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Abstract. Statistical multiword extraction methods can benefit from
the knowledge on the n-gram (n ≥ 1) frequency distribution in natural
language corpora, for indexing and time/space optimization purposes.
The appearance of increasingly large corpora raises new challenges on
the investigation of the large scale behavior of the n-gram frequency dis-
tributions, not typically emerging on small scale corpora. We propose
an empirical model, based on the assumption of finite n-gram language
vocabularies, to estimate the number of distinct n-grams in large cor-
pora, as well as the sizes of the equal-frequency n-gram groups, which
occur in the lower frequencies starting from 1. The model was validated
for n-grams with 1 ≤ n ≤ 6, by a wide range of real corpora in English
and French, from 60 million up to 8 billion words. These are full non-
truncated corpora data, that is, their associated frequency data include
the entire range of observed n-gram frequencies, from 1 up to the maxi-
mum. The model predicts the monotonic growth of the numbers of dis-
tinct n-grams until reaching asymptotic plateaux when the corpus size
grows to infinity. It also predicts the non-monotonicity of the sizes of the
equal-frequency n-gram groups as a function of the corpus size.

Keywords: n-gram frequency distribution · Large text corpora.

1 Introduction

The appearance of Web-scale corpora raised new challenges on the extraction
of relevant expressions in natural languages, e.g. for indexing and time/space
optimization, whose efficiency can benefit from the knowledge of the statistical
regularities in real data. However, most studies only focus on single words, ana-
lyzing their occurrence frequencies. For example, function words such as “the”,
“in”, “of”, lacking semantic content and having a small and fixed vocabulary
essentially related to a language grammar, tend to occur more often than words
like “oceanography” or “preferably”, whose appearance can be related to the
semantic content of a text.

These studies should be extended with more generic approaches for the extrac-
tion of multiword expressions based on the properties of n-grams. An n-gram is a
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sequence of n ≥ 1 consecutive words, so, beyond single words, its characteristics
canbe related to the text phrases and sentences, e.g. “History of Science”. In a given
corpus one can observe distinct n-gram types, each one showing a certain number
of instances. This requires an accurate estimation of the n-gram frequency distri-
butions for any given corpus size, particularly important in Big Data extraction
applications handling many Mega (106) and Giga (109) words.

We present a model that estimates, with good accuracy, the total numbers
of distinct n-grams (1 ≤ n) in real corpora for a wide range of sizes, in a given
language. It also estimates the sizes of the frequency levels, i.e. the numbers of
equal-frequency n-grams, for the extreme low frequencies, from the singletons
onwards. The lower frequency n-grams are a significant proportion of the distinct
n-grams across a wide range of corpora sizes, and a large part of the relevant
expressions in a text. The model predicts the finite sizes of the n-gram vocabu-
laries in a given language, from 1-grams to 6-grams. This range of n-gram sizes
captures the most meaningful relevant expressions. It also predicts growth of the
population of distinct n-grams towards asymptotic plateaux, for large enough
corpus. The model also predicts that, for the lowest frequencies, the numbers
of distinct n-grams with equal frequencies, instead of always growing with the
corpus size, will present a non-monotonic behavior, reaching a maximum and
then decreasing as corpus grows to infinity. Results were validated with full non-
truncated data from English and French Wikipedia corpora from 60 Mega to
8 Giga words. We discuss background (Sect. 2), the model (Sect. 3), the results
(Sect. 4) and conclusions.

