positive examples1. According to the CC(r) values of SIREs learned
by the four algorithms in Table 2, we observe that when the alphabet size |Σ| is
smaller (|Σ| = 5), the learned SIREs by Exact Minimal, conMiner, conDAG and
iSIRE have the same smaller CC(r) values. However, as the alphabet size |Σ|
grows larger (|Σ| = 15), the CC(r) values of learned SIREs by Exact Minimal,
conMiner or conDAG is much larger than that of iSIRE, that means the results
learned by iSIRE is more precise than the other 3 algorithms.

Table 2. Result of learning SIREs from positive examples.

|Σ| |S| Exact minimal conMiner conDAG iSIRE

K(r) CC(r) K(r) CC(r) K(r) CC(r) K(r) CC(r)

5 100 100% 20 100% 20 100% 20 100% 20

500 100% 30 100% 30 100% 30 100% 30

1000 100% 60 100% 60 100% 60 100% 60

10 100 100% 840 100% 840 100% 840 100% 840

500 100% 37800 100% 50400 100% 50400 100% 16800

1000 100% 5040 100% 6300 100% 5040 100% 3150

15 100 100% 1801800 100% 2522520 100% 2162160 100% 1261260

500 100% 8108100 100% 15135120 100% 10810800 100% 7207200

1000 100% 300300 100% 360360 100% 900900 100% 270270

4.2 Learning SIREs from Positive and Negative Examples

In order to evaluate the effectiveness of our learning algorithm on learning exam-
ples of both positive and negative cases, we would have liked to compare iSIRE
with other approaches, but this was impossible, since we found no other tools
or algorithms supporting learning SIREs from both positive and negative exam-
ples. Thus we only conducted experiment with our own algorithm. According
to the alphabet size, example size, and the proportion of positive and negative
examples, we made 27 datasets of examples and conducted experiment on these
examples (shown in Table 3). As Table 3 shows, more than 74% K(r) values

1 This is also very easy to prove, because the worst case is that the learned SIRE is
a∗
1&a∗

2& · · · &a∗
n, which can guarantee that accept all the positive examples.

Inferring Restricted RE(&) from Positive and Negative Samples 779

of inferred SIREs are above 75%, that is, majority of SIREs learned by iSIRE
accept most of positive examples and reject most of negative examples, which
demonstrates the high effectiveness of our algorithms.

Table 3. Results of learning SIREs from positive and negative examples.

|Σ| |S+| |S−| K(r) CC(r) |Σ| |S+| |S−| K(r) CC(r) |Σ| |S+| |S−| K(r) CC(r)

5 25 75 92% 10 10 25 75 82% 360 15 25 75 82% 756756

50 50 74% 30 50 50 72% 840 50 50 74% 360360

75 25 90% 5 75 25 78% 7560 75 25 82% 25225200

300 200 87.6% 10 300 200 82.4% 5040 300 200 82.4% 300300

250 250 88.8% 20 250 250 81.2% 2520 250 250 70.4% 50450400

200 300 81.2% 60 200 300 83.2% 4200 200 300 75.6% 900900

750 250 69.8% 20 750 250 85.6% 75600 750 250 72.2% 37837800

500 500 84% 30 500 500 91.6% 30240 500 500 73.4% 4054050

250 750 77.6% 60 250 750 84.8% 25200 250 750 82.6% 378378000

5 Conclusions

In this paper, we provided algorithm iSIRE to learn a SIRE from positive and
negative examples based on genetic algorithms and parallel techniques. Then
we conducted experiments with alphabets of different sizes, and results showed
that with only positive examples, our learning results are more precise compared
with the state-of-the-art algorithms, and when given both positive and negative
examples, we can learn SIREs with high accuracy.

References

1. Berglund, M., Björklund, H., Björklund, J.: Shuffled languages - representation
and recognition. Theor. Comput. Sci. 489–490, 1–20 (2013)

2. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. TWEB 4(4), 14:1–14:32
(2010)

3. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: Proceedings of the 32nd VLDB, pp. 115–126 (2006)

4. Boja’nczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: Proceedings of the 21st LICS, pp. 7–16 (2006)

5. Clark, J., Makoto, M.: RELAX NG Tutorial (2003). https://relaxng.org/tutorial-
20030326.html

6. Colazzo, D., Ghelli, G., Pardini, L., Sartiani, C.: Efficient asymmetric inclusion of
regular expressions with interleaving and counting for XML type-checking. Theor.
Comput. Sci. 492, 88–116 (2013)

7. Colazzo, D., Ghelli, G., Sartiani, C.: Linear time membership in a class of regular
expressions with counting, interleaving, and unordered concatenation. ACM Trans.
Database Syst. 42(4), 24:1–24:44 (2017)

https://relaxng.org/tutorial-20030326.html
https://relaxng.org/tutorial-20030326.html

780 Y. Li et al.

8. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting and integrity
constraint maintenance in a schema evolution support system: PRISM++. PVLDB
4(2), 117–128 (2010)

9. Florescu, D.: Managing semi-structured data. ACM Queue 3(8), 18–24 (2005)
10. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions

and DTDs. Theory Comput. Syst. 57(4), 1114–1158 (2015)
11. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented

databases. Inf. Syst. 75, 13–25 (2018)
12. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S.: W3C XML Schema Defi-

nition Language (XSD) 1.1 Part 1: Structures (2012). https://www.w3.org/TR/
xmlschema11-1/

13. Garg, V.K., Ragunath, M.T.: Concurrent regular expressions and their relationship
to petri nets. Theor. Comput. Sci. 96(2), 285–304 (1992)

14. Garofalakis, M., Gionis, A., Shim, K., Shim, K., Shim, K.: XTRACT: learning
document type descriptors from XML document collections. Data Min. Knowl.
Disc. 7(1), 23–56 (2003)

15. Gischer, J.L.: Shuffle languages, petri nets, and context-sensitive grammars. Com-
mun. ACM 24(9), 597–605 (1981)

16. Grijzenhout, S., Marx, M.: The quality of the XML Web. J. Web Semant. 19,
59–68 (2013)

17. Heinlein, C.: Workflow and process synchronization with interaction expressions
and graphs. In: Proceedings of the 17th ICDE, pp. 243–252 (2001)

18. Högberg, J., Kaati, L.: Weighted unranked tree automata as a framework for plan
recognition. In: Proceedings of the 13th FUSION, pp. 1–8 (2010)

19. Hovland, D.: The inclusion problem for regular expressions. J. Comput. Syst. Sci.
78(6), 1795–1813 (2012)

20. Hovland, D.: The membership problem for regular expressions with unordered
concatenation and numerical constraints. In: Proceedings of the 6th LATA, pp.
313–324 (2012)

21. Kuhlmann, M., Satta, G.: Treebank grammar techniques for non-projective depen-
dency parsing. In: Proceedings of the 12th EACL, pp. 478–486 (2009)

22. Li, Y., Chu, X., Mou, X., Dong, C., Chen, H.: Practical study of deterministic
regular expressions from large-scale XML and schema data. In: Proceedings of the
22nd IDEAS, pp. 45–53 (2018)

23. Li, Y., Mou, X., Chen, H.: Learning concise Relax NG schemas supporting inter-
leaving from XML documents. In: Proceedings of the 14th ADMA, pp. 303–317
(2018)

24. Li, Z., Ge, T.: PIE: approximate interleaving event matching over sequences. In:
Proceedings of the 31st ICDE, pp. 747–758 (2015)

25. Losemann, K., Martens, W., Niewerth, M.: Closure properties and descriptional
complexity of deterministic regular expressions. Theor. Comput. Sci. 627, 54–70
(2016)

26. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: BonXai: combining the
simplicity of DTD with the expressiveness of XML schema. In: Proceedings of the
34th PODS, pp. 145–156 (2015)

27. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for XML
Schemas and chain regular expressions. SIAM J. Comput. 39(4), 1486–1530 (2009)

28. Nivre, J.: Non-projective dependency parsing in expected linear time. In: Proceed-
ings of the 47th ACL, pp. 351–359 (2009)

https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/

Inferring Restricted RE(&) from Positive and Negative Samples 781

29. Peng, F., Chen, H.: Discovering restricted regular expressions with interleaving. In:
Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds.) APWeb 2015. LNCS, vol. 9313,
pp. 104–115. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25255-1 9

30. Wang, L., et al.: Schema management for document stores. PVLDB 8(9), 922–933
(2015)

31. Zhang, X., Li, Y., Cui, F., Dong, C., Chen, H.: Inference of a concise regular
expression considering interleaving from XML documents. In: Proceedings of the
22nd PAKDD, pp. 389–401 (2018)

https://doi.org/10.1007/978-3-319-25255-1_9

	Inferring Restricted Regular Expressions with Interleaving from Positive and Negative Samples
	1 Introduction
	2 Preliminaries
	3 Learning Algorithm
	3.1 The Main Algorithm
	3.2 Initializing All the Simplified Candidate Regions (SCRs)
	3.3 Selecting the Best Candidate SIRE from Each SCR

	4 Experiments
	4.1 Learning SIREs from Positive Examples
	4.2 Learning SIREs from Positive and Negative Examples

	5 Conclusions
	References