2 Background

The empirical Zipf’s Law [11] is a known model for word frequency distributions
with a power law approximation in good agreement with data in a large range
of frequencies, but significant deviations in the high and low frequencies. Most
studies recognize difficulties for a generic model of the real data distributions
in their entire frequency range [8], and often do not consider the complete fre-
quency distributions, e.g. an analysis of low frequency words is often omitted.
These difficulties reinforce the importance of empirical approaches, leading to
many models ([1,2,5,6,10], among others as surveyed in [7]). Still, due to its
simplicity and universality, Zipf’s law is widely used, as a first approximation
or as a basis for improvements. There is a lack of studies (e.g. [4]) on n-grams
(n > 1), carrying in their specifics a more focused semantic content, useful for
relevant multiword extraction. Also, most studies are limited to corpora below a
few million words. Due to the large orders of magnitude of the language vocab-
ularies, much larger corpora are needed to investigate the n-gram behavior for
n ≥ 1. There are recent studies on large corpora, [3,9] but often exclude the lower
n-gram frequencies, e.g., below 40, as in the 1.8 Tera word Google English
n-gram corpus [3] for 1 ≤ n ≤ 5, precluding model validation with real data.
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3 Estimating the Number of Distinct n-grams

We assume that the size of each language n-gram vocabulary, e.g., English,
is practically fixed at each given temporal epoch, as new/old n-grams slowly
emerge/disappear. For brevity, we omit an indication of the language L (English,
French) and the n-gram size n (1..6) in the expressions but always assume each
expression holds for a given (L, n) pair. Let V (L, n) (denoted as V ) be the lan-
guage n-gram vocabulary size for each n-gram size (1 ≤ n ≤ 6); and D(C;L, n)
(denoted as D) be the number of distinct n-grams in a corpus of size C in lan-
guage L, for each given n. We propose a model for estimating D that, as in growth
and preferential attachment models [5,10], considers two processes: i) selecting
new words from a language vocabulary; ii) or repeating existing words in a cor-
pus. The model makes it explicit how the vocabulary finiteness influences the rate
of appearance of new distinct n-grams as the corpus size grows. Regarding i) we
follow [5] (whose complete model only applies to character-formed languages,
e.g. Chinese) in the particular way those authors model the distinct n-grams
from the language vocabulary that are still to appear in the corpus, represented
by F1 = (V − D)/V . Ratio F1 monotonically decreases when the corpus grows,
as the number of distincts (D) approaches the vocabulary size (V ). Regarding
ii), ratio F2 = C/D is the average number of occurrences per distinct n-gram.
The larger F2, the stronger the tendency is for repeating existing n-grams in
the corpus. Thus, we propose the rate of appearance of new distinct n-grams
for each (L, n) to be ∝ F1 × 1/F2, that is the outcome of multiplying F1 by the
reciprocal of F2. Assuming the validity of a continuum approximation, this rate
corresponds to dD

dC . Let K1 > 0 be a real constant,

dD

dC
= K1

D

C

V − D

V
⇒ V

K1 (V − D) D
dD =

1
C

dC ⇒
∫

V

K1 (V − D) D
dD =

∫
1
C

dC ⇒ − ln(|V
D − 1|)
K1

+ c1 = ln(|C|) + c2

with c1, c2 as integration constants. As |V
D | ≥ 1 and C > 0, with c2−c1 = ln(K2),

ln((
V

D
− 1)− 1

K1 ) = ln(K2) + ln(C) ⇒ (
V

D
− 1)− 1

K1 = K2 C

Thus, the number of distinct n-grams for each (L, n) is

D(C;L, n) =
V (L, n)

1 + (K2 C)−K1
. (1)

In Sect. 4, V , K1 and K2 are empirically determined for each (L, n) pair.

3.1 Reviewing Zipf’s Law

By Zipf’s Law [11], the frequency of the rth most frequent word in a corpus is

f(r) = f(1) × r−α (2)

where r is the word rank (from 1 to D(L, 1)) and α is a constant close to 1.
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Observations in a wide range of large corpora show that the relative frequency
of the most frequent 1-gram in English, “the”, has small fluctuations around 0.06,
being a fair approximation to its occurrence probability, p1. Thus, f(1) ≈ p1 C.
From (2), ln(f(r)) = ln(f(1)) − α ln(r) so, ideally, ln(f(r)) decreases linearly
with a slope α, as ln(r) increases. However, in general, real data show deviations
from a straight line (e.g. Fig. 1 for real corpora: 62; 508; 8 600; in millions of
words).

The steps in the higher ranks in Fig. 1 correspond to equal-frequency words
forming frequency levels (groups) of integer frequency k and size W (k). Only
for the lowest k values starting from 1, there are frequency levels with multiple
ranks. Figure 2 shows the log-log curve W (k) versus k (k ≥ 1), which can be
approximated by a power law, but also exhibiting deviations from real data in
both extremes of k [2,6].
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Fig. 1. The observed word rank-frequency distributions

3.2 Estimating the Size W (k) of Each Frequency Level

Considering a generic level k, let rlk and rhk
be its lowest and highest ranks.

Thus, f(rlk) = f(rhk
) = k. This model for estimating W (k) only applies to the

higher ranks region of the real data distribution, as long as adjacent frequency
levels have consecutive integer frequency values, that is f(rhk+1) = f(rhk

) + 1.
We follow the functional structure of (2) due to its simplicity and assume, based
on empirical observations, that it applies to n-grams n ≥ 1, with α dependent on
n for each language L, although we omit this in the expressions. In a first step, we
assume an ideal straight line Zipf plot with slope αz. In further steps, to address
the Zipf plot deviations we model the dependencies of the α parameter on the
corpus size and the level frequency. Thus: f(rhk+1) = f(rhk

) + 1 = f(1) r−αz

hk+1
=

f(1) r−αz

hk
+ 1, leading to

rhk+1 =

(
f(1) r−αz

hk
+ 1

f(1)

)− 1
αz

=

(
1

rαz

hk

+
1

f(1)

)− 1
αz

. (3)
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By analogy

rhk+2 =

(
1

rαz

hk+1

+
1

f(1)

)− 1
αz

=

⎛
⎜⎜⎜⎜⎝

1((
1

rαz
hk

+ 1
f(1)

)− 1
αz

)αz
+

1
f(1)

⎞
⎟⎟⎟⎟⎠

− 1
αz

.

rhk+2 =

⎛
⎜⎜⎜⎝

1(
1

rαz
hk

+ 1
f(1)

)−1 +
1

f(1)

⎞
⎟⎟⎟⎠

− 1
αz

=

(
1

rαz

hk

+
2

f(1)

)− 1
αz

. (4)

rhk+3 =

⎛
⎜⎜⎜⎜⎝

1((
1

rαz
hk

+ 2
f(1)

)− 1
αz

)αz
+

1
f(1)

⎞
⎟⎟⎟⎟⎠

− 1
αz

=

(
1

rαz

hk

+
3

f(1)

)− 1
αz

. (5)

So, we can generalize (4) and (5), leading to:

rhk+m
=

(
1

rαz

hk

+
m

f(1)

)− 1
αz

, (6)

where (k + m) : 1..kmax with kmax = f(1), and m is an integer offset starting
from 0. With k = 1 in (6) we estimate the highest rank of level k + m for each
m, as a function of rank rh1 , which is the number of distinct n-grams of size n
in the corpus (D(C;L, n)). So, by subtracting rhk

from rhk+1 , we estimate for
each (L, n), the size Wz(k) (subscript z denotes the Zipf assumption).

Wz(k) =
(

1
Dαz

+
k − 1
f(1)

)− 1
αz −

(
1

Dαz
+

k

f(1)

)− 1
αz

. (7)

To estimate Wz(k), we first calculate D(C;L, n), requiring the K1 and K2

constants in (1), Sect. 4.1. Then we tune the αz value that best fits the Wz(1)
value (by (7)) to the observed size Wobs(k) of level k = 1 in a 508 million word
corpus. Figure 2 shows the log-log curves of the Observed word frequency level
sizes for different k for this corpus and the Wz(k) estimates by (7). The Wobs(k)
curve exhibits a regular decrease as k grows from 1 until the curve reaches
a fluctuation zone, which becomes stronger for higher values of k (discussed
ahead in Sect. 4.2). Before the fluctuation zone, the following dominant pattern is
suggested: the deviation between the two curves is approximately proportional to
ln(k). This leads us to an improved approximation, denoted by W (k), such that
ln(W (k)) = ln(Wz(k)) + β ln(k), where β is a real positive constant. Therefore

W (k) = Wz(k) kβ . (8)
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Fig. 2. Word frequency level size W (k) vs k: observed and estimates by (7) and (8).

β is tuned, keeping the corpus fixed, to the best fit of W (k) to the observed level
sizes. Curve W (k) estimates after correction by (8) is much closer to the observed
one (Fig. 2, Table 5). Similar behaviors were found for n-grams 1 < n ≤ 6.

3.3 The Effect of the Corpus Size on the Level Size W (k)

Unlike the constant Zipf’s αz in (7), for real corpora, exponent α in (2) depends
both on the individual ranks of the distinct n-grams for each corpus and on
the corpus size. Thus, Wz(k) calculation in (7) should cope with the α vari-
ation. Previously, the αz value was tuned to fit Wz(1), the size of level 1, in
one of the available corpora (e.g. 508 million words corpus). This is a prac-
tical way to fit, with good approximation to the other frequency levels. The
following are (corpus size; αz) pairs obtained, for 1-grams, for a set of differ-
ent corpora: (128 364 577; 1.13848), (254 801 364; 1.14671), (508 571 317; 1.155),
(1 068 282 476; 1.16391), (2 155 599 290; 1.17233), (4 278 548 582; 1.18056). These
values show that αz grows approximately an equal amount as the corpus size
is doubled, suggesting a logarithmic proportionality between αz and the corpus
size. Let Q = log2(C2/C1) and A = α2 −α1 with α1, α2 associated, respectively,
to C1, C2. Thus λ ΔQ = ΔA, where λ is a constant, so dA

dQ = λ and

∫
dA = λ

∫
dQ ⇒ A + ct1 = λ Q + ct2 ⇒ A = λ Q + ct3 ⇒

α2 − α1 = λ log2(
C2

C1
) + ct3 ⇒ α2 = α1 + γ ln(

C2

C1
) + ct3 (9)

where γ = λ/ ln(2) and ct3 = ct2− ct1. (ct3 = 0 in the experiments.) This leads
to (10), with α1 = αz for some reference corpus with size C1. Any of the above
(corpus size; αz) pairs can be used for this, e.g. for 1-grams in English, the C1

and α1 values of 508 571 317 and 1.155.
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α(C) = α1 + γ ln(
C

C1
). (10)

α(C) replaces αz for calculating Wz(k) in (7), now changing to Wz(k,C):

Wz(k,C) =
(

1
Dα(C)

+
k − 1
f(1)

)− 1
α(C)

−
(

1
Dα(C)

+
k

f(1)

)− 1
α(C)

, (11)

which is reflected in W (k,C) of (8):

W (k,C) = Wz(k,C) kβ . (12)

Equation (12) allows to predict the k-level size for n-grams 1 ≤ n ≤ 6, given C.
All expressions (1)–(12) apply to n-grams 1 ≤ n ≤ 6 for corpora in a language
L. The obtained αz values are lower as the n-gram size increases from 1 to 6.

4 Results

The corpora were built by random extraction of English and French Wikipedia
documents. For English, the corpora sizes were doubled successively, from
62 × 106 words (62 Mw) to 8.6 × 109 words (8.6 Gw). For French, from 71 Mw
to 2.4 Gw. Exact English corpora sizes are 62 557 077; 128 364 577; 254 801 364;
508 571 317; 1 068 282 476; 2 155 599 290; 4 278 548 582; 8 600 180 252; denoted,
respectively, as 62 Mw; 1/8 Gw; 1/4 Gw; 1/2 Gw; 1.1 Gw; 2.2 Gw; 4.3 Gw; 8.6 Gw.
French sizes are 71 083 803; 142 889 828; 289 392 085; 595 034 875; 1 154 477 213;
2 403 390 530. Due to lack of space, only English results are shown, French ones
being similar.

For a fair count of the distinct n-grams, still not modifying the text semantics,
the corpora were pre-processed by separating words, through a space, from each
of the following characters: {‘<’, ‘>’, ‘”’, ‘!’, ‘?’, ‘:’, ‘;’, ‘,’, ‘(’, ‘)’, ‘[’, ‘]’}. Table 1
shows the corpora sizes and the distinct n-gram counts.

Table 1. The observed number of distinct n-grams for each corpus in English

Corpus 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

62Mw 1 567 905 7 682 911 17 507 174 25 872 310 31 427 945 34 998 302

1/8Gw 2 646 714 12 608 307 29 721 342 45 508 866 56 598 262 64 020 127

1/4Gw 4 727 634 23 007 130 56 493 059 89 290 502 113 192 655 129 410 481

1/2Gw 7 905 576 39 045 477 100 093 384 164 049 701 212 902 754 246 756 201

1.1Gw 15 033 759 74 361 922 199 655 660 341 316 872 454 904 356 534 494 709

2.2Gw 24 865 840 122 366 976 337 988 348 598 619 341 819 532 204 978 561 656

4.3Gw 42 363 831 210 708 582 604 996 078 1 113 522 090 1 567 962 556 1 901 784 002

8.6Gw 70 227 712 350 076 300 1 036 027 979 1 978 136 904 2 866 649 212 3 539 349 002
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4.1 Predicting the Number of Distinct n-grams

In order to find K1, K2 and V (L, n) for a language L and an n-gram size,
to obtain estimates by (1) we start by setting V (L, n) to 106 and successively
increase it until the K1 and K2 values lead to the smallest relative error for
two corpora of sizes close to the extremes of the corpora sizes range: 1/4 G
and 4.3 G for English. Relative error is ((Est − Obs)/Obs) × 100%, for esti-
mated (Est) and observed (Obs) numbers. This procedure stops when further
increases of V (L, n) do not lead to significant changes in the relative error, and
then that V (L, n) value is taken as an approximation to the n-gram vocabu-
lary size. Table 2 shows K1 and K2, and V (L, n) for English. In Table 3, the
left sub-column of each n-gram column shows acceptable values for the rela-
tive errors of the estimates D(C;L, n) by (1), in this range of corpora sizes.
The right sub-column shows the estimates of a Poisson based model given by
DistPoisson(L, n,C) =

∑r=V (L,n)
r=1 (1 − e−f(r,L,C))); r is the n-gram rank and

f(r, L,C)) is the expected frequency of r in corpus of size C by Zipf-Mandelbrot
model (see [9], where the parameters were tuned by the same procedure as
described above in this section, for the empirical model). For n-gram sizes lower
than 4, relative errors are considerably higher than the ones by D(C;L, n), e.g.
reaching −31.1%, −24.5% and −12.4% for the largest corpus (8.6 Gw). For 5-
grams and 6-grams, relative errors are lower. Figure 3 shows that the curves for

Table 2. K1, K2 and vocabulary sizes (V , in number of n-grams) for English

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

K1 0.8377775 0.8607456 0.8845 0.9235369 0.9376907 0.955206

K2 3.61× 10−11 5.1× 10−11 2.66× 10−11 1.7835× 10−11 4.29× 10−12 6.5× 10−13

V 2.45× 108 9.9× 108 4.74× 109 1.31× 1010 6.83× 1010 5.292× 1011
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Fig. 3. Numbers of distinct n-grams: observed and predicted (D(C; L, n), by (1)),
versus the corpus size, in English.
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Table 3. Relative errors (%) of English distinct n-grams, estimated by: D(C; L, n),
(1) (bold left col.); DistPoisson(L, n, C), [9] (right col.)

Corpus 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

62Mw −5.8 9.2 −9.1 −2.0 −6.0 −7.2 5.1 −9.4 −2.7 −5.3 −3.3 −5.6

1/8Gw 1.5 7.8 2.2 4.8 4.3 3.0 4.5 4.1 6.0 4.8 5.0 4.4

1/4Gw 0.0 −2.1 −3.8 −3.3 0.0 4.1 0.0 −3.0 0.7 0.0 0.0 0.0

1/2Gw 5.1 −5.4 4.8 −4.2 3.0 0.0 2.4 0.0 2.2 −2.3 1.5 1.5

1.1Gw 0.0 −17.3 1.0 −13.3 −2.4 −3.2 −3.5 −7.3 −4.4 −4.5 −4.9 −4.5

2.2Gw 3.8 −20.1 5.2 −13.2 3.6 −7.9 2.9 −2.5 1.9 0.0 1.5 1.3

4.3Gw 0.0 −26.8 −0.2 −19.7 0.0 −10.2 0.0 −6.6 0.2 −2.3 0.4 0.0

8.6Gw −4.8 −31.1 −6.8 −24.5 −2.4 −12.4 −0.4 −7.8 3.3 −1.3 4.7 2.2

the observed and estimated values are quite close, for each n-gram size, across the
analysed corpora. The predictions extend beyond the empirical corpora range,
evolving to the n-gram vocabulary sizes plateaux. Equation (1) predicts, e.g.,
about 99% of the distinct n-grams in each English n-gram vocabulary appear
for C ≈ 6.7 × 1012 words for 1-grams, and C ≈ 1.89 × 1014 words for 6-grams.

4.2 The Frequency Level Sizes

Table 4 shows the β and γ values for calculating W (k,C) (12) and α(C) (10),
1 ≤ n ≤ 6. Equation (12) provides a good approximation when the observed level
sizes, Wobs(k,C), decrease monotonically as k grows: Wobs(k,C) > Wobs(k +
1, C). For a fixed corpus size, that condition is not ensured when k exceeds
a certain threshold, which is lower for smaller corpora and also for smaller n-
gram sizes. E.g., for the 62 Mw corpus the k threshold is 28 for 1-grams, and
is 145 in the 8.6 Gw corpus for 2-grams. Above k threshold, due to Wobs(k,C)
non-monotonicity, model (12) only provides a rough approximation (Fig. 4), in
contrast to its good approximation in lower k. Table 5 shows error metrics for
the W (k,C) estimates, considering the following basic set of k values: k ∈ K,
K = {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128}. Due to the k thresholds, the full set of k
values was only used for the two corpora whose denoted sizes are above 4 Gw;
the k value of 128 was not considered for the 1.1 Gw and 2.2 Gw corpora; 128
and 64 were not used for the 1/2 Gw and 1/4 Gw ones; 128, 64 and 32 were
not considered for the remaining corpora, 1/8 Gw and 62 Mw. Table 5 shows two
columns for each n-gram size: the left one indicates the average relative error,

Table 4. Parameters β and γ for each n-gram size and English

1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

β 0.06 0.874 0.11 0.167 0.15 0.128

γ 0.011 0.012 0.0115 0.012 0.01205 0.01205
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Table 5. Error metrics (percentages): i) average relative error (absolute value) of
W (k, C) estimates for English; ii) root-mean-squared-deviation of the relative error.

Corpus 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

62 Mw 5.5 6.1 2.7 3.5 5.9 6.6 7.9 8.9 4.2 5.9 8.2 9.4

1/8 Gw 7.9 8.3 7.8 8.1 3.1 4.0 3.6 5.0 4.1 4.9 7.5 8.0

1/4 Gw 6.1 6.4 5.4 6.0 2.5 3.0 5.2 5.7 4.7 5.4 3.0 4.6

1/2 Gw 6.8 7.2 8.3 8.9 4.7 5.4 6.6 6.8 6.4 6.7 5.4 6.2

1.1 Gw 2.4 3.2 6.1 6.9 3.8 4.4 3.4 4.0 4.0 4.7 4.1 5.5

2.2 Gw 3.4 4.3 7.7 8.4 7.7 8.5 8.3 8.7 8.1 9.2 4.6 5.3

4.3 Gw 3.4 4.8 6.1 6.9 6.9 7.8 5.9 6.1 6.5 7.4 4.1 6.8

8.6 Gw 6.2 7.4 5.6 6.1 7.2 8.5 6.0 6.7 6.1 7.5 5.8 8.8

1
‖K‖

∑
k∈K Err(k), where K is the set of k values used in the corpus as explained

before, and Err(k) = |(W (k,C)−Wobs(k,C))/Wobs(k,C)|, which is the relative
error (in its absolute value) for each k; each value in the right column, based
on the root-mean-squared-deviation, is calculated as

√
1

‖K‖
∑

k∈K Err(k)2 and
reflects how homogeneous the values of the relative error are for the different
k values used in the estimates. The closer the left and right column values are,
the greater the homogeneity. Global results exhibit homogeneity, showing also
reasonably low average values. It should also be noted that the considered range
of k values includes in all cases the lower frequency values, at least from 1 to 16.

Figure 4 shows, e.g., for 1-grams and 3-grams, that the curves W (k,C) (“Esti-
mated”) are very close to the curves Wobs(k,C) (“Observed”) for each corpus.
Likewise for other n-gram sizes (2, 4, 5, 6). Beyond the k thresholds the observed
curves Wobs(k,C) enter non-monotonic fluctuation zones. The slope of the curves
changes only slightly as the corpus size grows and the similar spacing between
curves when C is doubled reflects a regular Wobs(k,C) growth pattern.

4.3 The Evolution of the Frequency Level Sizes

Model (12) predicts that, for each of the lowest k values, W (k,C) grows with
C until a maximum, then gradually decreases with increasing C (Fig. 5). This
results from the language vocabulary finiteness. E.g., for the singletons, W (1, C)
keeps growing with C while n-grams remain to appear from the vocabulary.
For a large enough corpus, the distinct n-gram plateau is reached (Fig. 3) and
after this point, W (1, C) can not grow anymore. By further increasing C, the
existing singleton n-grams will gradually move to the frequency level k = 2,
until W (1, C) = 0, i.e. singletons disappear. Similar behavior is predicted for
1 < n ≤ 6 (Fig. 5 a). By further increasing C, this process will affect successive
k levels, e.g. k = 2 and so on, e.g., Fig. 5 b).
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Fig. 4. Observed (Wobs(k, C)) and estimated (W (k, C)) (by (12)) values for different
frequency levels and corpora sizes—English: a) 1-grams; b) 3-grams.
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Fig. 5. W (k, C) vs C: a) k = 1, 1-gram..6-gram; b) k ∈ {1, 2, 3}, 1-gram, 3-gram.

5 Conclusions

Statistical extraction of relevant multiwords benefits with n-gram frequency dis-
tribution information from real corpora. This goes beyond the usual word fre-
quency distribution (i.e. 1-grams) by including n-grams of sizes n > 1. This
paper contributes with an empirical study on the n-gram frequency distribution
from 1-grams to 6-grams, with large real corpora (English and French) from
millions up to a few billion words. A distinctive aspect is that it analyzes the
low frequency n-grams real data for such large corpora instead of relying on
smoothing-based estimation. Low frequency n-grams represents the largest pro-
portion of the distinct n-grams in a corpus for a wide range of corpora sizes, and
are a significant part of the most relevant multiwords. This paper contributes
with an empirical analysis and a model of the properties of the low frequency
n-grams in large corpora, complementing studies on low frequency single words
for smaller corpora. Assuming the finiteness of language n-gram vocabularies,
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we analyzed and modelled the total number of distinct n-grams for the above
range of corpora. The model leads to good approximations to the real data dis-
tributions, with average relative errors of 5.6% and 2.9% respectively for the
lower frequency n-gram distribution (namely the number of singleton n-grams),
and the number of distinct n-grams. Moreover, the proposed model allows to
predict the evolution of the numbers of distinct n-grams towards asymptotic
plateaux for large enough corpora. Also, according to the model, the sizes of
equal-frequency levels, for the lowest frequencies, initially grow with the corpus
size until reaching a maximum and then decrease as the corpus grows to very
large sizes. Overall, these results have practical implications for the estimation
of the capacity of n-gram Big Data systems. Work is ongoing towards extending
this empirical study up to hundreds of Giga word corpora.
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